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Abstract

Spathiphyllum is a very important tropical plant used as a small, potted, ornamental plant in

South China, with an annual output value of hundreds of millions of yuan. In this study, we

sequenced and analyzed the complete nucleotide sequence of the Spathiphyllum ’Parrish’

chloroplast genome. The whole chloroplast genome is 168,493 bp in length, and includes a

pair of inverted repeat (IR) regions (IRa and IRb, each 31,600 bp), separated by a small sin-

gle-copy (SSC, 15,799 bp) region and a large single-copy (LSC, 89,494 bp) region. Our

annotation revealed that the S. ’Parrish’ chloroplast genome contained 132 genes, including

87 protein coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes. In the repeat

structure analysis, we detected 281 simple sequence repeats (SSRs) which included mono-

nucleotides (223), dinucleotides (28), trinucleotides (12), tetranucleotides (11), pentanu-

cleotides (6), and hexanucleotides (1), in the S. ’Parrish’ chloroplast genome. In addition,

we identified 50 long repeats, comprising 18 forward repeats, 13 reverse repeats, 17 palin-

dromic repeats, and 2 complementary repeats. Single nucleotide polymorphism (SNP) and

insertion/deletion (indel) analyses of the chloroplast genome of the S. ’Parrish’ relative S.

cannifolium revealed 962 SNPs in S. ’Parrish’. There were 158 indels (90 insertions and 68

deletions) in the S. ’Parrish’ chloroplast genome relative to the S. cannifolium chloroplast

genome. Phylogenetic analysis of five species found S. ’Parrish’ to be more closely related

to S. kochii than to S. cannifolium. This study identified the characteristics of the S. ’Parrish’

chloroplast genome, which will facilitate species identification and phylogenetic analysis

within the genus Spathiphyllum.

Introduction

Spathiphyllum is a genus of approximately 41 species [1] of monocotyledonous flowering

plants in the family Araceae, and is one of the most popular ornamental plants. Members of

this genus are evergreen herbaceous perennial plants with large leaves that are 12–65 cm long
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and 3–25 cm wide. The flowers are produced in a spadix, surrounded by a white or green

spathe that is 10–30 cm long. Because Spathiphyllum grows in different environments, inter-

specific hybridization occurs quite readily, which makes its genetic background complex.

Moreover, interspecific hybridization makes it difficult to identify different varieties. There-

fore, exploring a more effective way of differentiating closely related species of Spathiphyllum
is necessary. Because chloroplast genomes are highly conserved, many studies have used chlo-

roplast DNA markers to analyze phylogenetic relationships and population variation [2–4].

Chloroplasts possess a highly conserved [5,6] tetrad structure, containing two inverted

repeat (IR) regions (IRa and IRb), a small single-copy (SSC) region and a large single-copy

(LSC) region [6–8]. In addition to photosynthesis, chloroplast genome-encoded proteins are

involved in other metabolic processes, such as responses to heat, drought, salt, and light [9]. By

studying of chloroplast genomes, we can obtain a deeper understanding of plant biology,

diversity, evolution and climatic adaptation, DNA barcoding and genetic engineering [9–15].

The rapid development of high throughput sequencing technologies has made the large-scale

acquisition of chloroplast genomic sequences possible [16–18]. Over 800 complete chloroplast

genome sequences, including 300 from crop and tree genomes, have been made available in

the National Center for Biotechnology Information (NCBI) organelle genome database since

1986, when the first chloroplast genome sequence was reported [9,19]. To date, the chloroplast

genome of only one species of Spathiphyllum (Spathiphyllum kochii) has been reported [20].

Unfortunately, no further analysis of molecular markers in the chloroplast genome of S. kochii
has been published.

Slipped-strand mispairing, occurring in SSRs of 10 bp or longer, is the main mutational

mechanism of SSR polymorphisms [18,21]. Chloroplast SSRs are highly efficient molecular

markers and are often widely used in evolutionary studies, species identification, and popula-

tion genetics [22–24]. However, there are few molecular marker studies of the genus Spthiphyl-
lum. Only one article on molecular comparison of the genus Spthiphyllum was retrieved.

