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Abstract

Biochar is being discussed as a soil amendment to improve soil fertility and mitigate climate

change. While biochar interactions with soil microbial biota have been frequently studied,

interactions with soil mesofauna are understudied. We here present an experiment in which

we tested if the collembolan Folsomia candida I) can transport biochar particles, II) if yes,

how far the particles are distributed within 10 days, and III) if it shows a preference among

biochars made from different feedstocks, i.e. pine wood, pine bark and spelt husks. In gen-

eral, biochar particles based on pine bark and pine wood were consistently distributed signif-

icantly more than those made of spelt husks, but all types were transported more than 4cm

within 10 days. Additionally, we provide evidence that biochar particles can become readily

attached to the cuticle of collembolans and hence be transported, potentially even over

large distances. Our study shows that the soil mesofauna can indeed act as a vector for the

transport of biochar particles and show clear preferences depending on the respective feed-

stock, which would need to be studied in more detail in the future.

Introduction

Biochar has received much attention as a potential means to mitigate climate change via the

sequestration of carbon, but it may also be useful for improve soil fertility (e.g. [1]; [2]; [3]; [4];

[5] for review). The latter effect has been shown to be related to an increase in soil pH ([6]),

and may also improve nutrient retention ([7]). There have been several studies showing that

biochar has the potential to change soil biological communities in regard to their composition

and abundance ([8]; [9]; [10]; [11]; [12]; [13]; [14]; [15]). Also, there is evidence that biochar

can reduce the infection rate of nematodes causing root-lesions in carrots ([16]), increases soil

microbial biomass ([11]; [14]Ji; [12]) and reduce or not affect colonization of roots by arbuscu-

lar mycorrhizal fungi ([17]; see [18] for extensive review). Although there has been intense

research in terms of the effect of biochar amendments on soil microorganisms and earth-

worms and their respective interactions ([18]), the two most abundant groups of mesofauna,

i.e. Collembola (springtails) and Acari (mites), have received less attention ([19]). As these

groups are partly part of the fungal energy channel in the soil food web ([20]), one should

expect a close interaction with microbial populations ([18]). In addition, there is little evidence

of how the mesofauna contributes to the distribution of biochar in the soil, which might be
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especially important in terms of the long-term persistence of biochar amendments in the soil.

Presumably, the distribution happens via i) attachment of particles on setae or cuticle; ii) feed-

ing and defecation elsewhere; iii) animal movement over particles and hence pushing ([21]).

However, Gormsen et al. ([22]) showed that Collembola are indeed able to act as vectors for

fungal spores, and other studies support this activity for charcoal ([23]; [24]), hydrochar ([19];

[25]; [26]) and microplastics ([21]). As biochars of different feedstocks show different charac-

teristics, we wanted to determine if the collembolan Folsomia candida I) can transport biochar

particles, II) if yes, how far the particles are distributed within 10 days, and III) if it shows a

preference among biochars made from different feedstocks. To test these questions, we con-

ducted an arena experiment with three biochars originating from different feedstocks: pine

wood, pine bark and spelt husks.

Material & methods

We used three biochars originating from different feedstocks: pine bark and pine wood of

Pinus sylvestris (PB and PW, respectively) and spelt husks (SH). These biochars were produced

for the experiment of George et al. ([16]) and stored in glass bottles until we used it for our

experiment. All feedstocks were air-dried at room temperature prior to carbonization. The ini-

tial feedstocks were covered with sand and then wrapped in aluminum foil to create an atmo-

sphere reduced in oxygen necessary for carbonization, which lasted for five hours at 500˚C

(highest treatment temperature) in a muffle oven. The carbonized material was then sieved to

separate it from the sand. Each biochar was crushed with a hammer and then sieved to a parti-

cle fraction of 100–200 μm, which we used for the experiment. We decided to use this particle

fraction because it has proven to be the optimal size for F. candida-‒mediated potentially

transport in previous experiments ([21]) and is still countable on photos for later quantitative

analysis. Details about each biochar’s properties such as water-holding capacity and nutrient

concentrations have been reported elsewhere ([16]). Experimental units were 10-cm-diameter

specimen cups filled with a 1-cm layer of plaster of Paris which was wetted to saturation. Treat-

ments consisted of 2 mg of the respective biochar type distributed in a 0.5-cm-diameter circle

(‘feeding station’) in the middle of the cups. We did not offer any additional food source. To

avoid airflow that could potentially distribute the biochar particles, we carefully placed lids on

the specimen cups. They were stored at room temperature (20˚C ± 2˚C) during the

experiment.

The target organism was Folsomia candida (Collembola) with a body size of up to 3 mm

([27]) from our laboratory cultures, originating from Northern Germany. The individuals

were kept on a Plaster of Paris—activated charcoal mix and fed with Baker’s yeast before star-

vation which started 14 days prior to the experiment. We set up 8 replicates of each treatment

with 15 F. candida per cup. Controls duplicated the F. candida treatments but did not contain

any Collembola, resulting in a total of 48 samples.

For ten days, each sample was photographed once a day from a distance of 30 cm. For the

analysis of the images, four concentric circles of 1, 2, 3 and 4 cm diameter (corresponding to

ring 1, ring 2, ring 3 and ring 4, see Fig 1) were digitally placed around the feeding station and

the particles in each ring were counted ([21]).

