
RESEARCH ARTICLE

Clustering via hypergraph modularity

Bogumił Kamiński1, Valérie Poulin2, Paweł PrałatID
3*, Przemysław Szufel1,

François Théberge2

1 SGH Warsaw School of Economics, Warsaw, Poland, 2 The Tutte Institute for Mathematics and Computing,

Ottawa, ON, Canada, 3 Department of Mathematics, Ryerson University, Toronto, ON, Canada

* pralat@ryerson.ca

Abstract

Despite the fact that many important problems (including clustering) can be described using

hypergraphs, theoretical foundations as well as practical algorithms using hypergraphs are

not well developed yet. In this paper, we propose a hypergraph modularity function that gen-

eralizes its well established and widely used graph counterpart measure of how clustered a

network is. In order to define it properly, we generalize the Chung-Lu model for graphs to

hypergraphs. We then provide the theoretical foundations to search for an optimal solution

with respect to our hypergraph modularity function. A simple heuristic algorithm is described

and applied to a few illustrative examples. We show that using a strict version of our pro-

posed modularity function often leads to a solution where a smaller number of hyperedges

get cut as compared to optimizing modularity of 2-section graph of a hypergraph.

1 Introduction

An important property of complex networks is their community structure, that is, the organi-

zation of vertices in clusters, with many edges joining vertices of the same cluster and compar-

atively few edges joining vertices of different clusters [1, 2]. In social networks, communities

may represent groups by interest (practical application include collaborative tagging—[3]), in

citation networks they correspond to related papers (see [4]), similarly in the web communities

are formed by pages on related topics.

Yet another example could be financial markets where we have several groups of financial

instruments that might be correlated with each other in several different groups. Such groups

can be represented as hyperedges and hence detection of communities in such hypergraph

could lead to better understanding of dependencies between financial instruments.

Hypergraphs can also be used to model transportation systems. For example in [5] the

authors consider transportation system represented as a directed hypergraph. A hyperedge

can represent a situation where a single stop (starting or destination point) is being serviced by

several public transportation lines and vehicle types that can be differently chosen by an agent

traveling within the transportation grid and communities can represent paths taken often

together. Another application was presented in [6]—the authors suggest using hypergraphs to

model interactions between biological cells in computational biology. Finally, in [7] one can

find a discussion on how hypergraphs can be used for modeling telecommunication systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kamiński B, Poulin V, Prałat P, Szufel P,

Théberge F (2019) Clustering via hypergraph

modularity. PLoS ONE 14(11): e0224307. https://

doi.org/10.1371/journal.pone.0224307

Editor: Sabrina Gaito, Universitá degli Studi di

Milano, ITALY

Received: February 21, 2019

Accepted: October 10, 2019

Published: November 6, 2019

Copyright: © 2019 Kamiński et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We included 2

examples in our paper. The first one is a synthetic

hypergraph that can be regenerated by the reader

(details are provided in [26]). The second one is a

DBLP hypergraph - all information and our

preprocessed data is available through the

GitHub gist repository that we referenced in the

paper, that is, https://gist.github.com/pszufe/

02666497d2c138d1b2de5b7f67784d2b.

Funding: The presented research was partially

financed with the support of financed by the Polish

National Agency for Academic Exchange (NAWA),

on the basis of grant agreement no. PPI/APM/

http://orcid.org/0000-0001-9176-8493
https://doi.org/10.1371/journal.pone.0224307
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224307&domain=pdf&date_stamp=2019-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224307&domain=pdf&date_stamp=2019-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224307&domain=pdf&date_stamp=2019-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224307&domain=pdf&date_stamp=2019-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224307&domain=pdf&date_stamp=2019-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224307&domain=pdf&date_stamp=2019-11-06
https://doi.org/10.1371/journal.pone.0224307
https://doi.org/10.1371/journal.pone.0224307
http://creativecommons.org/licenses/by/4.0/
https://gist.github.com/pszufe/02666497d2c138d1b2de5b7f67784d2b
https://gist.github.com/pszufe/02666497d2c138d1b2de5b7f67784d2b

and it is argued that using hypergraphs to represent communication within a mobile grid con-

veys more information that using regular graphs. Again, this information can be used for a

social community detection.

Being able to identify communities in a network could help us to exploit this network more

effectively. For example, clusters in citation graphs may help to find similar scientific papers,

discovering users with similar interests is important for targeted advertisement, clustering can

also be used for network compression and visualization.

The key ingredient for many clustering algorithms is modularity, which is at the same time

a global criterion to define communities, a quality function of community detection algo-

rithms, and a way to measure the presence of community structure in a network. Modularity

for graphs was introduced by Newman and Girvan [8] and it is based on the comparison

between the actual density of edges inside a community and the density one would expect to

have if the vertices of the graph were attached at random regardless of community structure,

while respecting the vertices’ degree on average. This random family of graphs is known as the

Chung-Lu random model [9].

Myriad of problems can be described in hypergraph terms, however, despite being formally

defined in the 1960s (and various realizations studied long before that) hypergraph theory is

patchy and often not sufficiently general. The result is a lack of machinery for investigating

hypergraphs, leading researchers and practitioners to create the 2-section graph of a hyper-

graph of interest [10–16] or to restrict their study to d-uniform hypergraphs [17, 18]. In taking

the 2-section (that is, making each hyperedge a clique) we lose some information about edges

of size greater than two. Sometimes losing this information does not affect our ability to

answer questions of interest, but in other cases it has a profound impact. In particular, an

important scenario when hypergraph-based approach can be preferred, is when a large hyper-

edge connecting some vertices is a strong indicator that they all belong to the same commu-

nity. Such situations occur often in practice. Let us briefly discuss two simple examples. First

consider e-mails as hyperedges of a hypergraph whose vertices are e-mail addresses. Multiple

addresses in an e-mail (group e-mails) most likely are not sent to random people, but rather to

some community of common interests. As a second example consider a platform like GitHub,

where vertices are users and hyperedges are repositories linking users that committed to them.