Using amplified fragment length polymorphism (AFLP) markers with near-infrared fluores-

cence-labeled primers, this study analyzed genetic relatedness of 63 commercial cultivars and

breeding lines [25]. Here, we report the whole chloroplast genome sequence of S. ’Parrish’ and

characterize its long repeats and simple sequence repeats (SSRs). The chloroplast genome of S.

’Parrish’ and the chloroplast genomes of other members of Araceae are compared and ana-

lyzed. Furthermore, insertions and deletions, single nucleotide polymorphism (SNP), and phy-

logenetics are analyzed. Our report will provide useful information for further studies, help

identify Spathiphyllum species, and provide insight into their evolutionary history.

Materials and methods

Plant material and DNA sequencing

S. ’Parrish’ was planted at the Environmental Horticulture Research Institute, Guangdong

Academy of Agricultural Sciences (N23˚23’, E113˚23’, Guangzhou, China). We first extracted

the chloroplast genome DNA from young leaves of S. ’Parrish’, and used ultrasonicator (Cov-

aris M220, Covaris, Woburn, MA, USA) to divide the DNA into 300-500-bp fragments. Sec-

ond, shotgun libraries were constructed according to the TruSeq™ DNA Sample Prep Kit for

Illumina. Third, the Illumina HiSeq XTen (Biozeron, Shanghai, China) Sequencing Platform

was used for PE150 sequencing. Some of the original data (raw data) produced with this

method were of low quality. To improve the accuracy of the results of subsequent analyses, the

original sequencing data were processed as follows: (1) the adapter sequence of reads was

removed; (2) the bases containing non-AGCT nucleotides at the 5’ end before shearing were

removed; (3) the terminal end of reads with a low sequence quality was pruned (sequencing
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quality value less than Q20); (4) the reads containing 10% Ns were removed; and (5) adapters

and small segments less than 50 bp in length after mass pruning were excluded.

At the same time, we used another method, single-molecule real-time (SMRT) circular con-

sensus sequencing, to obtain the whole chloroplast genome of S. ’Parrish’, following the stan-

dard protocol provided with the PacBio platform (Biozeron, Shanghai, China). To obtain

more accurate assembly results, the original sequencing data were processed by filtering out

the following: (1) polymerase reads whose length was less than 100 bp; (2) polymerase reads

with a mass less than 0.80; (3) subreads extracted from polymerase reads and adapter

sequences; and (4) subreads whose length was less than 500 bp.

Chloroplast genome assembly and validation

First, SOAPdenovo (v2.04) [26] was used to preliminarily assemble the Illumina sequencing

data. Second, the PacBio sequencing data were compared using BLASR (San Diego, CA, USA)

[27]. To reduce the errors of single bases and insertions/deletions (indels) in the long PacBio

sequences, the data were corrected according to the results of the comparison. The PacBio raw

reads were pre-processed by trimming the adapter sequences, low quality (Q< 0.80) reads,

short reads (length < 100 bp) and short subreads (length <500 bp). Finally, the PacBio clean

data were used for the assembly.

NOVOPlasty (v2.7.2) software (https://github.com/ndierckx/NOVOPlasty) was used for

chloroplast genome assembly. The S. kochii chloroplast genome was used as the reference

genome for the assembly of S. ’Parrish’ samples. The rbcL gene of the reference genome was

used as a seed sequence. The other parameters were set to the defaults. Then, clean reads were

compared with the scaffold obtained by assembly. The results were locally assembled and opti-

mized by paired-end and overlap relations of reads. The gaps in the assembly results were

repaired using GapCloser (v1.12, http://soap.genomics.org.cn/soapdenovo.html) software, with

the default parameters. Finally, the reference genome was used to correct the location and direc-

tion of the four chloroplast partitions (LSC/IRa/SSC/IRb), and the initial position of the chloro-

plast assembly sequence was determined to obtain the final chloroplast genome sequence.