Data analysis

For the analysis of the data we used R, version 3.3.1 ([28]). We used generalized least square

models of the ‘nlme’ package ([29]) and used the function ‘varIdent’ to account for heterogene-

ity in our data ([30]). We checked the model residuals for normal distribution and
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homogeneity of variances. Pairwise comparisons of least square means of factors were per-

formed by the package ‘lsmeans’ ([31]). For generating the figures, we used ‘ggplot2’ ([32]).

Results

We found highly significant differences between the rings, i.e. distance of particle transport

(F1 = 14.29, p<0.001), particles, i.e. biochar types (F1 = 36.73, p< 0.001) and a significant

interaction term for ring and particle (F1 = 2.51, p = 0.03) (see Table 1).

In general, biochar particles from the feedstocks pine bark and pine wood (PB and PW,

respectively), were consistently distributed significantly more than those made of spelt husks

(SH, Fig 1).

Fig 1. Number of particles moved horizontally over the four defined rings (with ring 1 = 1 cm, ring 2 = 2 cm, ring

3 = 3 cm and ring 4 = 4 cm diameter) around the feeding station by Folsomia candida at the end of the experiment

(after ten days). The shading of bars represents the different biochar types used (black = PB, pine bark; dark

grey = PW, pine wood; light grey = SH, spelt husks). Mean ± SE, n = 8. Bars with same letters are not significantly

different according to pairwise comparisons of least square means at alpha level 0.05. Controls were 0, hence not

shown.

https://doi.org/10.1371/journal.pone.0224179.g001

Table 1. Results of two-factors ANOVA (ring / horizontal distance and particle / biochar type). Significant p-val-

ues<0.05 shown in bold.

df F p

(Intercept) 1 561.5481 <0.001

ring 3 14.2803 <0.001

particle 2 36.7340 <0.001

ring : particle 6 2.5131 0.0276

https://doi.org/10.1371/journal.pone.0224179.t001
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Additionally, we found Folsomia candida individuals which, after jumping into the pine

bark particles, were covered with a large number of particles that remained on them even

when the animals left the pile of biochar (Fig 2). In addition, we observed in nearly every col-

lembolan black dots in the gut, indicating that they ingested microparticles by grazing the sur-

face of larger biochar particles and hence could defecate them somewhere else ([23]; [24]; [19];

[15]).

Discussion

The transport of objects has been much-studied in soil macrofauna such as earthworms. How-

ever, there is evidence that the highly abundant soil mesofauna is involved in the transport of

small particles such as fungal spores, microplastics and hydrochar (e.g. [22]; [21]; [19]; respec-

tively). We tested the ability of a springtail species to distribute biochar particles of various feed-

stocks and whether transport occurred differentially among the three biochars. Indeed, all three

biochar types were transported more than 4 cm within the experimental time span; however,

there were clear differences in how frequently and far the biochar types were transported: biochar

based on pine bark (PB) was transported most, followed by pine wood and spelt husk biochar.

Biochar particles can be attached to the setae and hence transported even over relatively

large distances; in soil, however, efficient transport might be limited to particles of smaller size.

Fig 2. Folsomia candida individual covered with pine bark biochar particles and biochar particles in the gut.

https://doi.org/10.1371/journal.pone.0224179.g002
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Additionally, collembolans seem to be actively involved in the production of microparticles

from bigger chunks of biochar by grazing activities (e.g. [19]) that result in ingestion of micro-

particles, as we observed in terms of biochar particles in the gut of many individuals. This feed-

ing presumably would result in defecation in another place. Presumably, ingestion/defecation

might only be important for particles smaller than 100μm, but the abundance of mesofauna in

soils suggests that transport might be substantial and should be considered in future studies.

Folsomia candida transported the three biochar types at different frequencies (with prefer-

ence for biochar based on pine bark). It is primarily a fungal hypha grazer with strong prefer-

ences for particular species ([27]). Most likely our observations are the result of the different

abiotic characteristics ([16]) of the respective biochar types resulting in differing microbial

communities on the surface (e.g. [18]; [15]; [5]). The microbial diversity might be increased in

presence of biochar ([17]; [15]), however, bacteria and fungi react differently to changes e.g. in

pH ([33]; [34]; [35]). Other reasons may relate to particle shape or surface characteristics (i.e.,

how readily particles accumulate on the springtail body), however, biochar can also be used as

a food source by Collembola as Ding et al. ([36]) report that organic components can be of

nutritional advantage for the respective symbiotic gut bacteria. Additionally, the passage

through the gut could presumably enhance the decomposition of the biochar by an inoculation

with bacteria which might be able to survive outside the gut on the feces ([37]) and hence

potentially modify the soil’s microbial community to some extent ([38])

Our study shows that microarthropods can be involved in the horizontal transport of bio-

char particles. This transport could be quite important for spreading biochar particles from

the locations to which they were applied. Horizontal, and perhaps vertical ([39]), transport can

thus contribute to explaining the exposure of soil biota to biochar particles on a local scale.

Additionally, the distribution of biochar particles to deeper soil layers presumably has conse-

quences for the interaction of these particles with soil minerals and hence soil fertility ([40]).

Future studies should involve testing the transport of biochar particles of different sizes in soil

to get a more detailed understanding of the interaction with soil organisms and potential eco-

toxicology ([41]; [26]) over time ([15]).
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