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Abstract

Availability of trained radiologists for fast processing of CXRs in regions burdened with

tuberculosis always has been a challenge, affecting both timely diagnosis and patient moni-

toring. The paucity of annotated images of lungs of TB patients hampers attempts to apply

data-oriented algorithms for research and clinical practices. The TB Portals Program data-

base (TBPP, https://TBPortals.niaid.nih.gov) is a global collaboration curating a large collec-

tion of the most dangerous, hard-to-cure drug-resistant tuberculosis (DR-TB) patient cases.

TBPP, with 1,179 (83%) DR-TB patient cases, is a unique collection that is well positioned

as a testing ground for deep learning classifiers. As of January 2019, the TBPP database

contains 1,538 CXRs, of which 346 (22.5%) are annotated by a radiologist and 104 (6.7%)

by a pulmonologist–leaving 1,088 (70.7%) CXRs without annotations. The Qure.ai qXR arti-

ficial intelligence automated CXR interpretation tool, was blind-tested on the 346 radiologist-

annotated CXRs from the TBPP database. Qure.ai qXR CXR predictions for cavity, nodule,

pleural effusion, hilar lymphadenopathy was successfully matching human expert annota-

tions. In addition, we tested the 12 Qure.ai classifiers to find whether they correlate with

treatment success (information provided by treating physicians). Ten descriptors were

found as significant: abnormal CXR (p = 0.0005), pleural effusion (p = 0.048), nodule (p =

0.0004), hilar lymphadenopathy (p = 0.0038), cavity (p = 0.0002), opacity (p = 0.0006), atel-

ectasis (p = 0.0074), consolidation (p = 0.0004), indicator of TB disease (p = < .0001), and

fibrosis (p = < .0001). We conclude that applying fully automated Qure.ai CXR analysis tool

is useful for fast, accurate, uniform, large-scale CXR annotation assistance, as it performed

well even for DR-TB cases that were not used for initial training. Testing artificial intelligence

algorithms (encapsulating both machine learning and deep learning classifiers) on diverse

data collections, such as TBPP, is critically important toward progressing to clinically

adopted automatic assistants for medical data analysis.
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Introduction

Tuberculosis (TB) caused over 1.6 million deaths in 2017. The global treatment success rate

was 82% in 2016, and for drug-resistant TB (DR-TB), the rate was 55%. In addition, the WHO

estimated 10 million TB cases during 2016 combined with a 64% TB treatment coverage rate,

(notified / estimated incidence) [1], thus approximately 3.6 million TB cases were not diag-

nosed and treated. Current TB screening methods include the CXR, and it remains in wide-

spread clinical use providing high sensitivity as a diagnostic tool and additional insight into

TB disease prognosis [2, 3].

The value of the CXR in early TB detection is well documented [2, 3]. CXR has the best sen-

sitivity of all clinical tests in the range of 87% to 98% [2]. This compares well with the sensitiv-

ity of conventional microscopy range from 32% to 94%, fluorescence microscopy in range

from 52% to 97% [4], and sensitivity of tuberculosis diagnostics Xpert Ultra and Xpert of 63%

and 46% respectively [5].) In addition, the CXR has diagnostic utility beyond TB, and it

remains a front-line tool for assessing and diagnosing a wide range of health issues [3,6].

Yet a shortage of radiologists limits its usage in low-resource disadvantaged populations

with a high burden of TB. For many, visiting the clinic for radiological screening is relatively

expensive [7]. The challenges with the CXR also include a lack of globally accepted reading

standards and inter- and intra-rating issues [8, 9, 10]. These problems impact both TB diag-

nostics and TB monitoring. TB diagnostics are addressed with a single TB or not TB disease

classifier. TB monitoring requires a more complete set of TB specific CXR annotation

classifiers.

Specific to TB diagnostics, in attempt to remedy this situation, several countries reported

CXR screening programs in rural settings with X-ray machines mounted in mobile vans and

outfitted with implementations of machine learning and deep learning classifiers that are per-

forming quick automated TB screening [11,12]. As this practice is adopted in more settings,

the need for highly efficient predictive methods cataloging additional lung features is clear.

The Food and Drug Administration recently approved the first artificial intelligence pow-

ered X-ray device to scan images and detect pneumothorax [13]. Artificial intelligence deep

learning methods are moving from the setting of compelling technical research and develop-

ment projects, to use in clinical research, to mainstream medical practice.

The pathway to create and test these methods is to collect a large volume of representative

data that contains a sufficient number of specific types of each abnormality. Data are then sep-

arated into sets for training, validation and testing. The quality of the data used for creating the

classifier is directly related to the observed results when the classifier is used against subse-

quent novel input data.

TB specific classifiers are available via two commercial entities–Qure.ai qXR product

(http://qure.ai/qxr/) and Delft Imaging Systems CAD4TB (https://www.delft.care/cad4tb/)—

and numerous additional models can be found in the literature [14–19]. Qure.ai qXR product

(http://qure.ai/qxr/) provides a commercially available set of software CXR image classifiers,

and they have made this service available to the TB Portals Program.