Gene annotation and codon usage

The protein-coding, transfer RNA (tRNA) and ribosomal RNA (rRNA) genes of the chloro-

plast genome of S. ’Parrish’ were predicted by DOGMA (http://dogma.ccbb.utexas.edu/) [28]

software. The parameters were set as follows: (1) genetic code for Blastx: 11; (2) percent iden-

tity cutoff for protein-coding genes: 60; (3) percent identity cutoff for RNAs: 60; and (4) COVE

threshold for mitochondrial tRNAs: 20. Then, the redundancy in the initial genes predicted by

DOGMA was eliminated. The ends of the genes and the exon/intron boundaries were manu-

ally corrected to obtain a high-accuracy gene set, using the protein-coding genes of the refer-

ence genome as a reference. Using the S. kochii chloroplast genome as the reference genome,

the genome of S. ’Parrish’ was assembled. Finally, OrganellarGenomeDRAW software (http://

ogdraw.mpimp-golm.mpg.de/cgi-bin/ogdraw.pl) [29] was used to display a circle map.

The degree of codon preference can be reflected by the relative probability of a particular

codon in the synonymous codon encoding the corresponding amino acid. To obtain the

codon preference value, relative synonymous codon usage (RSCU) was calculated by CUSP

(EMBOSS v6.6.0.0) with default parameters.

SSRs and long repeat structure

Microsatellite analysis of contig sequences was carried out with the MIcroSAtellite (MISA)

identification tool [30]. The parameters (unit_size, min_repeats) were defined as follows:
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1–10, 2–6, 3–5, 4–5, 5–5, and 6–5; the minimum distance between two SSRs was set to 100 bp.

Parametric significance was met under the following conditions: 10 or more repeats of one

base, 6 or more repeats of two bases, 5 or more repeats of three bases, 5 or more repeats of four

bases, 5 or more repeats of five bases and 5 or more repeats of six bases. Additionally, when the

distance between the two microsatellites was less than 100 bp, the two microsatellites formed a

composite microsatellite. Finally, primers were designed for the SSR sequences by Primer3

(v.0.4.0, http://primer3.ut.ee).

Long repeats were detected by using REPuter (http://bibiserv.techfak.uni-bielefeld.de/

reputer/). The minimum sequence length was 30 bp, and the editing distance was 3; searches

were performed in four repetitive ways: (1) F: forward, (2) R: reverse, (3) C: complementary,

and (4) P: palindromic.

SNP and indel detection and annotation

Using MUMmer4 alignment software (Maryland, USA) [31], global alignment between each

sample and reference sequence was carried out, the sites that differed between the sample

sequence and the reference sequence were identified, and the potential SNP loci were detected

through preliminary filtering. The 100-bp sequences on both sides of the reference sequence

SNP loci were extracted, and the extracted sequence and assembly results were aligned using

BLAT (v35, http://genome.ucsc.edu) software to verify the SNP loci [32]. If the length of the

alignment was less than 101 bp, the unreliable SNP was removed; if the alignment was repeated

many times, the SNP that was considered to be a duplicate was also removed, and finally, a reli-

able SNP was obtained.

The preliminary insertion/deletions (indels) results were obtained by comparing the sam-

ples with reference sequences using LASTZ (v1.03.54, http://www.bx.psu.edu/miller_lab/dist/

README.lastz-1.02.00) software. Then the best comparison results were selected through

axt_correction, axtSort and axtBest programs, and indel results were obtained preliminarily.

Then, 150 bp upstream and downstream of the reference sequence indel locus were compared

with the sequence reads of the sample by BWA (http://bio-bwa.sourceforge.net) software and

SAMtools (http://samtools.sourceforge.net/), and reliable indels were obtained by filtering.

Genome comparison

The whole chloroplast genomes of S. ’Parrish’ (MK391158), S. cannifolium (MK372232) [33],

S. kochii (KR270822) [20], Dieffenbachia seguine (KR262889), and Pinellia ternata (KR270823)

were compared by mVISTA [34], with the annotation of S. ’Parrish’ as the reference.