Again, if a group of users commits to the same repository it is most likely a strong indicator

that they form some community. In both cases, as indicated above, replacing a hyperedge by a

clique would lose valuable information.

The paper is organized as follows. In Section 2, we review the Chung-Lu model for graphs

and its link to the modularity function. We then propose a generalization of the Chung-Lu

model for hypergraphs, as well as a hypergraph modularity function. In Section 3, we provide

the framework to develop algorithms using our hypergraph modularity function. We propose

an hypergraph partitioning algorithm and a few illustrative examples in Section 4. This is a

new measure we are proposing, and there is plenty of future work to do, which we summarize

in Section 5. Additionally, we made the source codes available on-line [19] allowing to repro-

duce the analyses presented in the paper.

2 Hypergraph modularity

In this section, we recall the definition of modularity function for graphs, and we propose

its generalization for hypergraphs. Throughout the paper we will use n for the number of

vertices. We will use X
k

� �
for the set consisting of all k-element subsets of X. Finally, [n] ≔

{1, . . ., n}.

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 2 / 15

2018/1/00037. It is also related to the NSERC

Discovery grant entitled “Modelling and Mining

Complex Networks” received by Paweł Prałat.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0224307

2.1 Chung-Lu model for graphs

Let G = (V, E) be a graph, where V = {v1, . . ., vn} are the vertices, the edges E are multisets of V
of cardinality 2 (loops allowed), and degG(v) is the degree of v in G (with a loop at v contribut-

ing 2 to the degree of v). For A� V, let the volume of A be volG(A) = ∑v2A degG(v); in particular

volG(V) = ∑v2V degG(v) = 2|E|. We will omit the subscript G when the context is clear.

We define GðGÞ to be the probability distribution on graphs on the vertex set V following

the well-known Chung-Lu model [20–23]. In this model, each set e = {vi, vj}, vi, vj 2 V, is inde-

pendently sampled as an edge with probability given by:

Pðvi; vjÞ ¼

degðviÞdegðvjÞ
2jEj ; i 6¼ j

deg2ðviÞ
4jEj ; i ¼ j:

8
><

>:

(Let us mention about one technical assumption. Note that it might happen that P(vi, vj) is

greater than one and so it should really be regarded as the expected number of edges between i
and j; for example, as suggested in [24], one can introduce a Poisson-distributed number of

edges with mean P(vi, vj) between each pair of vertices i, j. However, since typically the maxi-

mum degree Δ satisfies Δ2� 2|E| it rarely creates a problem and so we may assume that P(vi,
vj)� 1 for all pairs.)

This model is a function of the degree sequence of G. One desired property of this random

model is that it yields a distribution that preserves the expected degree for each vertex, namely:

for any i 2 [n],

EG0�GðGÞ½degG0 ðviÞ� ¼
X

j2½n�nfig

degðviÞdegðvjÞ
2jEj

þ 2 �
deg2ðviÞ

4jEj

¼
degðviÞ

2jEj

X

j2½n�

degðvjÞ ¼ degðviÞ;

where all degrees are with respect to graph G. This model will be useful to understand the

graph modularity definition and its generalization to hypergraphs.

2.2 Review of graph modularity

The definition of modularity for graphs was first introduced by Newman and Girvan in [8].

Despite some known issues with this function such as the “resolution limit” reported in [25],

many popular algorithms for partitioning large graph data sets use it [26–28]. It was also

recently studied for some models of complex networks [29–32]. The modularity function

favours partitions in which a large proportion of the edges fall entirely within the parts (note

that throughout the paper, we use the term “part” and “partition” that are more common in

mathematical literature; in the information sciences the equivalent term is “cluster”) and biases

against having too few or too unequally sized parts.

For a graph G = (V, E) and a given partition A = {A1, . . ., Ak} of V, the modularity function

is defined as follows:

qGðAÞ ¼
1

jEj

X

Ai2A

eGðAiÞ � EG0�GðGÞ½eG0 ðAiÞ�
� �

¼
X

Ai2A

eGðAiÞ

jEj
�
X

Ai2A

EG0�GðGÞ½eG0 ðAiÞ�

jEj
;

ð1Þ

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 3 / 15

https://doi.org/10.1371/journal.pone.0224307

where eG(Ai) = |{{vj, vk} 2 E: vj, vk 2 Ai}| is the number of edges in the subgraph of G induced

by the set Ai. The modularity measures the deviation of the number of edges of G that lie inside

parts (clusters) of A from the corresponding expected value based on the Chung-Lu distribu-

tion GðGÞ. The expected value for part Ai is

EG0�GðGÞ½eG0 ðAiÞ� ¼
X

fvj;vkg2
Ai
2ð Þ

degðvjÞdegðvkÞ
2jEj

þ
X

vj2Ai

deg2ðvjÞ
4jEj

¼
1

4jEj

X

vj2Ai

degðvjÞ

0

@

1

A

2

¼
ðvolðAiÞÞ

2

4jEj
:

The first term in (1),
P

Ai2A
eGðAiÞ=jEj, is called the edge contribution, whereas the second one,

P
Ai2A
ðvolðAiÞÞ

2
=4jEj2, is called the degree tax. It is easy to see that qG(A)� 1. Also, if A = {V},

then qG(A) = 0, and if A = {{v1}, . . ., {vn}}, then qGðAÞ ¼ �
P

degðvÞ2

4jEj2
< 0.

The maximum modularity q�(G) is defined as the maximum of qG(A) over all possible parti-

tions A of V; that is, q�(G) = maxA qG(A). In order to maximize qG(A) one wants to find a par-

tition with large edge contribution subject to small degree tax. If q�(G) approaches 1 (which is

the trivial upper bound), we observe a strong community structure; conversely, if q�(G) is

close to zero (which is the trivial lower bound), there is no community structure. The defini-

tion in (1) can be generalized to weighted edges by replacing edge counts with sums of edge

weights.

