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Abstract

Floodplain wetland ecosystems respond dynamically to flooding, fire and geomorphological

processes. We employed a combined geomorphological and environmental proxy approach

to assess allochthonous and autochthonous macro-charcoal accumulation in the Macquarie

Marshes, Australia, with implications for the reconstruction of fire regimes and environmen-

tal conditions in large, open-system wetlands. After accounting for fluvial macro-charcoal

flux (1.05 ± 0.32 no. cm-2 a-1), autochthonous macro-charcoal in ~1 m deep sediment pro-

files spanning ~1.7 ka were highly variable and inconsistent between cores and wetlands

(concentrations from 0 to 438 no. cm-3, mean accumulation rates from 0 to 3.86 no. cm-2

a-1). A positive correlation existed between the number of recent fires, satellite-observed

ignition points, and macro-charcoal concentrations at the surface of the wetlands. Sedimen-

tology, geochemistry, and carbon stable isotopes (δ13C range -15 to -25 ‰) were similar in

all cores from both wetlands and varied little with depth. Application of macro-charcoal and

other environmental proxy techniques is inherently difficult in large, dynamic wetland sys-

tems due to variations in charcoal sources, sediment and charcoal deposition rates, and

taphonomic processes. Major problems facing fire history reconstruction using macro-char-

coal records in these wetlands include: (1) spatial and temporal variations in fire activity and

ash and charcoal products within the wetlands, (2) variations in allochthonous inputs of char-

coal from upstream sources, (3) tendency for geomorphic dynamism to affect flow dispersal

and sediment and charcoal accumulation, and (4) propensity for post-depositional modifica-

tion and/or destruction of macro-charcoal by flooding and taphonomic processes. Recogni-

tion of complex fire-climate-hydrology-vegetation interactions is essential. High-resolution,

multifaceted approaches with reliable geochronologies are required to assess spatial and

temporal patterns of fire and to reconstruct in order to interpret wetland fire regimes.
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Introduction

Fire is a significant disturbance agent in the landscape, with impacts on terrestrial flora and

fauna, soil and landscape stability, biogeochemical cycles, and human society [1]. Developing

palaeofire records allows modern fires to be placed in a long-term context, allowing fire man-

agement plans to be developed and adjusted accordingly [2]. Knowledge of past fire regimes

can also provide insights into past environmental conditions, such as periods of variability and

change in climate (e.g., El Niño Southern Oscillation), hydrology and ecology [3, 4]. For exam-

ple, climate variations tend to affect vegetation distribution and composition which ultimately

alters fire and fuel dynamics across the landscape [5, 6]. Using charcoal and other environ-

mental proxy records to provide information on interactions between fire, hydrology, and veg-

etation is also critical in sensitive ecosystems [7–9]. To unlock information about long-term

fire dynamics, preservation of particulate charcoal must occur in depositional environments,

for example, in lakes and wetlands [10]. Human occupation of the landscape and the utilisa-

tion of fire as a tool could also potentially influence charcoal assemblages in sedimentary pro-

files. Furthermore, to place contemporary fire regimes and environmental conditions into a

longer-term context and to assess historical anthropogenic impacts on fire, the sediment rec-

ords also need to extend beyond the influence of recent anthropogenic activity [11].

Macroscopic charcoal (macro-charcoal; sieve size particles >125 μm) has been widely used

as a proxy to reconstruct palaeo-fire regimes as it can provide a direct line of evidence of bio-

mass burning in the environment [12–15]. Macro-charcoal preserved in sediment profiles,

often expressed as charcoal accumulation rate (CHAR), is considered a reliable indicator of

local fire activity [16, 17]. This is based on the assumption that macro-charcoal is the primary

charcoal component (peak component), which is rapidly transported and deposited into a

waterbody during or shortly after a fire event through fluvial or aeolian (wind) processes [18–

20]. In contrast, secondary charcoal (often taking the form of micro-charcoal; sieve size parti-

cles<125 μm) is considered to be the background or detrital component introduced to sedi-

ment records from afar or during non-fire events by fluvial deposition (e.g., surface run-off),

sediment mixing (e.g., bioturbation), or aeolian deposition (e.g., thermal convection or wind)

[16–18, 21]. In some cases, however, macro-charcoal can originate from both local and

regional (or catchment) sources, suggesting that more complex source-sink processes, deposi-

tional conditions, and taphonomic processes may be at work [22].

Wetlands, including lakes, tend to act as sediment sinks by accumulating and storing inor-

ganic matter (e.g., minerals) and organic matter (e.g., charcoal), making them suitable archives

for palaeo-environmental research [23]. Most palaeo-fire research has used macro-charcoal in

combination with other environmental proxies and were conducted in small, closed-system

wetlands with permanently inundated waterbodies situated in high-elevation [8, 24–26] and

low-elevation areas [27–30]. This is because these sites are considered to be highly stable and

to have high charcoal preservation potential and fairly consistent depositional histories [31].

In open-systems that include rivers or floodplain wetlands, measuring and understanding the

relationships between charcoal production, transport, deposition, and preservation is often

more challenging [15]. It cannot necessarily be assumed that macro-charcoal is always a direct

indicator of local fire activity due to the possibility of external inputs from the riverine corridor

and the upstream catchment [18, 32]. Differences in environmental conditions between small,

stable closed-systems and large, fluvial and/or dynamic open-systems can further complicate

interpretation of fire history in the landscape, and so factors such as catchment size and mor-

phology, stream inputs or outputs, and vegetation types need to be considered [23].

Wetlands in large catchments are important hotspots of sediment accumulation that can

record long-term environmental change, but they can also buffer short-term events, creating a
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lag time between cause and effect within the system, including sediment delivery and water

level response [33]. These systems respond to large-scale external catchment controls (e.g.,

catchment geomorphic processes) which may well respond to changes in climatic conditions

and internal factors (e.g., downstream changes in discharge and sediment transport) which

affect river behaviour and character [34]. Furthermore, large catchments (e.g., Macquarie

catchment; ~26,000 km2) with dynamic rivers and wetlands often have complex hydrology

and inundation patterns, and fire can be highly variable in space and over time. This means

that identifying sources of primary charcoal (i.e., local) and secondary charcoal (i.e., regional)

production from within the wetland and elsewhere in the catchment can be problematic. This

is particularly true for floodplain wetlands in semi-arid and arid catchments (i.e., wetlands in

drylands). These systems have low, variable rainfall, high evapotranspiration, highly variable

flooding, and long droughts leading to a mosaic-like geomorphology and vegetation [35, 36].

Although periods of increased fire activity may represent periods with higher fuel loads (i.e.,

greater biomass), greater ignition potential, or more intense burning [37], it can be difficult to

disentangle a fire signal from ‘background noise’ in wetlands in drylands if charcoal comes

from multiple sources. Floodplain wetlands with numerous anastomosing and/or distributary

channels also have inherently complex geomorphological processes [36]. Understanding the

complexity of wetlands, as well as the potential sources of charcoal and processes of charcoal

transportation, reworking and deposition are critical for efforts to reconstruct fire activity and

interpret fire regimes [10, 17, 23].