Phylogenetic analysis

An evolutionary tree was constructed based on the population SNP matrix of the sample and

reference genome. For each sample, all SNPs were linked in the same order to obtain FASTA

format sequences of the same length, one of which was the reference sequence used as an

input file for the construction of the evolutionary tree. An evolutionary tree was also con-

structed based on the core gene: a single-copy core gene identified by gene clustering was used

to compare multiple protein sequences using MUSCLE (v3.8.31) software [35], and the results

were used to construct an evolutionary tree. PhyML (v3.0, http://www.atgc-montpellier.fr/

phyml/) and 1000 bootstraps were used to construct the phylogenetic tree with the maximum

likelihood (ML) method [36]. Data files used in the phylogeny analysis has been added to the

supplemental file (S1 and S2 Data).

The GenBank accession numbers for each plant species were as follows: S. ’Parrish’

(MK391158), S. cannifolium (MK372232), S. kochii (KR270822), D. seguine (KR262889), P.
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ternata (KR270823), Phoenix dactylifera (GU811709), Elaeis guineensis (JF274081), Lilium
longiflorum (KC968977), Cocos nucifera (KF285453), Lemna minor (NC_010109), Typha lati-
folia (NC_013823), Colocasia esculenta (NC_016753), Fritillaria taipaiensis (NC_023247),

Brassica napus (NC_016734) and Raphanus sativus (NC_024469), with the last two species

used as outgroups.

Results and discussion

Features of S. ’Parrish’ chloroplast genome DNA

The length of the S. ’Parrish’ chloroplast genome is 168,493 bp. The genome has a quadripar-

tite structure with an SSC of 15,799 bp and an LSC of 89,494 bp, which are separated by two IR

regions (IRa and IRb, each 31,600 bp) (Fig 1 and Table 1). The GC content of the overall chlo-

roplast genome and the LSC, SSC, and IR regions is 36.19, 34.72, 29.35, and 39.98%, respec-

tively (Table 1); these values are similar to those found for the genome of S. kochii [20]. The

GC content of the two IR regions is higher than that of the LSC and SSC, which is a very com-

mon pattern in other plants [21], and this phenomenon is mostly attributable to rRNA genes

and tRNA genes [37].

The S. ’Parrish’ chloroplast genome encodes 132 genes in total, comprising 87 protein-cod-

ing genes, 37 tRNA genes and 8 rRNA genes (Table 2). The IR region includes 7 protein-cod-

ing genes, 7 tRNA genes and 4 rRNA genes. The SSC contains 11 protein-coding genes and 1

tRNA gene, while the LSC contains 62 protein-coding genes and 22 tRNA genes (Fig 1).

The frequency of codon usage was inferred based on the sequence of protein-coding genes

and tRNA genes (Table 3). In total, 28,423 codons, which encoded all genes, were detected in

S. ’Parrish’. Of these codons, 2,903 (10.21%) encode leucine, which is the most frequent amino

acid in the chloroplast genome, and 333 (1.17%) encode cysteine, which is the least frequent.

The chloroplast genome of S. ’Parrish’ contains 19 intron-containing genes, including 6

tRNA genes and 13 protein-coding genes. Ycf3 and clpP contain two introns, and the other 17

genes include one intron (Table 4). The intron (2,569 bp) of the trnK-UUU gene, which is the

largest intron, includes the matK gene. The rps12 gene is a trans-spliced gene with the 5’ end

located in the LSC region and the duplicated 3’ ends in the IR regions. Ycf3 is required for the

stable accumulation of the photosystem I complex [38, 39]. The introns in the S. ’Parrish’ chlo-

roplast genome may be useful for further studies of the mechanism of photosynthesis

evolution.

Intron or gene gain or loss can be found in chloroplast genomes [8, 40–42] and may be sig-

nificant during evolution. However, few studies have reported on the mechanism of photosyn-

thesis evolution in Spathiphyllum. In this paper, we compared the chloroplast genome of S.

’Parrish’ to that of other species of monocotyledons. These results provide a theoretical foun-

dation for Spathiphyllum chloroplast genome research, breeding and molecular marker

development.

Long repeat and SSR analysis

The S. ’Parrish’ chloroplast genome includes 50 repeats in total, comprising 18 forward repeats,

13 reverse repeats, 17 palindromic repeats, and 2 complementary repeats (Fig 2 and S1 Table).