Details of the Qure.ai deep learning classifiers are proprietary information; however, a

broad overview is available in a pre-print article, and the company’s web site. The Qure.ai clas-

sifiers were developed on 1.2 million CXRs obtained from hospitals using 22 X-ray machine

models from 6 vendors. Since the images varied in resolution and quality, they were down-

sampled and re-sized to a standard. During this processing several abnormality-specific data

augmentation techniques were applied to the input CXR images. Convolutional neural net-

works (CNNs)–specifically Qure.ai modified versions of densenets and resnets open source

algorithms—were trained to identify 12 individual CXR abnormalities. A pre-training process
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that focused on separating chest X-rays from other medical X-rays was used by Qure.ai rather

than selecting an open source pre-trained network. Qure.ai trained multiple models to detect

each abnormality. A subset of the models was selected using appropriate heuristics and a

majority ensembling schedule was used to combine these models and score the presence or

absence of a specific abnormality [20–22].

On independent sets of CXRs that were not used in the training, Qure.ai reports an update

of the March 2018 reported results [20] with TB diagnostic accuracy measured as the receiver

operating characteristic area under the curve of 97% against the publicly available Montgom-

ery County dataset and 95% against the Shenzhen Hospital imaging dataset. An additional

study of the Qure.ai CXR lung feature classifiers yielded promising results. This study drew

874 CXRs randomly from the ChestX-ray8 database downloaded from the National Institute

of Health website (https://nihcc.app.box.com/v/ChestXray-NIHCC, accessed on January 30,

2018) [23].

However, all the datasets noted above have a limited number of CXRs from patients with

DR-TB. Hence, we decided to test the performance of Qure.ai classifiers on NIAID TB Portals

collection of CXRs and CTs, containing multiple cases of DR-TB, to ensure the efficiency of

classifiers in annotating these most dangerous and hard to treat instances.

Several non-TB specific CXR databases and radiograph classifiers are extant. These include

CheXpert (224,316 CXR images) and the associated labeler [24], as well as those images

released in the ChestX-ray8 database (112,120 CXRs) by the NIH Clinical Center [25]. The

challenge with using these images for training and testing classifiers is that there is a low pro-

portion of TB disease specific images, and lower percentage of DR-TB images with associated

annotations and clinical data [24–26].

In 2012, the NIAID TB Portals Program (TBPP) [27] initiated the development of a novel

data repository containing socioeconomic, geographic, clinical, laboratory, radiological, and

pathogen genomic information from deidentified patient cases. This TBPP initiative brings

disparate, local, clinical records of TB cases, with an emphasis on DR-TB cases, from countries

burdened with TB to the attention of the global research community in the form of an open-

access online resource.

As of January 2019, TBPP has made publicly available 1,425 physician-validated patient

cases from ten country sites (Azerbaijan, Belarus, Moldova, Georgia, Romania, China, India,

Kazakhstan, South Africa and Republic of Congo), 1,179 (83%) of which are DR-TB and 614

(43%), 669 (47%), and 754 (53%) of which contain CXR, CT, and genomic data, respectively.

With the TBPP emphasis on DR-TB (1,179 patient cases), the database is a unique and valuable

resource for the examination of the most rare, atypical, and dangerous TB patient cases. For all

patient cases, 410 (29%) contain both CXR and CT images. Currently, of the 1,538 CXR images

stored within TBPP data, 346 CXR images are annotated by a single attending radiologist.

One of TBPP goals is to utilize its unique data resource to identify and test promising com-

puter-generated models in the areas of TB imaging and genomics. Bringing these models for-

ward to empower researchers, health care professionals, and informaticians toward the

development of novel diagnostics and personalized treatment regimens.

In this paper we report the results of comparison of the radiologist annotations for CXRs

and known patient case outcomes with the predicted Qure.ai deep learning classifier scores.

Materials and methods

The TBPP database is a de-identified, curated, physician validated, and accessible resource

(https://Data.TBPortals.niaid.nih.gov). The origins and contents of the TBPP database is fully

described in Rosenthal et al [27]. Over 170 data fields from socioeconomic, geographic,
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clinical, laboratory, radiological, and pathogen genomic information are linked via the patient

case identifier.

This analysis originates from a focus on the 1,538 CXR images and 666 CT images stored

within TBPP data, of which 346 CXR images and 184 CT images are annotated by the same

single attending radiologist from the Republican Scientific and Practical Centre for Pulmonol-

ogy and Tuberculosis, Minsk, Republic of Belarus. The annotations were created and captured

by a single radiologist using a pre-defined collection form and data entry tool.

During December of 2018, TBPP CXRs were provided to Qure.ai for processing. Of the

CXR raster images provided to Qure.ai, 89% measured 1,800 by 1,800 pixels. All images were

200 pixels per inch. Lossless, an 8-bit grey-scale image format, is used for storing 69% of the

files with 31% being kept in the a three-channel 24-bit format.