The Australian environment has some of the most naturally susceptible and anthropogenic

fire-prone landscapes on Earth [38, 39]. The Macquarie Marshes are a large, floodplain wet-

land system in the Murray-Darling Basin, south-eastern Australia, which regularly burns due

to lightning strikes that start fires, graziers burning the reedbeds to promote vegetation

regrowth for livestock, and burning activity from indigenous people occupying the landscape

[2, 40]. This open-system has multiple tributary inputs and outputs which transport, rework

and deposit water, sediment and other organic material from a variety of sources in this hydro-

logically, geologically and geomorphologically diverse catchment. This setting is quite the

opposite of typical small closed-system lake or wetland that have been the focus of most

palaeo-fire studies in the past [7, 41, 42]. Closed-system wetlands are often chosen due to their

minimal site disturbance, small catchment size, long-term stability and high preservation

potential of macro-charcoal found in the sedimentary record. However, long-term fire history

or the lasting impacts of fire have rarely been studied in large, open-system floodplain wetlands

despite their environmental significance. Nevertheless, management agencies are fully aware

of the need for additional information to address pressing environmental issues such as fire in

wetlands of high-conservation value, including the Macquarie Marshes [43, 44]. In this paper,

we use the Ramsar-listed Macquarie Marshes as an exemplar to apply a combined geomorpho-

logical and environmental proxy approach to the analysis of allochthonous (in-situ) and

autochthonous macro-charcoal (>125 μm fraction only) accumulation in floodplain wetlands

using synthetic grass mats and sediment cores. This study did not assess any micro-charcoal in

the<125 μm fraction, charcoal or plant identification, or the role of aeolian processes. We

then demonstrate and discuss the problems and prospects for reconstruction of fire regimes

and environmental conditions in large, open-system wetlands.

Study area and field sites

The Macquarie River is located in central New South Wales and drains a catchment area of

~26,000 km2 [35]. The Macquarie Marshes (30˚ 45’ S, 147˚ 33’ E), located on the alluvial plain

fed by this catchment, has a diverse network of river channels and permanent, intermittent
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and ephemeral wetlands located on the lower reaches of the Macquarie River, New South

Wales (Fig 1). The wetland system covers an area of ~ 2,500 km2 when inundated during large

floods, and is situated in a semi-arid climate zone (Köppen classification BSh) with mean

annual rainfall ~442 mm and mean annual evapotranspiration >2,000 mm (Quambone rain-

fall gauge 051042) [45]. The aeolian environment is subject to zonal westerly winds in winter,

easterly trade winds, and convective thunderstorms in summer.

The geomorphological record of the Macquarie Marshes reveals a long history of channel

formation and abandonment due to avulsion (the process of channel relocation on the flood-

plain) driven by sedimentation and erosion, as well as wetland adjustment resulting from

changes in inundation and ecosystem processes [46]. The more regularly inundated wetlands

have extensive areas of common reed (Phragmites australis), bulrush (Typha domingensis),
water couch (Paspalum distichum) grassland, and river cooba (Acacia stenophylla) woodland

and river red gum (Eucalyptus camaldulensis) woodland/forest that are reliant on overbank

and overland flooding from numerous channels [35, 47]. The irregular channel and floodplain

morphology in the southern Macquarie Marshes is characterised almost entirely by muds

(Vertisol soil type) [46–48]. The wetlands provide essential habitat and refuge for a wide range

of flora and fauna [44, 49]. The Macquarie Marshes Nature Reserve is concentrated on two

core areas in the southern and northern parts of the system, which comprise ~10% (~219 km2)

of the total wetland area. The nature reserve is recognised under the Ramsar Convention for

its international ecological significance, namely a prime location for migratory, colonial and

endangered waterbirds [44, 49, 50].

The Macquarie Marshes have been the focus of much research on hydrology [55–57], ecol-

ogy [49, 58–61], geomorphology [35, 47, 62], and environmental management [43, 63] over

the past two decades. However, very little is known about the fire history in this system despite

the propensity for the wetlands to be ignited by lightning strikes, the probability of a long his-

tory of Aboriginal burning [40], and the fact that fire has been used by pastoralists in the Euro-

pean settlement period for the management of wetland vegetation and to promote regrowth

for cattle and sheep grazing [2]. Of the 18 major wildfires since 1947 in and adjacent to the

nature reserve, four of the largest fires (1947, 1966, 1994 and 1995) burnt >10 km2 of reed

beds, grassland and riverine woodlands in the northern Macquarie Marshes [2, 44]. These

events were perceived as being rare, because seasonal flooding did not occur in these years due

to the onset of drought conditions [2]. However prior to the 1960s and before the effects of

major river regulation (e.g., Burrendong Dam, built 1967), fires occurred every one or two

years but they were typically short-lived and burnt out within a few days partly due to the sub-

surface moisture protecting the roots and the reedbeds [44]. Regardless of the ignition process

or severity of burning, significant fire events in reedbeds and woodlands should leave a macro-

charcoal record in sediment, which could be used to reconstruct fire history in the wetlands.

Buckiinguy Swamp and Willancorah Swamp receive regular (typically annual) inundation

and are key ecological assets under private ownership adjacent to the southern nature reserve

(Fig 1) that support a variety of semi-permanent and flood-dependant vegetation, dominated

by reeds and rushes [50, 64]. For a variety of reasons both wetlands are susceptible to burning

by fire. Buckiinguy Swamp is a floodout-style wetland at the end of Buckiinguy Creek, which is

a distributary channel of the Macquarie River. The wetland developed on top of sediment laid

down by the Macquarie River and is mainly occupied by a small reed bed with water couch

grassland, and river red gum woodland at its margins (Fig 1A and 1B). Buckiinguy Creek

breaks down and terminates as it flows into the reed bed due to overbank water loss, sedimen-

tation in the channel, and in the wetland, and small channels on the northern perimeter drain

water back into the Macquarie River [47]. Willancorah Swamp is also a floodout-style wetland

with a large reed bed, water couch grassland and some river red gum woodland (Fig 1C and
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Fig 1. Location of Buckiinguy Swamp and Willancorah Swamp in the Macquarie Marshes, New South Wales, Australia.

Ignition point data retrieved from Sentinel Hotspot satellite sensors from 2002–2016 [51], and National Parks and Wildlife Service

(NPWS) fire history information [52]. Inset: (A) Reed bed in Buckiinguy Swamp, (B) water couch grassland on the periphery of
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1D). This wetland is fed by Monkeygar Creek, a distributary channel of the Macquarie River

until the early 20th century when it became the main course of the river in the southern Mac-

quarie Marshes [46, 47]. Monkeygar Creek breaks down into Willancorah Swamp for the

same reasons as Buckiinguy–a loss of flow and sediment transport efficiency–and has several

channels exiting at the north and back into the Macquarie River.