Among these repeats, most of the forward repeats, reverse repeats, palindromic repeats, and

complementary repeats are 20–49 bp in length (Fig 2B–2E). Similar repeat lengths were

observed in S. cannifolium (Fig 2B–2E). In contrast, most of the repeats in D. seguine, S. kochii,
and P. ternata are longer than 80 bp (Fig 2B–2E). However, the number of long repeats in S.

cannifolium, D. seguine, S. kochii, and P. ternata is also 50 (Fig 2A and S2–S5 Tables).
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In this study, we detected 281 SSRs, which included 223 mononucleotides, 28 dinucleotides,

12 trinucleotides, 11 tetranucleotides, 6 pentanucleotides, and 1 hexanucleotide, in the chloro-

plast genome of S. ’Parrish’ (Fig 3). Mononucleotides account for 97.8% of the SSRs in the S.

’Parrish’ chloroplast genome. The number of SSRs in S. ’Parrish’, S. cannifolium, D. seguine, S.

kochii, and P. ternata is 281, 314, 281, 294 and 274, respectively (Fig 3). The hexanucleotide

repeat content in S. ‘Parrish’ is the lowest among the five species (S. ’Parrish’, 0.36%; S. cannifo-
lium, 0.64%; D. seguine, 1.78%; S. kochii, 1.02%; and P. ternata, 1.09%). Mononucleotides are

the most frequent repeat type in all of these species (S. ’Parrish’, 79.36%; S. cannifolium,

Fig 1. Gene map of S. ’Parrish’. Genes lying outside the circle are transcribed in a clockwise direction, whereas genes inside are transcribed in a

counterclockwise direction. Different colors denote known functional groups. The GC and AT contents of the genome are denoted by dashed darker

and lighter gray in the inner circle. LSC, SSC, and IR indicate large single-copy, small single-copy, and inverted repeat regions, respectively.

https://doi.org/10.1371/journal.pone.0224038.g001
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70.38%; D. seguine, 67.26%; S. kochii, 75.51%; and P. ternata, 70.80%) (Fig 3). The findings of

this study will help enable the use of chloroplast SSRs in the selection of germplasm for Spathi-
phyllum breeding.

SNP and indel detection and annotation

Analysis of SNPs and indels in the chloroplast genome of S. ’Parrish’ relative to that of S. canni-
folium revealed 962 SNPs in S. ’Parrish’. Of these SNPs (S6 Table), 704 were located in inter-

genic regions, representing the most frequently occurring mutations, and the coding regions

included 134 synonymous SNPs, 123 nonsynonymous SNPs, and 1 stop mutation. There were

Table 1. Summary of the S. ’Parrish’ chloroplast genome features.

Attribute S. ’Parrish’

Genome size/GC content 168,493/36.19

Coding gene number/size 87/85,110

tRNA gene number/size 37/2,814

rRNA gene number/size 8/9,050

LSC size/percent/GC content 89,494/53.11/34.72

SSC size/percent/GC content 15,799/9.37/29.35

IR size/percent/GC content 31,600/18.75/39.98

Intron size/percent 17754/10.53

Intergentic spacer size/percent 53,685/31.86

https://doi.org/10.1371/journal.pone.0224038.t001

Table 2. List of annotated genes in the S. ’Parrish’ chloroplast genome.

Function Genes

RNAs, transfer trnH-GUG, trnK-UUU �, trnQ-UUG, trnS-GCU, trnG-GCC �, trnR-UCU, trnC-GCA,

trnD-GUC, trnY-GUA, trnE-UUC, trnT-UGU, trnS-UGA, trnG-UCC, trnfM-CAU,

trnS-GCU, trnT-UGU, trnL-UAA �, trnF-GAA, trnV-UAC �, trnM-CAU, trnW-CCA,

trnP-UGG, trnI-CAU, trnL-CAA, trnV-GAC, trnI-GAU �, trnA-UGC �, trnR-ACG,

trnN-GUU, trnL-UAG, trnN-GUU, trnR-ACG, trnA-UGC �, trnI-GAU �, trnV-GAC,

trnL-CAA, trnI-CAU
RNAs, ribosomal rrn23 a, rrn16 a, rrn5 a, rrn4.5 a,

Transcription and splicing rpoC1 �, rpoC2, rpoA, rpoB
Translation, ribosomal

proteins

Small subunit rps2, rps3,rps4, rps7, rps8, rps11, rps12 ��, rps14, rps15, rps16 �, rps18,rps19
Large subunit rpl2 �, rpl14, rpl16 �, rpl20,rpl22,rpl23, rpl32, rpl33,rpl36
Photosynthesis