Qure.ai provides the TB classifiers output as a free service for research purposes in collabo-

ration with the TBPP. The results for this analysis were provided during December 2018. As

shown in Table 1, Qure.ai provides a set of 12 deep learning classifier scores for the following

common CXR findings.

Among these 12 Qure.ai classifier findings, five were in common with TBPP CXR and CT

annotations: cavity, nodule, atelectasis, pleural effusion, hilar lymphadenopathy. The classifier

outcomes consist of a continuous score in the range of zero to one. A threshold is set by Qure.

ai that defaults to more sensitivity and less specificity (along the ROC curve), and a binary

present/absent prediction is indicated as well. In practice this setting is adjusted during deploy-

ment in accordance with the screening, radiological workflow prioritization, or research

needs. We used the default.

The plan for testing Qure.ai classifiers on the data from TBPP database was as follows.

• Comparison of TBPP radiologist annotated CXRs features with features predicted by Qure.

ai for the same CXRs

• Validating, with the help of TBPP radiologist annotated CTs whether the features found on

CXRs and predicted by Qure.ai are consistent

• Using TBPP clinical information regarding patient case treatment outcome, seek most statis-

tically significant correlations with Qure.ai classifiers

The first radiologist-annotated reference standard comparison cohort consists of 346 CXRs

from 311 patient cases. Considering the number of TBPP CXRs that did not have the

Table 1. Qure.ai qXR (http://qure.ai/qxr/) TB deep learning classifiers.

Abnormal Indication of abnormality on the chest X-ray

Blunted CP angle Indicating the presence of a pleural effusion or pleural thickening

Cardiomegaly Increased heart size, increased cardio-thoracic ratio

Pleural Effusion A build-up of excess fluid between layers of pleura outside of the lungs

Nodule Small well-defined opacity in the lung fields

Hilar

lymphadenopathy

Hilar enlargement, prominence or visible lymph nodes

Cavity A gas-filled space, seen as a lucency or low-attenuation area

Opacity A general term indicating an abnormal radiopaque region, includes a wide range of well

circumscribed or ill-defined abnormalities in the lung fields

Atelectasis Decrease in lung capacity

Consolidation Airspace opacification, often following a lobar pattern

Tuberculosis Indication of TB disease on the chest X-ray

Fibrosis Reticular shadowing or evidence of scarring

https://doi.org/10.1371/journal.pone.0224445.t001
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radiologist’s annotations we sought to exploit the TBPP CT images that were annotated. CT

annotated images that occurred within 30 days of a CXR from the same patient case were

matched. This identified 184 CT images from 137 patient cases–a second independent radiolo-

gist-annotated reference standard. This comparison set is of interest because the CT images pro-

vide the Radiologist with much more information with which to identify the specific patient

lung features. Examining patient case outcome, we identify our two cohorts for analysis: 220

patients with an outcome of cured, and 61 with an outcome of died or treatment failure.

The present/absent indications were compared using Fisher’s exact test. The continuous

score indication was evaluated using Wilcoxon-Mann-Whitney test (WMW) and receiver

operating characteristic (ROC) curves. As a nonparametric test, WMW was selected because it

does not depend on a normal data distribution for a test of the null hypothesis that it is equally

likely that a randomly selected score from one cohort will be less than or greater than a ran-

domly selected score from the other cohort. ROC curve analysis will provide an overall esti-

mate of accuracy with a confidence interval. All analysis results were generated using SAS/

STAT software 14.1, SAS Software version 9.4 of the SAS System for Windows Workstation

Copyright © 2002–2012 by SAS Institute Inc.

Results

The first TBPP reference standard cohort consists of 346 annotated CXRs from 311 patients.

Among these cases there are 85(24.6%) extensively drug resistant, 186(53.7%) MDR or mono

drug resistant, and 75(21.7%) drug sensitive. The patient case definition distribution is 187

(54.1%) new, 79(22.8%) failure, 63(18.2%) relapse, 9(2.6%) treatment after default, and 8

(2.3%) other. The patient case outcomes are 179(51.7%) cured, 84(24.3%) completed, 29(8.4%)

default, 25(7.2%) failure, 19(5.5%) died, and 10(2.9%) unknown.

TBPP annotations for the 346 CXRs indicate the presence of hilar lymphadenopathy (29,

8.4%), cavity (84, 24.3%), atelectasis (335, 96.8%), pleural effusion (35, 10.1%), and nodule

(315, 91%). We found statistically significant correspondence between human-provided and

deep learning-based measures for hilar lymphadenopathy, cavity, pleural effusion, and nodule.

The summary statistics in comparison to the Qure.ai binary prediction score is shown in

Table 2.