2.3 Generalization of the Chung-Lu model to hypergraphs

Consider a hypergraph H = (V, E) with V = {v1, . . ., vn}, where hyperedges e 2 E are subsets

of V of cardinality greater than one. Since we are concerned with not necessarily simple

hypergraphs, hyperedges are multisets. Such hyperedges can be described using distincts

sets of pairs e = {(v, me(v)): v 2 V} where meðvÞ 2 N [f0g is the multiplicity of the vertex

v in e (including zero which indicates that v is not present in e). Then |e| = ∑v me(v) is

the size of hyperedge e and the degree of a vertex v in H is defined as degH(v) = ∑e2E me(v).

When the reference to the hyperedge is clear from the context, we simply use mi to denote

me(vi).

A hypergraph is said to be d-uniform if all its hyperedges have size d. In particular, a 2-uni-

form hypergraph is simply a graph. All hypergraphs H can be expressed as the disjoint union

of d-uniform hypergraphs H =
S

Hd, where Hd = (V, Ed), Ed� E are all hyperedges of size d,

and degHd
ðvÞ is the d-degree of vertex v. As for graphs, the volume of a vertex subset A� V is

volH(A) = ∑v2A degH(v).

Similarly to what we did for graphs, we define a random model on hypergraphs, HðHÞ,
where the expected degrees of all vertices are the corresponding degrees in H. To simplify the

notation, we omit the explicit references to H in the remaining of this section; in particular,

deg(v) denotes degH(v), H denotes HðHÞ, Ed denotes the edges of H of size d. Moreover, we

use E0 to denote the edge set of H0.
Let Fd be the family of multisets of size d; that is,

Fd≔ fðvi;miÞ : 1 � i � ng :
Xn

i¼1

mi ¼ d

()

:

The hypergraphs in the random model are generated via independent random experiments.

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 4 / 15

https://doi.org/10.1371/journal.pone.0224307

For each d such that |Ed|> 0, the probability of generating the edge e 2 Fd is given by:

PHðeÞ ¼ jEdj �
d

m1; . . . ;mn

� �
Yn

i¼1

degðviÞ
volðVÞ

� �mi

: ð2Þ

(Recall that mi = me(vi).) Let ðXðdÞ1 ; . . . ;XðdÞn Þ be the random vector following a multinomial dis-

tribution with parameters d; pHð1Þ; . . . ; pHðnÞ, where pHðiÞ ¼ degðviÞ=volðVÞ and
P

i2½n�pHðiÞ ¼ 1; that is,

sHðeÞ≔P ðX
ðdÞ
1 ; . . . ;XðdÞn Þ ¼ ðm1; . . .mnÞ

� �
¼

d
m1; . . . ;mn

� �
Yn

i¼1

ðpHðiÞÞ
mi :

Note that this is the expression found in (2); that is, PHðeÞ ¼ jEdj � sHðeÞ. As a result, alterna-

tively one can think about the following auxiliary process. Select a random multiset consisting

of d vertices (counting possible repetitions); in d independent rounds, vertex vi is selected with

probability pHðiÞ. Repeat this experiment |Ed| times and use the expected number of times

edge e occurred in this process for the value of PHðeÞ. An immediate consequence of this cou-

pling between the two processes is that the expected number of edges of size d is |Ed|. Finally,

as with the graph Chung-Lu model, if PHðeÞ > 1, then it should be regarded as the expectation

and multi-hypergraph should be considered instead. However, as before, from practical point

of view it is safe to assume that all PHðeÞ � 1.

In order to compute the expected d-degree of a vertex vi 2 V, note that

degH0dðviÞ ¼
X

e2Fd

meðviÞ � Ife2E0g;

where Ifg is the indicator random variable. Hence, using the linearity of expectation, then split-

ting the sum into d + 1 partial sums for different multiplicities of vi, we get:

EH0�HðdegH0dðviÞÞ ¼
X

e2Fd

meðviÞ � PHðeÞ ¼ jEdj
X

e2Fd

meðviÞ � sHðeÞ

¼ jEdj
Xd

m¼0

m
X

e2Fd ;meðviÞ¼m

sHðeÞ

¼ jEdj
Xd

m¼0

m � PðXðdÞi ¼ mÞ

¼ jEdj
Xd

m¼0

m �
d

m

 !

ðpHðiÞÞ
m
ð1 � pHðiÞÞ

d� m

¼ jEdj � d � pHðiÞ:

The second last equality follows from the fact that we obtained the expected value of a random

variable with binomial distribution. One can compute the expected degree as follows:

EH0�H½degH0 ðviÞ� ¼
X

d�2

d � jEdj � degðviÞ
volðVÞ

¼ degðviÞ;

since vol(V) = ∑d�2 d � |Ed|.
We will use the generalization of the Chung-Lu model to hypergraphs as a null model

allowing us to define hypergraph modularity.

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 5 / 15

https://doi.org/10.1371/journal.pone.0224307

2.4 Hypergraph modularities

Consider a hypergraph H = (V, E) and A = {A1, . . ., Ak}, a partition of V. For edges of size

greater than 2, several definitions can be used to quantify the edge contribution given A, such

as:

(a). all vertices of an edge have to belong to one of the parts (clusters) to contribute; this is a

strict definition that we focus on in this paper;

(b). the majority of vertices of an edge belong to one of the parts;

(c). at least 2 vertices of an edge belong to the same part; this is implicitly used when we

replace a hypergraph with its 2-section graph representation.

We see that the choice of hypergraph modularity function is not unique; in fact, it depends on

how strongly we believe that a hyperedge is an indicator that vertices belonging to it fall into

one community. More importantly, one needs to decide how often vertices in one community

“blend” together with vertices from other community; that is, how hermetic the community is.

In particular, option (c) is the softest one and leads to standard 2-section graph modularity. In

order to illustrate how one can obtain formulas for a given variant, we concentrate on the sec-

ond extreme, option (a), that we call strict. However, it is easy to repeat calculations for other

variants. We will skip details but differences will be highlighted and the final formula for

option (b) will be presented next. Comparison of various variants will be done in the forth-

coming paper.