Methods

Fieldwork was conducted on private property and no further access to any of the northern or

southern Macquarie Marshes was needed. Access to the private property where field sites were

located (for this study) was given from Mr David and John Thornton (Buckiinguy Managers)

and Willancorah Swamp was Mr Matt Bell (Willancorah Manager). In addition, the research

activities that took place had no involvement with any endangered or protected species. All rel-

evant principle data is in the supporting information folder, and available on request from the

corresponding author.

Ignition hotspot mapping

Mapping and spatial analysis of ignition points in the Macquarie Marshes from 2002–2016

was performed using the Geoscience Australia Sentinel Hotspot database, part of the national

bushfire monitoring system of Australia. Sensors on satellites measure the radiative power

(MW km-2) of ignition points which are then assigned a confidence level where: 0–30% is

‘Low’; 30–80% is ‘Nominal’ and>80% is ‘High’ confidence [65, 66]. These ignition points are

sites of likely fire activity (Fig 1). Complementing the Sentinel ignition data is wildfire and pre-

scribed burn data of known fire events from the New South Wales National Parks and Wildlife

Service (NPWS) which have also been included in the mapping and spatial analysis (Fig 1)

[52].

Fluvial sediment and charcoal sampling

In a previous study [67], synthetic grass mats (surface area 0.4 m2) were anchored to the

ground in the wetlands adjacent to Buckiinguy Creek and in Buckiinguy Swamp prior to an

environmental water release and a series of small floods which caused inundation for 9 months

in 2009–2010. No fires occurred within the sampling area or swamp during this period of sedi-

ment sampling and so any charcoal in the sediment is of allochthonous origin. The mats

trapped contemporary fluvial sediment washed into the wetlands ~2 km upstream of the reed

bed (site B1); 0.25 km upstream of the reed bed (site B2); at the entry to the reed bed (site B3),

and; at the downstream edge of the reed bed (site B4). Each site had three sampling intervals at

increasing distances away from the channel (e.g., 2 m, 10 m, 50 m) and at each interval, mats

were laid in a 2 x 2 m grid (i.e., 4 mats per interval, 3 intervals per site, 4 sites; n = 48). The

mats from all sites along Buckiinguy Creek and in the wetland were used to calculate the

allochthonous charcoal and sediment load. After 9 months of inundation, the mats were col-

lected and the fluvial sediment and macro-charcoal deposited and trapped on the mats were

extracted, weighed and dried for analysis [67]. After calculating macro-charcoal concentration

(i.e., no. cm3) and macro-charcoal flux (i.e. no. cm-2 a-1) for each synthetic-grass mat at each

site (B1-B4), an average flux value was derived for the allochthonous contribution, or fluvial

background, representing macro-charcoal from any origin entering the wetland from

Buckiinguy Swamp, (C) reed bed (background) and water couch grassland (foreground) near Willancorah Swamp and (D) aerial

view of Willancorah Swamp looking northwest. Service layer credits: NSW Government [53], and Geoscience Australia [54].

https://doi.org/10.1371/journal.pone.0224011.g001

Macro-charcoal accumulation in floodplain wetlands: Problems and prospects

PLOS ONE | https://doi.org/10.1371/journal.pone.0224011 October 24, 2019 6 / 33

https://doi.org/10.1371/journal.pone.0224011.g001
https://doi.org/10.1371/journal.pone.0224011


upstream. The allochthonous contribution was then applied to the total charcoal accumulation

rate (i.e., CHAR; no. cm-2 a-1) from each sediment core to isolate the autochthonous, or in situ,

macro-charcoal signal potentially related to local fires in the wetlands.

Core sampling and sedimentology

Three sediment cores were collected from each wetland. Buck01 (53 cm) and Buck02 (54 cm)

from Buckiinguy, and Will01 (50 cm) and Will02 (60 cm), from Willancorah, were collected

in November 2016. In April 2017, Will03 (117 cm) was collected. Buck03 (85 cm) was collected

in 2001 by Ralph (2001) and stored sealed in a freezer until it was opened in 2016. The coring

method consisted of using a PVC pipe enclosed in a steel push tube with a steel cutting shoe

and impact protection plug designed for these dense, usually dry, clay-rich sediments. Once

the steel core was assembled it was driven into undisturbed sediment using a slide hammer

(i.e., star picket hammer). The core was carefully extracted manually by using two high-lift

jacks to ensure no loss of sample from the cutting shoe.

Coring was restricted to the margins of the wetlands due to inundation and the inoperabil-

ity of the coring setup in deep standing water, but the sampling sites were representative of the

wetlands and had minimal disturbance. Buck01 and Buck02 were situated next to each other

in a water couch grass meadow. Buck03 was taken from the centre of the Buckiinguy reed bed

[68]. Will01 and Will02 were situated next to each other in a water couch grass meadow, while

Will03 was on the edge of the reed bed ~17 m west of Will02. Buck01 and Will01 were used

for geochronology. Buck02, Buck03, Will02 and Will03 were used for sedimentology, charcoal

and stable isotope analyses, and half of each core was kept intact for geochemistry analysis

using micro X-ray fluorescence (XRF) core scanning (Itrax).

Water content and dry bulk density (DBD) were determined using standard methods [69],

before samples were wet-sieved at 63 μm to determine the>63 μm (sand) and<63 μm (mud;

silt plus clay) fractions. Loss-on-ignition (LOI) was performed at 550˚C (LOI550) to determine

organic matter content, and at 950˚C (LOI950) to determine inorganic matter (carbonate) con-

tent [70].

Charcoal extraction and analysis

Macro-charcoal extraction, dispersal and counting procedure followed Stevenson and Haberle

[71]. Sub-samples of ~2.26 cm-3 were taken continuously at 1.5 cm intervals along the length

of each core and the>250 μm and 125–250 μm macro-charcoal fractions were isolated.

Together these represent total macro-charcoal concentration in each sub-sample (>125 μm;

no. cm-3). Charcoal accumulation rates (CHAR; no. cm-2 a-1) were calculated by multiplying

the macro-charcoal concentration of each sub-sample by the mean linear sedimentation rate

derived from optically-stimulated luminescence (OSL) dating (see geochronology, below).

Mean CHAR was then determined for all sub-samples in each core. The depth axis for each

core was converted to age by dividing each depth increment by the mean linear sedimentation

rate.