The second TBPP reference standard cohort consists of 184 CT images from 137 patient

cases. The resistance distribution among these cases is 47(25.5%) extensively drug resistant, 85

(46.2%) MDR or mono drug resistant, and 52(28.3%) drug sensitive. The patient case defini-

tion distribution is 115(62.5%) new, 41(22.3%) failure, 22(12%) relapse, 2(1%) treatment after

default, and 4(2.2%) other. The patient case outcomes are 80(43.5%) cured, 40(21.7%) com-

pleted, 10(5.4%) default, 18(9.8%) failure, 22(12%) died, and 14(7.6%) unknown. There were

no cases with a defined outcome of still on treatment.

TBPP annotations for the 184 CTs indicate the presence of hilar lymphadenopathy (39,

21.2%), cavity (95, 51.6%), atelectasis (78, 42.4%), pleural effusion (133, 72.3%), and nodule

Table 2. 346 TBPP CXR Annotations versus Qure.ai Binary Prediction, Crosstabulation Summary Statistics.

Lung Feature CXR Accuracy P-Value Sensitivity Upper CL Lower CL Specificity Upper CL Lower CL

Hilar lymphadenopathy 73% <0.0001 62.1% 79.7% 44.4% 74.1% 69.3% 79.0%

Cavity 80% <0.0001 75.0% 84.3% 65.7% 82.1% 77.4% 86.7%

Atelectasis 21% 0.5181 19.4% 23.6% 15.2% 72.7% 46.4% 99.0%

Pleural Effusion 91% <0.0001 60.0% 76.2% 43.8% 94.9% 92.4% 97.3%

Nodule 61% 0.0003 59.7% 65.1% 54.3% 74.2% 58.8% 89.6%

https://doi.org/10.1371/journal.pone.0224445.t002
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(23, 12.5%). The summary statistics in comparison to the Qure.ai binary prediction score is

shown in Table 3. Again, we found a statistically significant correspondence between expert

annotations and deep learning-based predictions for hilar lymphadenopathy, cavity, atelecta-

sis, and pleural effusion.

Additional comparisons of 346 TBPP CXR annotations versus Qure.ai classifiers were com-

pleted. We examined the accuracy for 271 drug-resistant (Table 4) and 75 drug-sensitive

(Table 5) TB patient cases with CXR. Considering these are distinct patient groupings com-

monly used in TB research, we note the difference in accuracy for the hilar lymphadenopathy

annotation between the groups. The relationship is statistically significant for drug resistant

TB (p<0.0001) with 20 positive radiologist annotations, but not for those CXR from patient

cases that are sensitive to TB drugs (p = 0.3557) for 9 positive radiologist annotations.

We also considered groupings for 63 relapse (Table 6) and 187 new (Table 7) patient cases.

One might consider this patient case definition grouping as a surrogate for the duration of dis-

ease, and it seems reasonable to surmise that the longer a person has active TB the more lung

damage may be present. We find differences between these two groups in terms of statistical

significance for hilar lymphadenopathy and nodules. Lymphadenopathy was found in 7 of the

63 relapse patient cases (p = 0.0407) and 15 of the 187 new patient cases (p = 0.0006). Nodules

were found in 61 of the relapse patient cases (p = 0.0669), and 166 of the new patient cases

(p = 0.024).

TBPP annotations for the 346 CXRs compared with the Qure.ai continuous predicted score

is summarized in Table 8 and illustrated with the receiver operating characteristic (ROC)

curves in Figs 1–5. (Note the label “ROC Curve for CXR” in the title of the graphic.) The CXR

Accuracy column in Table 8 indicates that the presence of pleural effusion and cavity are most

accurate with a measure of 85% and 84% respectively, while atelectasis is least accurate at 51%.

The accuracy measures are corroborated by the p-values indicated in Table 2 where cavity and

pleural effusion were found to be of a higher statistical significance than atelectasis.

TBPP annotations for the 184 CTs compared with the Qure.ai continuous predicted score

is summarized in Table 9 and illustrated with the receiver operating characteristic (ROC)

curves in Figs 6–10. (Note the label “ROC Curve for CT” in the title of the graphic.) The CT

Accuracy column in Table 9 indicates that atelectasis and cavity are the most accurate with a

measure of 78% and 70% respectively, and nodule is least accurate at 56%. The accuracy

Table 3. 184 TBPP CT Annotations versus Qure.ai Binary Prediction, Crosstabulation Summary Statistics.

Lung Feature Imputed CT Accuracy P-Value Sensitivity Upper CL Lower CL Specificity Upper CL Lower CL

Hilar lymphadenopathy 65% 0.0318 69.7% 77.1% 62.2% 48.7% 33.0% 64.4%

Cavity 65% <0.0001 84.3% 91.8% 76.7% 46.3% 36.3% 56.3%

Atelectasis 72% <0.0001 89.6% 95.4% 83.8% 47.4% 36.4% 58.5%

Pleural Effusion 42% 0.0214 92.2% 99.5% 84.8% 22.6% 15.5% 29.7%

Nodule 45% 0.1629 45.3% 53.0% 37.7% 39.1% 19.2% 59.1%

https://doi.org/10.1371/journal.pone.0224445.t003

Table 4. 271 TBPP CXR Annotations for Drug Resistant TB versus Qure.ai Binary Prediction, Crosstabulation Summary Statistics.