2.4.1 Strict hypergraph modularity. In this case, the definition of edge contribution for

Ai� V is:

eHðAiÞ ¼ jfe 2 E; e � Aigj: ð3Þ

The strict modularity of A on H is then defined as a natural extension of standard modularity

in the following way:

qHðAÞ ¼
1

jEj

X

Ai2A

eHðAiÞ � EH0�H½eH0 ðAiÞ�
� �

: ð4Þ

Consider any A� V. We want to compute the expected edge contribution of A over H. Let

Fd(A)� Fd be the family of multisets of size d with all members in A; that is,

FdðAÞ≔ fðvi;miÞ : 1 � i � ng :
Xn

i¼1

mi ¼
X

i:vi2A

mi ¼ d

()

:

First, note that

EH0�H½eH0 ðAÞ� ¼
X

d�2

X

e2FdðAÞ

PHðeÞ ¼
X

d�2

jEdj
X

e2FdðAÞ

sHðeÞ

¼
X

d�2

jEdj � P
X

i;vi2A

XðdÞi ¼ d

 !

¼
X

d�2

jEdj � ðpHðAÞÞ
d

ð5Þ

where pHðAÞ ¼
P

i;vi2A
pHðiÞ, therefore pHðAÞ ¼ volðAÞ=volðVÞ, so

EH0�H½eH0 ðAÞ� ¼
P

d�2
jEdj � ðvolðAÞ=volðVÞÞ

d
: ð6Þ

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 6 / 15

https://doi.org/10.1371/journal.pone.0224307

Putting (6) properly into (4), we get the strict modularity function of a hypergraph partition:

qHðAÞ ¼
1

jEj

X

Ai2A

eðAiÞ �
X

d�2

jEdj
X

Ai2A

volðAiÞ

volðVÞ

� �d
 !

: ð7Þ

Just as for graphs, the corresponding modularity q�H is defined as the maximum of qH(A) over

all possible partitions A of V.

2.4.2 Generalizations. As with graphs, one can easily generalize the modularity function

to allow for weighted hyperedges. As we already mentioned, we focused on the strict definition

of modularity but it is straightforward to adjust the degree tax to many natural definitions of

edge contribution. In particular, for the majority definition (see option (b) at the beginning of

this section), one can simply replace Pð
P

i;vi2A
XðdÞi ¼ dÞ with Pð

P
i;vi2A

XðdÞi > d=2Þ in (5), and

so (vol(A)/vol(V))d in (6) (that is equivalent to PðBinðd; volðAÞ=volðVÞÞ ¼ dÞ becomes

PðBinðd; volðAÞ=volðVÞÞ > d=2Þ. The majority modularity function of a hypergraph partition

is then:

qHðAÞ ¼
1

jEj

X

Ai2A

eðAiÞ �
X

d�2

jEdj
X

Ai2A

P Bin d;
volðAiÞ

volðVÞ

� �

> d=2

� � !

:

We can also consider the modularity independently over hyperedges of different sizes. Decom-

posing H into d-uniform hypergraphs Hd, we get the following degree-independent modular-

ity function:

qDI
H ðAÞ ¼

X

d�2

jEdj

jEj
qHd
ðAÞ:

This corresponds to (7) replacing the volumes computed over H with volumes computed over

Hd for each d where |Ed| > 0.

3 Searching the solution space

In this section, we show that the solution that maximizes (7) lies in a subset of PðVÞ of size at

most 2|E| avoiding the search of the full set PðVÞ. Of course, it is still not feasible to check all

subsets of the edge set but observations made in this section will be useful for designing effi-

cient heuristic algorithms. For example, in this paper we already used a simple CNM-like algo-

rithm (see Algorithm 1) in which edges overlapping with at least two parts clusters) have to be

considered. Using the results from this section, we can significantly reduce the search space by

ignoring edges that fall into one part. More sophisticated (and, hopefully, much faster) algo-

rithms utilizing properties investigated in this section will be developed in the forthcoming

paper.

Let SðHÞ denote the set of all sub-hypergraphs of H = (V, E) on the vertex set V:

SðHÞ ¼ fH0 ¼ ðV;E0Þ j E0 � Eg. We use |H0| to denote |E0|, the number of edges in H0. More-

over, let p : SðHÞ ! PðVÞ denote the function that sends a sub-hypergraph of H to the parti-

tion its connected components induce on V. We define a relation on SðHÞ:

H1�pH2 , pðH1Þ ¼ pðH2Þ

that puts two sub-hypergraphs in relation if they have identical connected components. Since

�p is an equivalence relation (based on equality), we can define the quotient set SðHÞ=�p
. This

quotient set contains equivalence classes that are in bijection with the set of all different vertex

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 7 / 15

https://doi.org/10.1371/journal.pone.0224307

partitions that can be induced by the union of elements of E. Its cardinality depends on E but

is at most 2|E|; however, it is typically much smaller than this trivial upper bound.

Now, let us define the canonical representative mapping which identifies a natural

representative member for each equivalence class. The canonical representative mapping f :

SðHÞ=�p
! SðHÞmaps an equivalence class to the largest member of this class: f([H0]) = H�

where H� 2 [H0] and |H�|� |H@| for all H@ 2 [H0]. This function is well-defined; indeed, if H1,

H2 2 [H0], then the union of H1 and H2 is also in [H0] and so it is impossible that two members

have the largest size. Its outcome is the subgraph H� = (V, E�) whose edge set is the union of

edges of all members of the equivalence class. The following lemma explains why the canonical

representative is natural with respect to the definition of strict modularity. As this observation

follows easily from definitions, the proof is omitted.

Lemma 3.1. Let H = (V, E) be a hypergraph and A = {A1,. . ., Ak} be any partition of V. If
there exists H0 2 SðHÞ such that A = p(H0), then the edge contribution of the strict modularity of
A is

jE�j
jEj , where E

� is the edge set of the canonical representative of [H0].
The set of canonical representatives, the image of f, is a subset of SðHÞ. We denote this set

by S�ðHÞ and the image of p restricted to S�ðHÞ by P�ðVÞ.
The next Lemma shows how the degree tax behaves on partition refinement.