Stable isotope analysis

Physical and chemical treatment for carbon stable isotope (δ13C) and total carbon (C %) analy-

ses was done at the Australian Nuclear Science and Technology Organisation (ANSTO) using

standard methods [72, 73]. Samples were prepared with 1M HCl to remove carbonates prior

to δ13C analysis, and then analysed using an Elementar VarioMICRO Elemental Analyser and

an IsoPrime Continuous-Flow Isotope Ratio Mass Spectrometer (CF-IRMS) to quantify the

variations of carbon isotopes. The results are reported as δ13C values in parts per thousand (‰
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or ‘per mil’), where δ13C refers to the ratio of 13C:12C relative to an internationally defined

scale Vienna Pee Dee Belemnite standards (VPDB). Total carbon analysis was performed sepa-

rately on an untreated sub-sample using the same machine as mentioned above.

Sediment geochemistry

Sediment geochemistry was analysed using Itrax high-resolution core scanning and micro-X-

ray fluorescence (micro-XRF) spectrometry at ANSTO. The Cox Analytical System Itrax sys-

tem provides high-resolution optical images, X-radiographs, geochemical and magnetic sus-

ceptibility profiles. The technique is non-destructive and provides data as counts which are

considered semi-quantitative values for elemental composition [74]. The resolution for the X-

radiograph was 500 μm and the XRF analysis was 1000 μm. Magnetic susceptibility was mea-

sured at 5 mm intervals. All results were processed using Q-Spec software and normalised by

the total counts to correct for porosity and matrix [75]. Principal component analysis (PCA)

was carried out using RStudio.

Geochronology

A chronology for the sediment cores from Buckiinguy and Willancorah Swamp was estab-

lished using optically-stimulated luminescence (OSL) dating. Cores were split longitudinally

and sub-sampled under subdued red-light conditions. The sub-samples were processed

according to the techniques of Wintle and Murray [76] to isolate the 90–212 μm fraction of

quartz, including a 40% hydrofluoric acid etch for 45 minutes to remove the alpha irradiated

outer surface of the quartz grains [77].

Prior to single-grain analysis, preheat plateau and dose recovery tests were conducted to

determine the optimal measurement conditions. From these tests a preheat temperature of

260˚C for 10 seconds was chosen, which could recover a surrogate dose of 100 Gy. All OSL

measurements were conducted in an automated Risø TL-DA-20 reader fitted with an Electron

Tubes Ltd 9635QA photomultiplier tube and 3 x U340 filters. For single-grain OSL measure-

ments, quartz grains from the 180–212 μm fraction were mounted on a 10x10 precision drilled

aluminium disk. The grains were stimulated for 2 seconds using a green 10 Mw 532 nm Nd:

YVO4 solid-state diode pump laser. The single-aliquot regeneration (SAR) protocol was

applied for single-grain analysis for equivalent dose determination [78, 79]. Acceptance or

rejection of grains was based from the criteria outlined in Jacobs et al. [80].

The contribution of Uranium, Thorium, and Potassium to the dosimetry of the surround-

ing sediment was estimated using a Geiger-Muller beta counter for dried and milled sediment

combined with thick source alpha counting using a Daybreak 583 alpha counter. Cosmic ray

contribution including altitude, geomagnetic latitude, sediment overburden, and water con-

tent during sediment burial was also included [81]. The equivalent dose was divided by the

environmental dose rate to derive an OSL age estimate, which was used to create age-depth

model where the y-intercept was set to zero age at the surface in order to calculate linear sedi-

mentation rates [77, 82]. The statistical model chosen for the burial age was based on the fluvial

environmental setting and dispersion of single grain equivalent dose [78, 83].

Results

Ignition hotspots and fire history

Sentinel Hotspot information reveal several clusters of ignition points in the northern and south-

ern Macquarie Marshes (Fig 1). The northern Macquarie Marshes have had by far the greatest

number of ignition points in the last 10 years, many of these being inside the nature reserve (Fig

Macro-charcoal accumulation in floodplain wetlands: Problems and prospects

PLOS ONE | https://doi.org/10.1371/journal.pone.0224011 October 24, 2019 8 / 33

https://doi.org/10.1371/journal.pone.0224011


2). NPWS fire information also shows there were 16 recorded wildfires in the northern Marshes

from 1978–2016, and 15 prescribed burns from 1987–2016 [52]. In contrast, the Sentinel Hotspot

information shows that the southern nature reserve had no ignition points in the last 10 years,

however, these have occurred adjacent to the southern nature reserve in Buckiinguy and Willan-

corah Swamp. Buckiinguy experienced 33 ignition points in the period 2002–2016 (Fig 2), while

Willancorah Swamp had just six (Fig 2). At Buckiinguy, several of the high confidence ignition

point hotspots were in close proximity to the sediment coring sites, although NPWS recorded no

wildfire or prescribed burns [52]. At Willancorah there are no ignition point hotspots close to the

coring sites and NPWS information shows no wildfire or prescribed burns in this area either.

However, in the southern nature reserve, Monkeygar Creek (upstream from Willancorah

Swamp) has experienced four wildfires from 1980–2004 and eight prescribed burns from 1992–

2004 [52]. NSW government records show that since 1947 there were 18 known major wildfires

in and adjacent to wetlands in what is now the Macquarie Marshes Nature Reserve [44]. Cur-

rently, there is no longer-term record of fire activity to place these recent fire events in context.

Allochthonous macro-charcoal accumulation on mats

The distribution of fine sediment trapped on synthetic grass mats in Buckiinguy Swamp during

9 months of inundation in 2009–2010 was highly variable, but some clear trends are present

(Fig 3). Site B3 where the channel of Buckiinguy Creek enters the reed bed had the highest vol-

ume of deposited sediment, while sites B1 and B2 upstream and site B4 downstream had vari-

able, but lower volumes of deposited sediment (Fig 3A). All three sites along Buckiinguy Creek

leading into the reed bed (B1, B2, and B3) revealed consistently low concentrations of macro-

charcoal in the modern deposited sediment, demonstrating fluvial sediment derived from the

upstream catchment has a generally low concentration of macro-charcoal during this sampling

interval (Fig 3B). Site B4 in the Buckiinguy Swamp reed bed had slightly higher and more vari-

able concentrations of macro-charcoal in sediment deposits. Macro-charcoal flux was low at

sites B1, B2, and B3, with a slight increase in the mean value at site B4 (Fig 3C). The mean (and

standard error) of the baseline of fluvial charcoal entering the system from upstream was deter-

mined to be 1.05 ± 0.32 no. cm-2 a-1 based on data from all sites (Fig 3C). There was no signifi-

cant linear relationship (r2 = 0.0002; p = 0.95) between the amount of fluvially deposited

sediment and macro-charcoal concentration at all the sites in Buckiinguy Swamp (Fig 3D).

Variability and lateral trends were observed in deposited sediment and macro-charcoal at

each of the sites. Samples closest to the channel of Buckiinguy Creek had more variable and

greater volumes of deposited sediment than sites further away from the channel (Fig 4A–4D).

Downstream along Buckiinguy Creek, there are some trends with macro-charcoal accumula-

tion with distance away from the channel. Sites B1 and B2 seem to decline slightly in macro-

charcoal onto the floodplain, while site B3 an increase in macro-charcoal across the floodplain,

and site B4 has a decrease in macro-charcoal with distance (Fig 4E–4H).