Lung Feature CXR Accuracy P-Value Sensitivity Upper CL Lower CL Specificity Upper CL Lower CL

Hilar lymphadenopathy 77% <0.0001 65.0% 85.9% 44.1% 77.7% 72.5% 82.8%

Cavity 80% <0.0001 75.6% 85.2% 66.1% 82.4% 77.0% 87.8%

Atelectasis 22% 0.737 20.2% 25.0% 15.3% 75.0% 45.0% 100.0%

Pleural Effusion 91% <0.0001 62.1% 79.7% 44.4% 94.6% 91.8% 97.5%

Nodule 62% 0.0046 60.9% 67.0% 54.8% 69.6% 50.8% 88.4%

https://doi.org/10.1371/journal.pone.0224445.t004
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measures are corroborated by the p-values indicated in Table 3 where atelectasis and cavity

were found to be of a higher statistical significance than nodule.

For the purpose of examining the potential value of Qure.ai classifiers as predictors of dis-

ease outcome, the patient case cohorts consist of 220 (78%) patients with an outcome of cured,

and 61 (22%) with an outcome of died or treatment failure. For these 281 patient cases, the

type of resistance distribution is 69 (24.5%) extensively drug resistant, 163 (58.1%) MDR or

mono drug resistant, and 49 (17.4%) drug sensitive. The patient case definition distribution is

144 (51.2%) new, 61 (21.7%) failure, 41 (14.6%) relapse, 32 (11.4%) treatment after default,

and 3 (1.1%) other.

Table 10 introduces the Qure.ai classifier binary values (0 or 1) indicating the presence of

the lung feature. The summary statistics compare the Qure.ai classifier to the binary outcome

groups for cured versus died/failure. With p-value less than .05, there is a statistically signifi-

cant relationship for nodule, hilar lymphadenopathy, cavity, consolidation, and fibrosis.

The significance of differences between average scores of the Qure.ai classifiers were exam-

ined between the two cohorts using the nonparametric WMW test. As shown in Table 11, all

lung features except blunted costophrenic angle (CP) angle and cardiomegaly are statistically

significantly different at the P-value < .05 level. The significant lung features are as follows:

abnormal CXR (p = 0.0005), pleural effusion (p = 0.048), nodule (p = 0.0004), hilar lymphade-

nopathy (p = 0.0038), cavity (p = 0.0002), opacity (p = 0.0006), atelectasis (p = 0.0074), consoli-

dation (p = 0.0004), indicator of TB disease (p =< .0001), and fibrosis (p =< .0001). This test

allows us to conclude that the distribution of scores for these features are not equally distrib-

uted between the cohort that was cured versus the cohort that died or experienced treatment

failure.

These observed statistically significant results comparing the distribution of Qure.ai scores

within the two outcome groups motivates a closer examination using the receiver operating

characteristic (ROC) curves. The ROC curve statistics are summarized in Table 12.

The Accuracy column in Table 12 details that the indicator of TB disease and fibrosis were

most accurate with a measure of 68% and 67% respectively, while costophrenic angle (CP)

angle and cardiomegaly are least accurate with measures of 55% and 57%. These accuracy mea-

sures are corroborated by the p-values indicated in Table 11 where indicator of TB disease,

Table 5. 75 TBPP CXR Annotations for Sensitive TB versus Qure.ai Binary Prediction, Crosstabulation Summary Statistics.

Lung Feature CXR Accuracy P-Value Sensitivity Upper CL Lower CL Specificity Upper CL Lower CL

Hilar lymphadenopathy 60% 0.3557 55.6% 88.0% 23.1% 60.6% 48.8% 72.4%

Cavity 80% 0.0073 66.7% 100.0% 28.9% 81.2% 71.9% 90.4%

Atelectasis 19% 0.4549 16.7% 25.3% 8.1% 66.7% 13.3% 100.0%

Pleural Effusion 92% <0.0001 50.0% 90.0% 10.0% 95.7% 90.8% 100.0%

Nodule 59% 0.0223 55.2% 67.1% 43.3% 87.5% 64.6% 100.0%

https://doi.org/10.1371/journal.pone.0224445.t005

Table 6. 63 TBPP CXR Annotations for Relapse TB Patient Case versus Qure.ai Binary Prediction, Crosstabulation Summary Statistics.