Lemma 3.2. Let H = (V, E) be a hypergraph and A be any partition of V. If B is a refinement
of A, then the degree tax of A is larger than or equal to the degree tax of B and it is equal if and
only if A = B.

Proof. Let A = {A1,. . ., Ak}. Since B is a refinement of A, for each part (cluster) of A, Ai,

there exists Bi, a subset of parts of B, such that Ai ¼
S

B2Bi
B and B =

S
i Bi. Hence, for each Ai

and for each d, we have that voldðAiÞ ¼
P

B2Bi
voldðBÞ and so

voldðAiÞ
d
¼

X

B2Bi

voldðBÞ

 !d

�
X

B2Bi

voldðBÞ
d
:

The equality holds if and only if |Bi| = 1 for all i. The result follows.

The next result, the main result of this section, shows that one can restrict the search space

to canonical representatives from S�ðHÞ.
Theorem 3.3. Let H = (V, E) be a hypergraph. If A 2 PðVÞmaximizes the strict modularity

function qH(�), then A 2 P�ðVÞ.
Proof. Assume that A = {A1,. . ., Ak} maximizes the strict modularity function qH(�). We will

show that there exists H� ¼ ðV;E�Þ 2 S�ðHÞ such that qH(p(H�))� qH(A). Let E� = {e 2 E: e�
Ai for some i}. By construction of H�, the (strict) edge contribution of partitions A and p(H�)
are identical. Again, from construction, note that the partition p(H�) is a refinement of A.

Hence, the previous Lemma states that the degree tax of A is larger than or equal to the degree

tax of p(H�). With equal edge contribution, this means that qH(p(H�))� qH(A). Since A is an

optimal solution, the equality must hold which is only possible if A = p(H�).

4 Examples

In this section, we first illustrate the correlation between our hypergraph modularity and the

Hcut measure, which counts the number of edges touching more than one part (cluster). We

then propose an algorithm for hypergraph partitioning based on our hypergraph modularity

function, which we apply to a real dataset. However, let us stress again that the aim of this

paper is to introduce a generalization of the modularity to hypergraphs, not to introduce new

algorithms to actually find good partitions. We currently work on designing and testing

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 8 / 15

https://doi.org/10.1371/journal.pone.0224307

algorithms for the hypergraph counterpart and, after that, we plan to do extensive experi-

ments. The results will be included in the forthcoming paper.

4.1 Synthetic hypergraphs

We generate hyperedges following the process described as line clustering in section 5.1 of

[33]. We first randomly generate points from 3 lines in the range [−.5, .5]2, 30 points per line,

perturbed with Gaussian noise N(0, σ2) where σ = 0.01. Each line cuts the origin, and the

respective slopes are -1, 0.02 and 0.8. We also generate 60 outlying points chosen at random

over the same range, for a total of 150 points.

We build hyperedges of size 3 (3-edges) by sampling sets of 3 points {i, j, k} for which

expð� dði; j; kÞ2=s2
dÞ > 0:999, where d() is the mean distance of the points to their best fitting

line, and σd = 0.02. This amounts to selecting 3-edges consisting of sets of 3 well aligned points.

We do the same with sets of 4 points to generate the 4-edges.

The hyperedges can either consist of points all coming from the same line (which we call

“signal”) or not (which we call “noise”). We sample hyperedges so that the expected proportion

of signal vs. noise is 2:1, and we consider 3 different regimes for the mix of edge sizes: (i) 75%

3-edges, (ii) 75% 4-edges or (iii) balanced between 3 and 4-edges. For the 3 regimes, we gener-

ate 100 hypergraphs and for each hypergraph, we apply the fast Louvain clustering algorithm

(see [34]) on the weighted 2-section graph. In most cases, vertices coming from the same line

are correctly put in the same part (cluster). The complete source code for this example along

with instructions is available online [19].

In the left plot of Fig 1, we plot the standard graph modularity vs. the Hcut value, which is

simply the proportion of hyperedges that fall in two or more parts. The Louvain algorithm is

not explicitly aiming at preserving the hyperedges, so we do not expect a high correlation

between the two measures. In fact, fitting a regression line to the points from the balanced

regime, we get a slope of 0.0061 with R2 value of 0.0008 (for majority of 4-edges the slope is

0.0768 and R2 0.0734, while for majority of 3-edges the slope is 0.0061 and R2 0.0004).

In the right plot of Fig 1, we do the same, this time comparing our hypergraph modularity

with the Hcut values for the same partitions as in the left plot. The correlation here is very

high. For the balanced regime, linear regression yields a slope of -0.6364 with R2 value of

0.9693 (for majority of 4-edges the slope is -0.7079 and R2 0.9696, while for majority of 3-edges

the slope is -0.7079 and R2 0.9696). This is an illustration of the fact that when we measure our

Fig 1. Modularity vs Hcut. Comparing graph and hypergraph modularity.

https://doi.org/10.1371/journal.pone.0224307.g001

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 9 / 15

https://doi.org/10.1371/journal.pone.0224307.g001
https://doi.org/10.1371/journal.pone.0224307

proposed hypergraph modularity for different partitions, we are favouring keeping hyperedges

in the same parts (clusters).

4.2 Estimating the modularity

While we can compute the modularity for very small hypergraphs by exhausting over all possi-

ble partitions, this is generally not a viable option. We propose a generalization to hypergraphs

of the CNM algorithm for graph partitioning [26]. In the CNM algorithm, we start with every

vertex in its own part. At each step, we merge the two parts (clusters) that yield the largest

increase in modularity, and we repeat until no such move exists. The algorithm comes in two

versions. In the full version at each step all hyperedges are searched and evaluated for merging.

Since for larger hypergraphs this would be prohibitively numerically expensive, in the stochas-

tic version at each step we evaluate just one randomly chosen hyperedge.