The average fluvial macro-charcoal flux across all sites representing a ‘baseline’ allochtho-

nous value (1.05 ± 0.32 no. cm-2 a-1) can be subtracted from the total macro-charcoal accumu-

lation rates found in sediment cores from the wetlands, to yield an in situ macro-charcoal

record most likely related to local fires in the wetlands. When the fluvial macro-charcoal back-

ground is considered in the sediment cores, small peaks below the background are removed,

leaving only the larger peaks in the record.

Core sedimentology and autochthonous macro-charcoal

Buckiinguy Swamp cores Buck02 and Buck03 consisted of relatively organic rich mud (i.e., silt

plus clay fraction) with some roots present above ~10 cm of the cores (Figs 5 and 6). Buck02
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Fig 2. Fire ignition point data from Sentinel Hotspot. As shown: (A) summary of low, nominal and high confidence

information from 2002–2016 for the northern and southern Macquarie Marshes, (B) distribution of fire ignition points in
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sand content (>63 μm) above 12.5 cm was (~13%), followed with a relatively minor decline in

sand content (~9.6%) with increasing depth, whereas mud dominated (~89%) of the core.

Organic matter and carbonate content were quite uniform with depth in Buck02 (Fig 5). Sand

content for Buck03 revealed two minor peaks at the depth of 6 cm (27.6%) and 18 cm (26%)

with no significant changes in the remaining sand content (~14%) below 18 cm, the remaining

mud fraction was dominant (~85%) for the entire core (Fig 6). Visible roots, charcoal frag-

ments, manganese/iron nodules, and carbonate nodules occurred throughout the profiles.

DBD was lowest near the surface and increased with depth (from 0.2 to ~2.0 g cm-3). Organic

matter (LOI550) and carbonate (LOI950) content were highest in the upper ~10 cm of the pro-

file for Buck03 (~54% and 12%, respectively) before decreasing with depth (Fig 6).

Macro-charcoal concentrations (i.e., raw counts) are variable in both cores from Buckiin-

guy. Buck02 has intermittent gaps with small macro-charcoal peaks at depths of ~5 cm, ~15

cm, ~30 cm and ~48 cm (Fig 5). In contrast, Buck03 has consistently higher macro-charcoal

concentrations throughout the upper 40 cm of the profile, with distinctive peaks at depths of

~4 cm, ~8 cm and ~20 cm, as well as a series of smaller maximum concentrations in between

(Fig 6). Furthermore, there is a small increase in coarser sediment (>63 μm) at a depth of 18

Willancorah Swamp 2002–2016, and (C) distribution of fire ignition points in Buckiinguy Swamp 2002–2016. Wildfire and

prescribed burn information show the culmination of maximum burn area between 1980–2004 in Monkeygar Swamp

(upstream from Willancorah Swamp). Information retrieved from Geoscience Australia [51], NPWS Fire History [52], and

satellite imagery figures provided by NSW Government [53].

https://doi.org/10.1371/journal.pone.0224011.g002

Fig 3. Fluvial sediment and macro-charcoal in Buckiinguy Swamp. Demonstrates the: (A) volume of deposited

sediment at sites B1, B2, B3, and B4, (B) macro-charcoal concentration at sites B1, B2, B3 and B4, (C) allochthonous

macro-charcoal flux, and (D) the relationship between fluvially deposited sediment and macro-charcoal concentration

after 9 months of inundation in 2009–2010.

https://doi.org/10.1371/journal.pone.0224011.g003
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Fig 4. Volume of sediment deposited with increasing distance from the channel in Buckiinguy Swamp. As shown above: (A) site B1, (B)

site B2, (C) site B3, and (D) site B4, and charcoal flux in the deposited sediment in Buckiinguy Swamp at (E) site B1, (F) site B2, (G) site B3,

and (H) site B4.

https://doi.org/10.1371/journal.pone.0224011.g004

Fig 5. Detailed core description of Buck02. Demonstrates Buck02 with: (A) DBD and water content, (B) sand and

mud content, (C) LOI550 and LOI950, (D) autochthonous macro-charcoal concentration, (E) charcoal accumulation

rate (redline represents the allochthonous background flux), and (F) magnetic susceptibility.

https://doi.org/10.1371/journal.pone.0224011.g005
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Fig 6. Detailed core description of Buck03. Demonstrates Buck03 with: (A) DBD and water content, (B) sand and

mud content, (C) LOI550 and LOI950, (D) autochthonous macro-charcoal concentration, (E) charcoal accumulation

rate (redline represents the allochthonous background flux), (F) δ13C and total carbon, and (G) magnetic

susceptibility.

https://doi.org/10.1371/journal.pone.0224011.g006

Fig 7. Detailed core description of Will02. Demonstrates Will02 with: (A) DBD and water content, (B) sand and

mud content, (C) LOI550 and LOI950, (D) autochthonous macro-charcoal concentration, (E) charcoal accumulation

rate (redline represents the allochthonous background flux), and (F) magnetic susceptibility.

https://doi.org/10.1371/journal.pone.0224011.g007
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cm that coincides in-between two macro-charcoal peaks at 16.5–19.8 cm (See Fig 6B). Both

cores from Buckiinguy had relatively high macro-charcoal concentrations at the surface.

Willancorah swamp cores Will02 and Will03 also consisted of organic rich, silty clay in the

upper 5–10 cm with some roots towards the surface of the profile (Figs 7 and 8). Will02 sand

content above 10.5 cm was (~29%) followed by a small decrease in sand (~17%) with depth,

excluding the two notable peaks at 31.5 cm (29.8%) and 49.5 cm (28.5%), although the mud

fraction (~82%) was still dominant throughout the core (Fig 7). However, Will03 sand content

was noticeably different with respect to the other cores, it is higher and variable (~35%),

although the mud content remained the dominant fraction (~65%) throughout the core. Addi-

tionally, there was an abundance of calcium carbonate nodules throughout the profile, which

was complemented with flecks of charcoal, manganese, and iron nodules below a depth of ~25

cm (Fig 8). DBD was also similar throughout the cores (1.5 to 2.0 g cm-3), except for a peak in

carbonate at ~3 cm in Will03. Both organic matter and carbonate content were uniform with

depth in the cores.

Macro-charcoal concentrations for Will02 and Will03 were highly variable with depth.

Will02 had very high concentrations of macro-charcoal and several peaks throughout the pro-

file between 8–60 cm (Fig 7D). In contrast, Will03 had much lower concentrations of macro-

charcoal and just two peaks at ~37 cm and ~59 cm (Fig 8D). Both cores from Willancorah had

relatively low macro-charcoal concentrations at the surface.