Lung Feature CXR Accuracy P-Value Sensitivity Upper CL Lower CL Specificity Upper CL Lower CL

Hilar lymphadenopathy 76% 0.0407 57.1% 93.8% 20.5% 78.6% 67.8% 89.3%

Cavity 75% 0.0001 90.9% 100.0% 73.9% 71.2% 58.8% 83.5%

Atelectasis 13% 0.641 9.8% 17.3% 2.4% 0.0% 0.0% 0.0%

Pleural Effusion 95% 0.0023 33.3% 86.7% 0.0% 98.3% 95.1% 100.0%

Nodule 65% 0.0669 63.9% 76.0% 51.9% 0.0% 0.0% 0.0%

https://doi.org/10.1371/journal.pone.0224445.t006
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and fibrosis were found to be of a higher statistical significance than blunted costophrenic

angle (CP) angle and cardiomegaly.

Discussion

Changes in the lungs are combined effects of host response to the Mycobacterium tuberculosis

(M.tb) pathogen invasion and to the regimen drugs [28]. As part of TB Portals program, we

engage in testing new prediction methods against TBPP database of patient CXRs and CTs,

searching for the presence of reliable correlations with the progression of TB disease and, ulti-

mately, to treatment outcome [14, 29]. We have demonstrated that the results of fully auto-

mated Qure.ai CXR classifiers for CXRs from TB patient case data were consistent with

annotations by radiologists. The important distinction worth re-iterating here is that TBPP

database had specifically targeted drug-resistant tuberculosis, and many CXRs for test dataset

came from DR-TB patients. Treatment for DR-TB is more expensive and less efficient, there-

fore any improvements in diagnostics and monitoring are highly desirable. We were encour-

aged to find that Qure.ai classifiers add meaningful insight into TB disease prognosis and

treatment outcome, and therefore are good candidates for fast, accurate, uniform, large-scale

assistance when and where there is a shortage of radiologists.

For every computer-based classifier, the development begins with as large a collection of

training data as possible containing sufficient number of records that represent the observa-

tion we wish to classify [30]. The development cycle ends with a validation, or tuning step.

During this step the model is initially evaluated, and parameters are changed based on data

that was not included in the initial classifier training. One common challenge with increasingly

popular (due to their performance in many scientific and business analysis tasks) deep learning

algorithms is the element of “black box”. It is challenging for a human to understand how a

deep learning algorithm arrives at the classification. This is still an active area of research [31].

The final step in classifier development is testing aimed at quantifying the accuracy and

effectiveness of the classifier. The identification of true positive observations for CXR annota-

tions is a widely known challenge. For CXR annotation classifiers, within TB and for other dis-

ease targets, some evaluation test sets are created using the consensus of expert raters [32]. As

in TBPP, many regions, i.e. patient populations around the world, will not have this luxury. In

Table 7. 187 TBPP CXR Annotations for New TB Patient Case versus Qure.ai Binary Prediction, Crosstabulation Summary Statistics.

Lung Feature CXR Accuracy P-Value Sensitivity Upper CL Lower CL Specificity Upper CL Lower CL

Hilar lymphadenopathy 71% 0.0006 73.3% 95.7% 51.0% 70.3% 63.5% 77.2%

Cavity 82% <0.0001 69.2% 87.0% 51.5% 84.5% 78.9% 90.1%

Atelectasis 19% 0.9765 17.1% 22.6% 11.6% 83.3% 53.5% 100.0%

Pleural Effusion 94% <0.0001 58.8% 82.2% 35.4% 97.1% 94.5% 99.6%

Nodule 57% 0.0237 54.8% 62.4% 47.2% 71.4% 52.1% 90.8%

https://doi.org/10.1371/journal.pone.0224445.t007

Table 8. 346 TBPP CXR Annotations versus Qure.ai Continuous Score, Receiver Operating Characteristic Statistics Summary.

Lung Feature CXR Accuracy 95% Wald Confidence Limits

Hilar lymphadenopathy 74.69% 65.0% 84.4%

Cavity 84.17% 79.1% 89.3%

Atelectasis 50.58% 31.1% 70.1%

Pleural Effusion 84.77% 76.2% 93.3%

Nodule 71.96% 62.9% 81.0%

https://doi.org/10.1371/journal.pone.0224445.t008
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Fig 1. ROC Curve for CXR: Hilar Lymphadenopathy.

https://doi.org/10.1371/journal.pone.0224445.g001

Fig 2. ROC Curve for CXR: Cavity.

https://doi.org/10.1371/journal.pone.0224445.g002
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Fig 3. ROC Curve for CXR Atelectasis.

https://doi.org/10.1371/journal.pone.0224445.g003

Fig 4. ROC Curve for CXR: Pleural Effusion.

https://doi.org/10.1371/journal.pone.0224445.g004
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this study we attempt to address the challenge by leveraging the Radiologist annotations using

CT images, assuming that the Radiologist’s accuracy may increase given the additional detailed

image quality. We’ve shown that the results between Radiologist annotations of CXR and CTs

revealed consistent performance of the Qure.ai classifiers.