Our proposed algorithm for hypergraphs is presented in Algorithm 1. The idea is that we

start with a partition where each node is in its own part. Then in each step, we loop through

every hyperedge touching two or more parts, and we select (or we just randomly chose a single

hyperedge) the one which, when we merge all the parts it touches, yields the best modularity,

provided it is at least as high as the modularity from the previous step. We stop when no such

edge exists. We use this algorithm in the next example.

Algorithm 1: Simple CNM-like algorithm on a hypergraph H
Data: hypergraph H = (V, E)
Result: Aopt, a partition of V with modularity qopt
1 Initialize E� = E and Aopt the partition with all v 2 V in its own
part with qopt the corresponding modularity;
2 repeat
3 if (using simplified stochastic algorithm version) then
4 e� = rand(E�) #randomly select an edge;
5 compute the partition Ae� obtained when merging all parts in Aopt
touched by e�, and compute its modularity qe�;
6 end
7 else
8 foreach e 2 E� do
9 compute the partition Ae obtained when merging all parts in
Aopt touched by e, and compute its modularity qe;
10 end
11 select edge e� 2 E� with highest qe�;
12 end
13 if qe� � qopt then
14 Aopt = Ae� and qopt = qe�;
15 update E�, the set of edges touching two or more parts in Aopt;
16 end
17 until (qe� < qopt) or E� = ; or computational time budget exceeded;
18 output: Aopt and qopt

We have implemented the simplified stochastic version of the algorithm in Julia and use it

on the hypergraph generated with the forementioned regime (i) that has 75% edges of degree 3

and 25% edges of the degree 4. In our implementation of Algorithm 1, we choose hyperedges

to consider at random order (that is, at each step one hyperedge is randomly selected). In

order to validate the algorithm, we have run it 1920 times with 500 steps at each run. A single

run on a hypergraph consisting of 150 vertices and 5094 hyperedges, using a modern CPU and

a single thread, took around 7 seconds. Note that the computational complexity of the pro-

posed algorithm is O(n) and hence it can be practically used for real-world hypergraphs.

The results presented in Fig 2 show that the heuristics presented in Algorithm 1 leads to

practically reasonable and useful communities. Firstly, on average, the modularity level after

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 10 / 15

https://doi.org/10.1371/journal.pone.0224307

500 steps is around 75% on modularity for an “optimal” partition of the hypergraph (that is,

the partition that uses the knowledge on how the hypergraph was generated). Secondly, this

result can be improved by rerunning the Algorithm 1 several times (and this process can be

parallelized in high performance computing environments). In particular, we have noticed

that for 1.2% of all runs a partition having the optimal modularity (at least 0.6194 for the parti-

tion of the partition that matched the process of data generation described in the section 4.1

where we have three groups of points (30 points in group) sharing common hyperedges in

each group and an additional 60 points) have been found. Please also note that a higher

observed empirical value was observed in some cases—this arises due to the fact that the for

last group of synthetic hypergraph having 60 vertices the hyperedges have been generated

randomly.

4.3 DBLP hypergraph

The DBLP computer science bibliography database contains open bibliographic information

on major computer science journals and proceedings. The DBLP database is operated jointly

by University of Trier and Schloss Dagstuhl. The DBLP Paper data is available at http://dblp.

uni-trier.de/xml/.

We consider a hypergraph of citations where each vertex represents an author and hyper-

edges are papers. In order to properly match author names across papers we enhance the data

Fig 2. Performance of the Algorithm 1. The thick red line represents the average performance, the dashed line represent standard deviation for the

performance and the wide pink area represents the smallest and the biggest performance found in all experiments.

https://doi.org/10.1371/journal.pone.0224307.g002

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 11 / 15

http://dblp.uni-trier.de/xml/
http://dblp.uni-trier.de/xml/
https://doi.org/10.1371/journal.pone.0224307.g002
https://doi.org/10.1371/journal.pone.0224307

with information scraped from journal web pages. The DBLP database contains the doi.org

identifier. We use this information to obtain the journal name and retrieve paper author data

directly from journal—we update available author name data using ACM, IEEE Xplore,

Springer and Elsevier/ScienceDirect databases. Since the same author names can be written

differently we match author names of the paper across all three data sources. This can give

good representation of author names for later matching. For the analysis, we only kept the

(single) large connected component. We obtained a hypergraph with 1637 nodes, 865 edges of

size 2, 470 of size 3, 152 or size 4 and 37 of size 5 to 7. The complete source code for this exam-

ple along with instructions and data files is available online [19].

In Table 1, we show our results with the Louvain algorithm on the 2-section graph using

modularity function qG(), as well as the results with our CNM algorithm on hypergraphs.

Comparing the Louvain and CNM algorithms, we see that there is a tradeoff between qH and

qG and moreover, the Hcut value is lower with the CNM algorithm. The increased number of

parts with our algorithms is mainly due to the presence of singletons.

Another observation is that the actual partitions obtained with objective function qG()

(Louvain) and qH() (CNM) are different. For the Louvain and CNM algorithms, we found val-

ues of 0.4355 for the adjusted Rand index (ARI), 0.4416 for its graph-aware counterpart (see

[35]) and 0.684 for the adjusted mutual information, which are commonly used measures of

comparisons for partitions. Similar partitions would show values close to 1. We used adjusted

measures which are preferable to non-adjusted ones (such as NMI, the normalized mutual

information) as they correct for random chance.

One of the difference lies in the number of edges of size 2, 3 and 4 that are cut with the dif-

ferent algorithms, as we see in Table 2. The algorithms based on qH() will tend to cut less of the

larger edges, as compared to the Louvain algorithm, at expense of cutting more size-2 edges.

5 Conclusion

In this paper, we presented a generalization of the Chung-Lu model for hypergraphs, which

we used to define a modularity function on hypergraphs. Interestingly, in hypergraph modu-

larity case there is no one unique way to define modularity and we show that it depends on

how strongly we think that a hyperedge indicates members of the same community. If the

belief is soft this leads to standard 2-section graph modularity. However, if it is strong, a natu-

ral definition is strict hypergraph modularity, which we tested on numerical examples. We

also proposed the in-between majority-based modularity function.