OSL dating and Charcoal Accumulation Rate (CHAR)

The single-grain (SG) OSL age of 0.41 ± 0.05 ka for 20–30 cm sediment in Buck02, is stratigra-

phically consistent with the 0.78 ± 0.10 ka age for sediment at a depth of 42–52 cm (Table 1, S1

Fig). The OSL ages determined for Buck03 were 1.77 ± 0.21 ka at 30–40 cm and 0.98 ± 0.15 ka

at 75–85 cm. However, the Buck03 sample at 75–85 cm only produced a small number of

quartz grains, and thus, its resulting age estimate was not included in the age-depth model for

this core.

Therefore, based on the three acceptable OSL ages from the Buckiinguy cores, linear age-

depth models provided mean vertical sedimentation rate estimates of 0.04 cm a-1 for Buck02

and 0.04 cm a-1 for Buck03 (Table 2, S2 Fig). These equate to bulk mass accumulation rates of

0.07 g cm-2 a-1 for Buck02, and 0.06 g cm-2 a-1 for Buck03. CHAR in Buck02 ranged from 0.07

to 0.19 no. cm-2 a-1, with a mean of 0.01 no. cm-2 a-1 over the last ~0.9 ka, with peaks in CHAR

at 0.087, 0.35, 0.72 ka (Fig 9A). CHAR in Buck03 ranged from 0.03 to 3.75 no. cm-2 a-1, with a

mean of 0.38 cm-2 a-1 over the last ~1.7 ka, and peaks in CHAR occurred at 0.03, 0.11, 0.37,

0.45 ka (Fig 9A). All age estimates carry relatively large, but unquantified, uncertainties. When

assessing the CHAR records in relation to background flux, to determine autochthonous and

allochthonous contributions, it is clear that flux is low and does not affect CHAR peaks.

The age of buried sediment in Will02 at a depth of 20–30 cm was 0.24 ± 0.07 ka, while a sec-

ond sample from 40–50 cm yielded no useable data due to the lack of sufficient grains to make

a single grain disk (Table 1, S1 Fig). The OSL ages determined for Will03 were 1.15 ± 0.11 ka

at 40–50 cm and 32.54 ± 3.05 ka at 107–117 cm. The two acceptable OSL ages from the Willan-

corah cores, linear age-depth models provided mean vertical sedimentation rate estimates of

0.03 cm a-1 for Will02 and 0.07 cm a-1 for Will03 (Table 2, S2 Fig). These equate to bulk mass

accumulation rates of 0.06 g cm-2 a-1 for Will02, and 0.11 g cm-2 a-1 for Will03. CHAR in

Will02 ranged from 0.06 to 12.09 no. cm-2 a-1, with a mean of 2.91 no. cm-2 a-1 over the last

~1.9 ka and peaks at 0.45, 1.0, 1.45 and 1.6 ka (Fig 9B). CHAR in Will03 ranged from 0.21 to

8.33 no. cm-2 a-1, with a mean of 0.23 no. cm-2 a-1 over the last ~1.2 ka and peaks at 0.71 and

0.83 ka (Fig 9B).

Macro-charcoal accumulation in floodplain wetlands: Problems and prospects

PLOS ONE | https://doi.org/10.1371/journal.pone.0224011 October 24, 2019 14 / 33

https://doi.org/10.1371/journal.pone.0224011


Fig 8. Detailed core description of Will03. Demonstrates Will03 with: (A) DBD and water content, (B) sand and

mud content, (C) LOI550 and LOI950, (D) autochthonous macro-charcoal concentration, (E) charcoal accumulation

rate (redline represents the allochthonous background flux), (F) δ13C and total carbon, and (G) magnetic

susceptibility.

https://doi.org/10.1371/journal.pone.0224011.g008

Table 1. Summary details of single-grain OSL ages for Buck02, Buck03, Will02 and Will03, showing dose rate, equivalent dose, and minimum-age-model ages.

Sample Depth Grain Beta Gamma Cosmic-ray Water Total Dispersion Accepted Equivalent Age i

code Size dose ratea dose rateb dose ratec contentd dose ratee grainsf doseg, h

(cm) (μm) (Gy ka-1) (Gy ka-1) (Gy ka-1) (%) (Gy ka-1) (%) (%) (Gy) (ka)

Buck02 20–30 90–212 1.252 ± 0.056 0.678 ± 0.392 0.155 ± 0.015 25 ± 5 2.439 ± 0.152 129.6 22.2 1.00 ± 0.10 0.41 ± 0.05

Buck02 42–52 90–212 1.252 ± 0.056 0.678 ± 0.392 0.152 ± 0.015 25 ± 5 2.437 ± 0.152 95.7 25.5 1.90 ± 0.20 0.78 ± 0.10

Buck03 30–40 90–212 0.386 ± 0.143 0.511 ± 0.004 0.163 ± 0.016 18 ± 5 1.188 ± 0.114 117.5 37.8 2.10 ± 0.11 1.77 ± 0.21

Buck03 75–85 90–212 0.386 ± 0.143 0.511 ± 0.004 0.158 ± 0.016 18 ± 5 1.183 ± 0.114 186.5 14.0 1.16 ± 0.12 0.98 ± 0.15

Will02 20–30 90–212 0.966 ± 0.037 0.657 ± 0.390 0.160 ± 0.016 20 ± 5 2.067 ± 0.135 133.5 15.6 0.85 ± 0.13 0.24 ± 0.07

Will03 40–50 90–212 0.494 ± 0.031 1.117 ± 0.645 0.144 ± 0.015 30 ± 5 1.819 ± 0.141 131.7 17.0 2.10 ± 0.10 1.15 ± 0.11

Will03 107–117 90–212 0.543 ± 0.031 1.117 ± 0.645 0.152 ± 0.016 20 ± 5 1.875 ± 0.147 40.2 9.0 61.00 ± 2.40 32.54 ± 3.05

a. Concentrations determined from Geiger-Muller beta counter measurements of dried and powdered sediment samples.

b. U and Th from Daybreak 583 thick source alpha counter and combined with Geiger-Muller beta counter to calculate K.

c. Time-averaged cosmic-ray dose rates (for dry samples), each assigned an uncertainty of ± 10%.

d. Field / time-averaged water contents, expressed as (mass of water/mass of dry sample) x 100. The latter values were used to calculate the total dose rates and OSL/TL

ages.

e. Mean ± total (1σ) uncertainty, calculated as the quadratic sum of the random and systematic uncertainties. An internal dose rate of 0.03 Gy ka-1 is also included.

f. Number of grains processed/number of accepted grains for the samples. Low numbers of processes and accepted grains were due to the small amount of quartz

yielded for certain samples.

g. Minimum age model [78] used to determine the equivalent dose due to the high over-dispersion and depositional environment.

h. Palaeodoses include a ± 2% systematic uncertainty associated with laboratory beta-source calibrations.

i. Uncertainties at 68% confidence interval.

https://doi.org/10.1371/journal.pone.0224011.t001
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The chronologies from Buckiinguy and Willancorah Swamps warrant some caution, due to

the fact that only a limited number of quartz grains could be extracted from the samples

because these are a mud dominated environments. Buck03 age 0.98 ± 0.15 ka at the sample

depth of 75–85 cm resulting age estimate is younger than the age above 1.77 ± 0.21 ka with a

14.0% acceptance rate. Will03 age 32.54 ± 3.05 ka at the sample depth 107–117 cm only had

9.0% acceptance rate and was clearly an order of magnitude different from the other age

(1.15 ± 0.11 ka) at the top of the core. For these reasons these ages from Buck03 and Will03 the

Table 2. Summary of sediment accumulation rate, mean DBD, and bulk mass accumulation for Buck02 and Buck03, and Will02 and Will03.