A unique challenge in applying deep learning classifiers to novel data, including novel test-

ing data, is that the classifiers may behave as a step function [33]. Meaning that for some input

data that was not in the training set for the classifier, the classifier will generate an incorrect

predicted result that would be immediately recognizable to a human. Examples of these types

of errors may be widely reported [34]. This is important, as classifiers may demonstrate very

strong results against a testing sample that shares many of the same attributes as the training

and validation data, and yet fail when challenged with novel data.

Testing and validating relevant artificial intelligence algorithms (both machine learning

and deep learning classifiers) in research settings, such as TBPP, is critically important toward

progressing to a common understanding and confidence in using these standardized,

Fig 5. ROC Curve for CXR: Nodule.

https://doi.org/10.1371/journal.pone.0224445.g005

Table 9. 184 TBPP CT Annotations versus Qure.ai Continuous Score, Receiver Operating Characteristic Statistics Summary.

Lung Feature CT Accuracy 95% Wald Confidence Limits

Hilar lymphadenopathy 61.47% 51.8% 71.1%

Cavity 70.05% 62.5% 77.6%

Atelectasis 77.67% 70.9% 84.4%

Pleural Effusion 64.71% 56.5% 72.9%

Nodule 56.25% 43.9% 68.6%

https://doi.org/10.1371/journal.pone.0224445.t009
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Fig 6. ROC Curve for CT: Hilar Lymphadenopathy.

https://doi.org/10.1371/journal.pone.0224445.g006

Fig 7. ROC Curve for CT: Cavity.

https://doi.org/10.1371/journal.pone.0224445.g007
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Fig 8. ROC Curve for CT: Atelectasis.

https://doi.org/10.1371/journal.pone.0224445.g008

Fig 9. ROC Curve for CT: Pleural Effusion.

https://doi.org/10.1371/journal.pone.0224445.g009

Performance of Qure.ai automatic classifiers

PLOS ONE | https://doi.org/10.1371/journal.pone.0224445 January 24, 2020 13 / 19

https://doi.org/10.1371/journal.pone.0224445.g008
https://doi.org/10.1371/journal.pone.0224445.g009
https://doi.org/10.1371/journal.pone.0224445


repeatable measures. Expanding the size, and as importantly, the number of representative

patient case features within the training and testing databases will remain important to artifi-

cial intelligence algorithm development, validation, and testing outcomes. Considering our

study objectives, the single Qure.ai TB screening classifier was previously tested so we did not

aim to re-test it using the predominately DR-TB TBPP images that might be presumed to have

more pronounced lung features indicating TB disease. We specifically examined Qure.ai deep

learning classifiers used for CXR annotation developed–trained and validated—in India, a

country population experiencing a lower burden of DR-TB, using CXRs collected from TBPP

member countries experiencing a high burden of DR-TB [35].

Fig 10. ROC Curve for CT: Nodule.

https://doi.org/10.1371/journal.pone.0224445.g010

Table 10. 281 Qure.ai classifier binary value predicting TBPP outcome died/failure.

Lung Feature Number of cases present Fisher’s Exact Test P-value Sensitivity Specificity

Abnormal CXR 263 0.770 95.1% 6.8%

Blunted CP Angle 126 0.059 55.7% 58.2%

Cardiomegaly 16 0.536 3.3% 93.6%

Pleural Effusion 38 0.056 21.3% 88.6%

Nodule 174 0.001 80.3% 43.2%

Hilar lymphadenopathy 93 0.046 44.3% 70.0%

Cavity 120 0.002 60.7% 62.3%

Opacity 249 0.108 95.1% 13.2%

Atelectasis 82 0.204 36.1% 72.7%

Consolidation 179 0.035 75.4% 39.5%

Indicator of TB disease 242 0.208 91.8% 15.5%

Fibrosis 208 0.003 88.5% 30.0%

https://doi.org/10.1371/journal.pone.0224445.t010
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In this analysis we noted that Qure.ai classifiers are related to patient case outcomes; i.e.

higher classifier scores are related to poorer outcomes. These findings may help in uniform

screening and patient monitoring of CXRs to identify the most problematic patient cases that

require additional scrutiny for both diagnosis and treatment.

The TBPP is active and growing, currently collecting and curating TB patient case data

from diverse sources and multiple medical domains, including ten country sites. TBPP offers a

unique opportunity to address issues with fully utilizing radiological imaging to further TB

research. By collecting and curating data from diverse sources and multiple medical domains

in ever-increasing depth and breadth the TBPP offers the value of big data that enables the

reusability of data, in conformity with the NIH’s Findable, Accessible, Interoperable, and

Reusable (FAIR) principles [36, 37]. Here we have leveraged these data to assess the Qure.ai

machine learning classifiers and demonstrated that the collection is statistically significantly

related to radiology annotations that are markers of TB disease.

TBPP has an emphasis on collecting the rare, atypical and most dangerous TB cases

through a global natural history study. Of the 1,425 physician-validated publicly available

patient cases, 1,179 (83%) are drug resistant. Hence, TBPP offers a valuable resource for con-

firming deep learning algorithms against this segment of the overall patient population. The

analysis results offer some signal that additional CXR image collection may be warranted to

Table 11. 281 Qure.ai continuous classifier score predicting TBPP outcome.