The objective of this paper is to develop a definition of hypergraph modularity. However, in

order to show that this notion is numerically traceable, at least approximately, we provided the

Table 2. Proportion of edges of size 2, 3 or 4 cut by the algorithms.

Algorithm 2-edges 3-edges 4-edges

Louvain 0.0382 0.1815 0.3158

CNM 0.0590 0.1277 0.1842

https://doi.org/10.1371/journal.pone.0224307.t002

Table 1. Partitioning DBLP dataset.

algorithm qH() qG() Hcut #parts

Louvain 0.8613 0.8805 0.1181 40

CNM 0.8671 0.8456 0.0945 92

https://doi.org/10.1371/journal.pone.0224307.t001

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 12 / 15

https://doi.org/10.1371/journal.pone.0224307.t002
https://doi.org/10.1371/journal.pone.0224307.t001
https://doi.org/10.1371/journal.pone.0224307

theoretical foundations for the development of algorithms using this modularity function that

greatly reduce the solution search space.

A key natural question with any new measure is if it provides qualitatively different out-

comes than existing ones. Therefore we have compared strict hypergraph modularity with a

standard 2-section graph modularity. For this we proposed a simple heuristic algorithm. We

illustrated the fact that in comparison to 2-section graph modularity (optimized using Louvain

algorithm) optimization using strict modularity function tends to cut a smaller number of

hyperedges. Therefore the proposed measure is potentially highly valuable in application sce-

narios, where a hyperedge is a strong indicator that vertices it contains belong to the same

community.

Hypergraph modularity is a new measure, and there is still a lot of work that should be

done. First of all, the development of good, efficient heuristic algorithms would allow to look

at larger hypergraphs. Such algorithms would allow us to perform a study over hypergraphs

with different edge size distributions, comparing the hypergraph modularity function with

other definitions such as graph modularity over the 2-section representation of the hyperedges,

and hypergraph modularity using the less strict majority rule.

Finally, let us mention that the method of modularity maximization (in its generalized

form which incorporates a resolution parameter controlling the size of the communities dis-

covered) is equivalent to another widely used methods of community detection in networks,

the method of maximum likelihood applied to the special case of the stochastic block model

known as the planted partition model, in which all communities in a network are assumed

to have statistically similar properties [36] (see also [37]). It would be interesting (and poten-

tially useful) to investigate if there is a natural counterpart of our hypergraph modularity

measure.

Acknowledgments

The authors would like to thank Claude Gravel for useful discussions while developing the

algorithm.

Author Contributions

Conceptualization: Valérie Poulin, Paweł Prałat, François Théberge.

Formal analysis: Valérie Poulin, Paweł Prałat, François Théberge.

Funding acquisition: Bogumił Kamiński, Paweł Prałat, Przemysław Szufel.

Investigation: Bogumił Kamiński, Valérie Poulin, François Théberge.

Methodology: Valérie Poulin, Paweł Prałat, François Théberge.

Project administration: Paweł Prałat.

Software: Bogumił Kamiński, Valérie Poulin, Przemysław Szufel, François Théberge.

Validation: Bogumił Kamiński, Valérie Poulin, Paweł Prałat, Przemysław Szufel, François

Théberge.

Writing – original draft: Bogumił Kamiński, Valérie Poulin, Paweł Prałat, François Théberge.

Writing – review & editing: Bogumił Kamiński, Valérie Poulin, Paweł Prałat, François

Théberge.

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 13 / 15

https://doi.org/10.1371/journal.pone.0224307

References
1. Fortunato S. Community detection in graphs, Physics Reports. 2010; 486: 75–174. https://doi.org/10.

1016/j.physrep.2009.11.002

2. Girvan M, Newman MEJ. Community structure in social and biological networks. Proceedings of the

National Academy of Sciences. 2002; 99: 7821–7826. https://doi.org/10.1073/pnas.122653799

3. Zhang Z, Liu C. A hypergraph model of social tagging networks. Journal of Statistical Mechanics: The-

ory and Experiment, vol. 2010, no 10, 2010. https://doi.org/10.1088/1742-5468/2010/10/P10005

4. Shepherd MA, Watters CR., Cai Y. Transient hypergraphs for citation networks. Information Processing

& Management, 26(3), 395–412, 2010. https://doi.org/10.1016/0306-4573(90)90099-N

5. Gallo G, Longo G, Pallottino Stefano, Nguyen S. Directed hypergraphs and applications. Discrete applied

mathematics, vol. 42, no 2-3, pp 177–201, 1993. https://doi.org/10.1016/0166-218X(93)90045-P

6. Samaga R, Klamt S. Modeling approaches for qualitative and semi-quantitative analysis of cellular sig-

naling networks. Cell communication and signaling, vol. 11 no 1, 2013. https://doi.org/10.1186/1478-

811X-11-43

7. Sarkar S, Sivarajan KN. Hypergraph models for cellular mobile communication systems. IEEE Transac-

tions on Vehicular Technology, 47(2), 460–471, 1998. https://doi.org/10.1109/25.669084

8. Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E. 2004;

69: 026–113. https://doi.org/10.1103/PhysRevE.69.066133

9. Chung F, Lu L, Connected components in random graphs with given expected degree sequence.

Annals of Combinatorics. 2002; 6: 125–145. https://doi.org/10.1007/PL00012580

10. Zhou D, Huang J, Scholkopf B. Learning with hypergraphs: clustering, classification and embedding.

Advances in neural information processing systems. 2006; 19:1601–1608.