ATP synthase atpE, atpB, atpA, atpF �, atpH, atpI
Photosystem I psaI, psaJ, psaB, psaA, psaC, psaJ, ycf2, ycf3 ��, ycf4
Photosystem II psbD, psbC, psbZ, psbT, psbH, psbK, psbI, psbJ, psbF, psbE, psbM, psbN, psbL, psbA,

psbB
Calvin cycle rbcL
Cytochrome complex petN, petA, petL, petG, petB �, petD �

NADH dehydrogenase ndhB �, ndhI, ndhK, ndhC, ndhF, ndhD, ndhG, ndhE, ndhA �, ndhH, ndhJ
Others ycf1, ycf68, accD, cemA, ccsA, clpP ��, matK

� Genes containing one intron;

�� Genes containing two introns;
a Duplicated gene (genes present in the IR regions).

https://doi.org/10.1371/journal.pone.0224038.t002
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158 indels, including 90 insertions and 68 deletions, in the S. ’Parrish’ chloroplast genome rela-

tive to the S. cannifolium chloroplast genome (S1 Fig and S7 Table). Of these 158 indels, 57

(36.08%) were single-base indels, which differed from the numbers in maize and sugarcane [8,

43, 44]. It indicated that the nucleotide substitution events in the chloroplast genomes of

Spathiphyllum species were more than that between species of Oryza and Kaempferia.

Table 3. Codon usage in S. ’Parrish’.

Codon Count RSCU Codon Count RSCU Codon Count RSCU Codon Count RSCU

UUU(F) 1054 1.29 UCU(S) 609 1.62 UAU(Y) 832 1.56 UGU(C) 256 1.54

UUC(F) 574 0.71 UCC(S) 389 1.03 UAC(Y) 234 0.44 UGC(C) 77 0.46

UUA(L) 882 1.82 UCA(S) 496 1.32 UAA(�) 36 1.24 UGA(�) 22 0.76

UUG(L) 602 1.24 UCG(S) 176 0.47 UAG(�) 29 1 UGG(W) 502 1

CUU(L) 614 1.27 CCU(P) 454 1.54 CAU(H) 523 1.51 CGU(R) 373 1.29

CUC(L) 207 0.43 CCC(P) 228 0.77 CAC(H) 172 0.49 CGC(R) 96 0.33

CUA(L) 411 0.85 CCA(P) 366 1.24 CAA(Q) 768 1.52 CGA(R) 377 1.31

CUG(L) 187 0.39 CCG(P) 133 0.45 CAG(Q) 241 0.48 CGG(R) 124 0.43

AUU(I) 1186 1.5 ACU(T) 572 1.55 AAU(N) 1075 1.53 AGU(S) 465 1.24

AUC(I) 444 0.56 ACC(T) 253 0.68 AAC(N) 334 0.47 AGC(S) 124 0.33

AUA(I) 747 0.94 ACA(T) 476 1.29 AAA(K) 1208 1.5 AGA(R) 590 2.05

AUG(M) 639 1 ACG(T) 177 0.48 AAG(K) 402 0.5 AGG(R) 171 0.59

GUU(V) 553 1.45 GCU(A) 643 1.78 GAU(D) 935 1.6 GGU(G) 611 1.31

GUC(V) 213 0.56 GCC(A) 223 0.62 GAC(D) 235 0.4 GGC(G) 174 0.37

GUA(V) 544 1.43 GCA(A) 421 1.17 GAA(E) 1129 1.49 GGA(G) 764 1.64

GUG(V) 216 0.57 GCG(A) 155 0.43 GAG(E) 388 0.51 GGG(G) 312 0.67

https://doi.org/10.1371/journal.pone.0224038.t003

Table 4. The length of exons and introns in genes with introns in the S. ’Parrish’ chloroplast genome.