Core Location Mean sedimentation rate (cm a-1) Mean DBD

(g cm-3)

Bulk mass accumulation rate

(g cm-2 a-1)

Mean charcoal concentration

(no. cm-3)

Mean CHAR

(no. cm-2 a-1)

Buck02 Peripheral swamp 0.04 1.55 0.07 12.57 0.01

Buck03 Central swamp 0.04 1.51 0.06 26.24 0.38

Will02 Peripheral swamp 0.03 1.63 0.06 128.88 2.91

Will03 Peripheral swamp 0.07 1.61 0.11 7.81 0.23

https://doi.org/10.1371/journal.pone.0224011.t002

Fig 9. Macro-charcoal accumulation rates versus age and relationship between δ13C and total carbon.

Demonstrates: (A) Buck02 and Buck03, and (B) Will02 and Will03. Where ages were calculated using a linear

sedimentation rate for each core (see Table 2), (C) and (D) the relationship between δ13C and total carbon for (C)

Will03 and (D) Buck03.

https://doi.org/10.1371/journal.pone.0224011.g009
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ages were not included in the age-depth model (S2 Fig) as they are not a reliable representation

of the grain population.

Carbon stable isotopes

Buck03 δ13C signatures ranged from -23.7 to -16.7 ‰ in the upper 12 cm of the profile, and

then changed slightly to -22.9 to -20.9 ‰ as total carbon decreased with depth below 15 cm

(Fig 6F). In keeping with the organic rich sediment in the upper 15 cm of Buck03, total carbon

was highest (21.9%) in this part of the profile and declined to<1% for the rest of the core.

Will03 δ13C signatures were more variable throughout the core profile, being close to -22.5

‰ in the upper 10 cm of the profile and then enriching from -19.7 to 17.7 ‰ from 20 to 52.5

cm. A depletion to -22 ‰ was observed from 52.5 to 62 cm where there was also a slight

increase in total carbon (up to 1.4%), followed by variations around -20 ‰ in the lower part of

the core (Fig 8F).

Overall, there was a significant negative linear relationship (r2 = 0.65; p<0.05) between

δ13C and total carbon in Will03 (Fig 9C), but no significant relationship (r2 = 0.21; p>0.05) in

Buck03 due to three pronounced outliers (Fig 9D).

Geochemistry

Magnetic susceptibility was variable but generally increased with depth in Buck02 and Buck03.

This did not correspond with any change in sedimentology, organic matter, or macro-charcoal

peaks (Figs 5F and 6G). Similarly, magnetic susceptibility was highly variable in both Will02

and Will03 cores, but the peaks and troughs did not align with any change in sedimentology,

organic matter, or macro-charcoal peaks (Figs 7F and 8G).

Some Itrax elements were substituted by proxy for grain size (e.g., K, Ti, Si, Zr, and Fe)

[84], and revealed no distinctive patterns that could be correlated with any sedimentary change

in depth (S3 Fig). However, there was a noticeable decline in K, Ti, Si, Zr, and Fe proxies in

Buck03 (S3 Fig) at depths of ~20 cm and ~34 cm, respectively. Itrax ratio results (S4 Fig) show

variable trends throughout all profiles. Fe/Ti were used as indicators of smaller grain-size fluc-

tuations from allochthonous material. Fe/Mn were used to assess reducing conditions (redox).

Ca/Fe and Ca/Ti ratios suggest pedogenic processes, drier conditions, or biogenic concentra-

tion of Ca [85, 86]. Buck03 had a notable correlation between Ca/Ti and charcoal peaks at 15

cm, 20 cm, and 35 cm (S4 Fig). In Buck02, Fe/Ti and most other ratios were variable through-

out the core (S4 Fig). Will02 and Will03 were also highly variable in Ca/Ti and Ca/Fe ratios

(S4 Fig).

Principle Component Analysis (PCA) revealed some clustering of detrital and pedogenic

elements in Buck02 and Buck03, for example, Ti, K, Si, Fe, Rb, and Ca (S5 and S6 Figs). PCA

for Will02 also reveals a cluster of detrital elements of Fe, Ti, K, Si, and Zn, whereas Will03

PCA has a similar spread of detrital elements (S7 and S8 Figs). However, it is difficult to link

PCA with the geochemistry results to variations in macro-charcoal or macro-charcoal peaks.

Stratigraphic profiles of Buck02 and Buck03 (S5 and S6 Figs) with coloured bands representing

geochemical groups based on the PCA plot, reveal a combination of detrital and pedogenic ele-

ments. Buck02 has a natural break in the geochemical profile at a depth of ~15 cm suggesting

there were two different geochemical groups, whereas Buck03 has a similar break at a depth of

~15 cm. Will02 (S7 Fig) showed a natural break at a depth of ~22 cm in the stratigraphic pro-

file, while Will03 revealed breaks at depths of ~30 cm and ~55 cm based on the geochemistry

(S8 Fig).
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Discussion

Allochthonous and autochthonous macro-charcoal sources and

accumulation

The baseline estimate of allochthonous macro-charcoal flux (1.05 ± 0.32 no. cm-2 a-1) derived

from contemporary fluvial sediment deposited in Buckiinguy Swamp indicates that charcoal

entering the system from upstream is one confounding factor for fire history reconstruction in

the Macquarie Marshes and similar open-system wetlands. Although it is often assumed that

all macro-charcoal (>125 um) found in stable depositional environments is autochthonous,

our results show that a small but important amount of macro-charcoal is allochthonous. This

has been recognised previously, for example, where macro-charcoal contributions to boreal

lakes occur from both local and regional sources [22]. Indeed, the source areas of charcoal

(e.g., catchment and/or river corridor) and the distance travelled tend to be difficult to disen-

tangle, especially in large catchments where wetlands and floodplain pockets can act as filtra-

tion traps for charcoal and sediment [47, 87]. By identifying the allochthonous macro-charcoal

signal and taking this into account when assessing sediment cores, autochthonous macro-

charcoal records in sediment were derived for the first time in this type of open-system

wetland.