11. Shi J, Malik J. Normalized cuts and image segmentation. Pattern Analysis and Machine Intelligence.

2000; 22: 888–905. https://doi.org/10.1109/34.868688

12. Rodriguez JA. On the Laplacian spectrum and walk-regular hypergraphs. Linear and Multi-linear Alge-

bra. 2003; 51: 285–297. https://doi.org/10.1080/0308108031000084374

13. Zien J, Schlag M, Chan P. Multilevel spectral hypergraph partitioning with arbitrary vertex sizes. IEEE

Transactions on Computer-aided Design of Integrated Circuits and Systems, 1999; 18: 1389–1399.

https://doi.org/10.1109/43.784130

14. Agarwal S, Lim J, Zelnik-Manor L, Perona P, Kriegman D, Belongie S. Beyond pairwise clustering.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005; 2: 838–845.

15. Agarwal S, Branson K, Belongie S. Higher Order Learning with Graphs, Proc. Int’l Conf. Machine Learn-

ing. 2006; 148: 17–24.

16. Voloshim VI, Introduction to Graph and Hypergraph Theory. Nova Kroshka Books; 2013.

17. Karypis G, Kumar V, Multilevel K-Way Hypergraph Partitioning. VLSI Design. 2000; 11: 285–300.

https://doi.org/10.1155/2000/19436

18. Chien I, Chung-Yi L, I-Hsiang W. Community detection in hypergraphs: Optimal statistical limit and effi-

cient algorithms. Proceedings of the Twenty-First International Conference on Artificial Intelligence and

Statistics. 2018: 84: 871–879.

19. GitHub gist repository, https://gist.github.com/pszufe/02666497d2c138d1b2de5b7f67784d2b.

20. Chung FRK, Lu L. Complex Graphs and Networks. American Mathematical Society; 2006.

21. Seshadhri C, Kolda TG, Pinar A. Community structure and scale-free collections of Erdös-Rényi

graphs. Physical Review E. 2012; 85: 056109. https://doi.org/10.1103/PhysRevE.85.056109

22. Kolda TG, Pinar A, Plantenga T, Seshadhri C. A scalable generative graph model with community struc-

ture. SIAM Journal on Scientific Computing. 2014; 36: C424–C452. https://doi.org/10.1137/130914218

23. Winlaw M, DeSterck H, Sanders G. An In-Depth Analysis of the Chung-Lu Model. Lawrence Livermore

Technical Report LLNL-TR-678729. 2015.

24. Newman M. Networks: An Introduction. Oxford University Press; 2010.

25. Fortunato S, Barthelemy M. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA. 2007:

104: 36–41. https://doi.org/10.1073/pnas.0605965104 PMID: 17190818

26. Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Phys. Rev. E.

2004; 70: 066111. https://doi.org/10.1103/PhysRevE.70.066111

27. Lancichinetti A, Fortunato S. Limits of modularity maximization in community detection. Phys. Rev. E.

2011; 84: 066122. https://doi.org/10.1103/PhysRevE.84.066122

28. Newman MEJ. Fast algorithm for detecting community structure in networks. Phys. Rev. E. 2004; 69:

066133. https://doi.org/10.1103/PhysRevE.69.066133

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 14 / 15

https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1088/1742-5468/2010/10/P10005
https://doi.org/10.1016/0306-4573(90)90099-N
https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1186/1478-811X-11-43
https://doi.org/10.1186/1478-811X-11-43
https://doi.org/10.1109/25.669084
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1007/PL00012580
https://doi.org/10.1109/34.868688
https://doi.org/10.1080/0308108031000084374
https://doi.org/10.1109/43.784130
https://doi.org/10.1155/2000/19436
https://gist.github.com/pszufe/02666497d2c138d1b2de5b7f67784d2b
https://doi.org/10.1103/PhysRevE.85.056109
https://doi.org/10.1137/130914218
https://doi.org/10.1073/pnas.0605965104
http://www.ncbi.nlm.nih.gov/pubmed/17190818
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.84.066122
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1371/journal.pone.0224307

29. McDiarmid C, Skerman F. Modularity in random regular graphs and lattices. Electronic Notes in Dis-

crete Mathematics. 2013; 43: 431–437. https://doi.org/10.1016/j.endm.2013.07.063

30. McDiarmid C, Skerman F. Modularity of tree-like and random regular graphs. Oxford Journal of Com-

plex Networks. 2018; 6: 596–619. https://doi.org/10.1093/comnet/cnx046

31. Ostroumova Prokhorenkova L, Prałat P, and Raigorodskii A. Modularity of complex networks models.

Internet Mathematics. 2017. https://doi.org/10.24166/im.12.2017

32. McDiarmid C, Skerman F. Modularity of Erdos-Renyi random graphs; 2018. Preprint. Available from:

https://arxiv.org/abs/1808.02243. Cited 30 April 2019.

33. Leordeanu M, Sminchisescu C. Efficient Hypergraph Clustering. Proceedings of the Fifteenth Interna-

tional Conference on Artificial Intelligence and Statistics. 2012; 22: 676–684.

34. Blondel V.D., Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks.

Journal of Statistical Mechanics: Theory and Experiment. 2008; 10: P10008. https://doi.org/10.1088/

1742-5468/2008/10/P10008

35. Poulin V, Théberge F. Comparing Graph Clusterings: Set partition measures vs. Graph-aware mea-

sures. 2018. Preprint. Available from: https://arxiv.org/abs/1806.11494. Cited 30 April 2019.

36. Newman MEJ. Community detection in networks: Modularity optimization and maximum likelihood are

equivalent. Phys. Rev. E. 2016; 94: 052315.

37. Lu X, Szymanski BK. Asymptotic resolution bounds of generalized modularity and statistically signifi-

cant community detection. 2019. Preprint. Available from: https://arxiv.org/abs/1902.04243. Cited 30

April 2019.

Clustering via hypergraph modularity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224307 November 6, 2019 15 / 15

https://doi.org/10.1016/j.endm.2013.07.063
https://doi.org/10.1093/comnet/cnx046
https://doi.org/10.24166/im.12.2017
https://arxiv.org/abs/1808.02243
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://arxiv.org/abs/1806.11494
https://arxiv.org/abs/1902.04243
https://doi.org/10.1371/journal.pone.0224307