Gene Location Exon I (bp) Intron I (bp) Exon II (bp) Intron II (bp) Exon III (bp)

trnK-UUU LSC 42 2569 37

trnG-GCC LSC 24 746 48

trnL-UAA LSC 35 527 50

trnV-UAC LSC 37 597 38

trnI-GAU IR 42 943 35

trnA-UGC IR 38 805 35

rps12 � LSC 26 542 232 126

rps16 LSC 197 1099 40

atpF LSC 386 829 154

rpoC1 LSC 1639 725 455

ycf3 LSC 141 787 209 777 124

clpP LSC 275 649 277 701 66

petB LSC 6 55 642

petD LSC 8 747 475

rpl16 LSC 399 1195 9

rpl2 IR 443 652 391

ndhB IR 778 650 782

ycf68 IR 42 33 411

ndhA SSC 518 1136 562

� The rps12 gene is a trans-spliced gene with the 5’ end located in the LSC region and the duplicated 3’ ends in the IR regions.

https://doi.org/10.1371/journal.pone.0224038.t004
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Comparative analysis of chloroplast genomes found 159 SNPs between Oryza nivara and O.

sativa [45], 536 SNPs and 107 indels between Kaempferia Galanga and Kaempferia Elegans
[46]. The analysis of these SNPs and indels molecular markers can provide theoretical basis for

species identification in the future.

IR contraction and expansion in the S. ’Parrish’ chloroplast genome

Contraction and expansion at the borders of IR regions are common evolutionary events and

are the main explanations for the size variation among chloroplast genomes [49, 50]. Detailed

comparisons of the four junctions IRa-LSC, IRb-SSC, IRa-SSC, and IRb-LSC among five Ara-

ceae chloroplast genomes (S. ’Parrish’, S. cannifolium, D. seguine, S. kochii, and P. ternata) are

presented in Fig 3. The rps19 gene is located in the LSC region 30, 30, 47, 39, and 41 bp away

from the LSC-IRa border in these five Araceae chloroplast genomes, respectively. The rpl2
gene is located in the IR regions, and the IRa region of the five species contains 51, 51, 40, 42,

and 47 bp, while the IRb region contains 52, 52, 46, 43, and 48 bp, respectively. The trnH-GUG
gene is located in the LSC region 0, 77, 431, 63, and o bp away from the IRb-LSC border in

Fig 2. Analysis of repeated sequences in five Araceae chloroplast genomes. (A) Totals of four repeat types; (B)

frequency of forward repeats by length; (C) frequency of reverse repeats by length; (D) frequency of palindromic

repeats by length; (E) frequency of complementary repeats by length.

https://doi.org/10.1371/journal.pone.0224038.g002
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these species, respectively (Fig 4). The length of the IR regions may be the main reason for the

differences among the five Araceae chloroplast genomes (S. ’Parrish’, 31,603 bp; S. cannifolium,

31,457 bp; D. seguine, 25,256 bp; S. kochii, 25,281 bp; and P. ternata, 25,625 bp).

Comparative chloroplast genome analysis

Comparative analysis of chloroplast genomes is an essential step in genomics [47, 48]. A com-

parison of the structural differences among Araceae chloroplast genomes indicates that the

chloroplast genome of S. kochii is the smallest (Fig 4; S. ’Parrish’, 168,493 bp; S. cannifolium,

171,420 bp; D. seguine, 163,704 bp; S. kochii, 163,368 bp; and P. ternata, 164,013 bp). To

explain the level of genome divergence, the whole sequence identity of the five Araceae chloro-

plast genomes was calculated using mVISTA with S. ’Parrish’ as a reference (Fig 5). The IR (A/

B) regions exhibited less divergence than the SSC and LSC regions. In addition, the noncoding

regions showed more differences than the coding regions. Except for the noncoding regions,

the most highly divergent regions between S. ’Parrish’ and S. cannifolium were mainly in

ndhF-ndhE in the IRa and SSC regions (Fig 5), the length of which was approximately 10 kb.