Cured: Mean Score Died/Failure: Mean Score WMW Test P-values

Abnormal CXR 132.05 173.28 0.0005

Blunted CP Angle 136.75 156.31 0.0963

Cardiomegaly 137.72 152.84 0.1999

Pleural Effusion 135.93 159.29 0.048

Nodule 131.84 174.03 0.0004

Hilar lymphadenopathy 133.54 167.88 0.0038

Cavity 131.35 175.77 0.0002

Opacity 132.08 173.16 0.0006

Atelectasis 134.11 164.85 0.0074

Consolidation 131.82 174.1 0.0004

Indicator of TB disease 130.28 179.67 < .0001

Fibrosis 130.53 178.75 < .0001

https://doi.org/10.1371/journal.pone.0224445.t011

Table 12. Qure.ai classifier score predicting TBPP outcome died; receiver operating characteristic statistics summary.

Lung Feature Accuracy 95% Wald Confidence Limits

Abnormal CXR 64.67% 57.1% 72.2%

Blunted CP Angle 56.96% 49.0% 64.9%

Cardiomegaly 55.38% 47.4% 63.4%

Pleural Effusion 58.32% 49.7% 66.9%

Nodule 65.01% 57.6% 72.4%

Hilar lymphadenopathy 62.22% 54.4% 70.0%

Cavity 65.80% 58.1% 73.5%

Opacity 64.62% 57.0% 72.2%

Atelectasis 61.30% 53.9% 68.7%

Consolidation 65.04% 57.5% 72.6%

Indicator of TB disease 67.58% 59.8% 75.3%

Fibrosis 67.16% 59.4% 74.9%

https://doi.org/10.1371/journal.pone.0224445.t012
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account for the differences among drug resistant patient cases and those with more advance

TB disease as input to deep learning classifiers.

The TBPP imaging database has previously shown itself useful to machine learning algo-

rithm development [14, 29]. Expanding upon and improving these initiatives is a key TBPP

goal. Continued application and testing using deep learning classifiers is important as TBPP

seeks to expand and further improve MDR-TB patient diagnostics and outcomes. The authors

invite other researchers with artificial intelligence algorithms useful to combat TB to collabo-

rate with TBPP.

Some caution is warranted here. The Qure.ai classifiers can aid in the interpretation of CXR

findings and is useful for examining changes over time [23]. However, a list of twelve classifi-

ers, the current offering, is unlikely to replace a radiologist due to limited specificity for catego-

rizing specific findings–which are much more numerous. Also, considering the CXR

automated annotation classifiers that are not TB specific, we cannot assume that classifiers

developed primarily from non-TB patient images can accurately characterize those with TB

disease. Using a tested, consistent, uniform measure across a database for research purposes is

different than using it for a specific patient case.

The use of machine learning and deep learning tools in the field of health care is becoming

increasingly common. The need to discriminate between model implementations and to test

these models in various scenarios is also increasing. For radiological assessment, these tools, if

shown to be representative across the spectrum of imaging machines and image collection

methods, as well as TB patient lung characteristics influenced by factors such as pathogen

strain, ethnicity, gender and socio-economics, etc. offer a standard, consistent and repeatable

measure. This is particularly valuable, as there is a lack of a global standard for chest X-ray fea-

ture annotation, a paucity of radiologists, and a need for cost-effective tools in poor countries

that are the most burdened with TB disease.

Conclusion

We demonstrated that the Qure.ai qXR CXR annotations for cavity, nodule, pleural effusion,

and hilar lymphadenopathy, are in statistical agreement with radiologist CXR annotations. A

corresponding analysis of patient case matched CT image annotations recorded within 30

days of a CXR supports this result, demonstrating statistical significance for cavity, pleural

effusion, hilar lymphadenopathy, and atelectasis. In addition, the Qure.ai qXR CXR annota-

tions for abnormal CXR, blunted CP angle, cardiomegaly, pleural effusion, nodule, hilar

lymphadenopathy, cavity, opacity, atelectasis, consolidation, indicator of TB disease, and fibro-

sis are related to TB patient case outcomes. Hence, these new lung feature descriptors resulting

from use of the Qure.ai qXR product’s CXR classification annotations are useful for fast, accu-

rate, uniform, large-scale assistance.

Addressing the growing threat of DR-TB requires a comprehensive understanding of the dis-

ease, which could be achieved by multi-center, global collaborations contributing data, algo-

rithms and classifiers from multiple domains. The TB Portals Program (TBPP, https://TBPortals.

niaid.nih.gov/) was established with this mission in mind, consolidating curated and de-identified

patient socioeconomic, clinical, radiological, and genomic information from TB cases.

Supporting information

S1 Source Data. TB Portals Program source data files in comma separated value (CSV) for-

mat.

(ZIP)
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