Except for the noncoding regions, the most frequently divergent regions between S. ’Parrish’

and S. kochii were mainly in the coding regions of the ycf1 sequence in the IRa and SSC regions

(Fig 5), the length of which was approximately 7 kb. The difference in regional structure

between the two segments may be responsible for the closer relationship between S. ’Parrish’

and S. kochii than between S. ’Parrish’ and S. cannifolium.

Phylogenetic analysis

The complete chloroplast genome of S. ’Parrish’ provides information that can be used to ana-

lyze the phylogenetic relationships of S. ’Parrish’ with 15 other monocots. Multiple sequence

alignment was performed using the whole chloroplast genome (Fig 6A) and the protein-

Fig 3. Analysis of SSRs in the five Araceae chloroplast genomes.

https://doi.org/10.1371/journal.pone.0224038.g003
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Fig 4. Comparison of the LSC, SSC, and IR regions among five chloroplast genomes. Boxes above the main line indicate the

adjacent border genes. The figure is not to scale with respect to sequence length, and shows only relative changes at or near the IR/SC

borders.

https://doi.org/10.1371/journal.pone.0224038.g004
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coding genes (Fig 6B) in 15 monocots. The B. napus and R. sativus chloroplast genomes were

used as outgroups. We used ML to construct a phylogenetic tree. In the tree, S. ’Parrish’ was

closer to S. kochii than to S. cannifolium. These results (Fig 6A and 6B) suggest that the two

methods produce similar multiple sequence alignments, and the phylogenetic tree analysis

shows that the chloroplast genome sequence is useful for species identification and genetics.

The difference in scale causes a difference in the alignment of the protein coding sequence

and whole chloroplast genome. Second, we performed an alignment analysis on the complete

sequences of three samples of S. ’Parrish’ (MK391158), S. cannifolium (MK372232), S. kochii

Fig 5. Comparison of five chloroplast genomes using mVISTA. Gray arrows and thick black lines above the

alignment indicate gene orientation. Purple bars represent exons, blue bars represent rRNA or tRNA genes, and pink

bars represent noncoding sequences (NCS). The y-axis represents the percent identity (shown: 50–100%).

https://doi.org/10.1371/journal.pone.0224038.g005

Fig 6. (A) Phylogenetic tree reconstruction of 15 species based on sequences from whole chloroplast genomes by

the maximum likelihood method. (B) Phylogenetic tree derived from all protein-coding genes from 15 species by

the maximum likelihood method. Raphanus sativus and Brassica napus were used as outgroups. All bootstrap

supports are indicated near the node.

https://doi.org/10.1371/journal.pone.0224038.g006
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(KR270822), and found that the sequence similarity of the three chloroplast genomes was

99.53% (S2 Fig). The percentage system was shown on evolutionary branches and the differ-

ence in scale causes a difference in the alignment of the protein coding sequence and whole

chloroplast genome.

Conclusions

In this study, we reported and analyzed the complete chloroplast genome of S. ’Parrish’, which

is one of the most popular ornamental plants worldwide. A comparison of the structure of the

Araceae chloroplast genomes revealed that the IRa and SSC regions were more divergent than

the other two regions, and the noncoding regions showed more differences than the coding

regions. In the repeat structure analysis, we detected 281 SSRs, which included 223 mononu-

cleotides, 28 dinucleotides, 12 trinucleotides, 11 tetranucleotides, 6 pentanucleotides, and 1

hexanucleotide, in the S. ’Parrish’ chloroplast genome. In addition, 50 long repeats, comprising

18 forward repeats, 13 reverse repeats, 17 palindromic repeats, and 2 complementary repeats,

were identified. Analysis of SNPs and indels in the S. ’Parrish’ chloroplast genome relative to

the S. cannifolium chloroplast genome revealed 962 SNPs and 158 indels in the S. ’Parrish’

chloroplast genome. Phylogenetic analysis among five species found S. ’Parrish’ to be more

closely related to S. kochii than to S. cannifolium. The results of this study provide an assembly

of the whole chloroplast genome of S. ’Parrish’ and information on its divergence from the

chloroplast genome of other members of Spathiphyllum, which might be useful for future

breeding and biological discoveries.
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