Within Buckiinguy Swamp, flow attenuation by dense vegetation and differential patterns

of overbank and floodout sedimentation led to variations in the volume of fluvially-derived

sediment and macro-charcoal deposited on the floodplain surface and in the wetlands (Figs 3

and 4). While there was no correlation between deposited sediment volume and macro-char-

coal, site B3 in the floodout zone (closest to the channel terminus) captured the greatest vol-

ume of sediment (Fig 3A) when there was a rapid decline in channelised flow and an increase

in sheet flow, with a dominance of very low-energy conditions. This is common in low-relief

floodplain wetlands where channel breakdown occurs and where in-channel and wetland veg-

etation blocks the flow and distributes water and sediment onto the floodplain [35, 47], thereby

affecting sediment and charcoal distribution. Site B4 exhibited the greatest mean macro-char-

coal concentration and flux, the latter within the standard error of the other sites, possibly due

to local topographic variation, reworking, or concentrated deposition through other processes

(e.g., back-flooding caused by flow-attenuation near the outlet of the swamp). Nevertheless,

floodplain wetlands act as sinks for sediment, nutrients, and contaminants from upstream [62,

88]. In this case, the allochthonous contribution and spatial variation of macro-charcoal and

sediment entering the system from upstream are influenced by the vegetation, irregular surface

topology, and hydrodynamic characteristics of flow in the wetlands. Whether this redistribu-

tion and deposition results in permanent storage of macro-charcoal is unknown. In addition,

alternative sources of macro-charcoal such as wind-blown particles carried aloft from ground

or crown fires in the wetlands (or elsewhere) are another factors that could contribute to the

charcoal pool, but this is unable to be quantified in this study. It may also be that other feeder

channels entering the wetlands carry different macro-charcoal loads, due to their intermittent

and/or ephemeral flow regimes.

The autochthonous macro-charcoal records found in cores from Buckiinguy and Willan-

corah Swamps were highly variable with depth (despite the sedimentology being similar), yet

there were inconsistencies between cores within each wetland, and between the two wetlands,

beyond the limits imposed by the age models. Will02 had by far the greatest macro-charcoal

accumulation and numerous large peaks throughout the profile (Fig 7), despite the recent his-

tory of fire in Willancorah which showed just 6 ignition points from 2002–2016 (Fig 2B).

Macro-charcoal found at depth in Willancorah is therefore present due to fire activity preced-

ing the period of availability of Sentinel Hotspot information. Will03 had just two distinct
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peaks at depths of 34.5 cm and 59 cm, with very little macro-charcoal elsewhere in the profile

(Fig 8). This highlights the variability of fire activity and/or macro-charcoal deposition in the

wetland over space and time, and the long-term macro-charcoal record yields very different

results to the short-term satellite record. Nevertheless, Willancorah has lower concentrations

of macro-charcoal at the surface, in keeping with the low number of recent ignitions as evi-

denced by Sentinel Hotspot. Conversely, Buck03 (Fig 6) had relatively high macro-charcoal

concentration and flux at the surface. Correspondingly the wetland had 33 ignition points

from 2002–2016, with several high-confidence hotspots occurring near the sediment coring

sites, with no wildfire or prescribed burns in or around the wetland (Fig 2C). Despite this posi-

tive correlation between fire ignition points and charcoal at the surface of Buck03, there was

very little macro-charcoal accumulation at Buck02. Overall Buckiinguy had less macro-char-

coal accumulation than Willancorah in the long-term record.

The long-term macro-charcoal record for Buckiinguy Swamp is constrained by OSL dating

to the last ~1.7 ka in Buck03 (Fig 6), where consistently higher charcoal concentrations exist in

the upper 40 cm of the profile. Four CHAR peaks (2.5–4 no. cm-2 a-1) occur at 0.05, 0.11, 0.37,

and 0.45 ka (Fig 9A). Prior to ~1 ka, there is little charcoal preservation. Buck02 has very little

macro-charcoal throughout (Fig 5), but the record is constrained to the last ~1 ka where there

are three very minor CHAR peaks (<1 cm-2 a-1) at 0.02, 0.35, and 0.72 ka (Fig 9A). Common

peaks between Buck02 and Buck03 were difficult to discern, bearing in mind the limits of the

age models due to the limited OSL samples, and the fact that a zero age was applied to the sur-

face (i.e., 0 cm) to calculate mean linear sedimentation rates for the cores. Our sediment accu-

mulation rate estimates (from 0.03–0.07 cm a-1) do concur with previous results from Ralph

et al. [46] who derived values of 0.032–0.037 cm a-1 in the same wetlands [46, 47]. The varia-

tion between these two cores indicates highly variable fire activity within Buckiinguy Swamp,

with either more frequent, or more intense, fires and/or greater macro-charcoal deposition in

the densely vegetated centre of the reed bed (Buck03) as opposed to the margin of the reed bed

(Buck02). Another possibility is that charcoal deposition is uneven over short distances within

the reedbeds, either because of uneven distribution of allochthonous macro-charcoal or

reworking (by flows within the marshes) shortly after fire events.

The long-term macro-charcoal record in Willancorah Swamp was constrained in Will02

mid-way in the profile to ~0.24 ka, and at Will03 to the last ~1.15 ka (Figs 7 and 8). These

cores had highly variable charcoal counts with little similarity to the Buckiinguy cores, or each

other although they were only taken ~17 m apart at the margin of the swamp. Will02 had large

charcoal peaks scattered throughout the core (~5 to 60 cm) with CHAR up to 12 cm-2 a1 indi-

cating a greater frequency or intensity of fire over the past ~0.24 ka (Fig 9B). Will03 had two

large CHAR peaks (>5.55 cm-2 a-1) at 0.47 and 0.83 ka indicating isolated or irregular fire

activity within the last ~2 ka (Fig 9B).

A much older OSL age obtained at the base of Will03 is unreliable (S1 and S2 Figs) due to

the very small acceptance rate of grains (9.0%) and therefore was not used to calculate CHAR.

This anomalous age could be due to partial bleaching during sediment transport and deposi-

tion, which prevents the complete resetting of the luminescence signal and is common in flu-

vial systems [89, 90]. Since the partial bleaching of grains is common in fluvial systems, the

minimum age model (MAM) was applied to all single-grain OSL data to isolate the grains with

the smallest residual dose to minimise any age overestimation [78, 79]. The marshes formed

over the last ~5.5 ka [91], so the ~33 ka age at the base of Will03 is beyond the maximum age

for the marshes and, if real, could represent the age for the underlying palaeo-floodplain which

is in keeping with OSL chronologies for the surrounding palaeochannels [92, 93]. Despite this,

CHAR was calculated for the upper part of the profile using the other OSL age, peaks occurred
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at 0.47 and 0.83 ka. There was a common CHAR peak that noticeably stood out at ~0.47 ka

between Will02 and Will03 (Fig 9B).

Interpretation of δ13C signatures and geochemistry

Carbon stable isotope analysis can help disentangle vegetation shifts in the environment over

time as well as the interpretation of past environmental conditions [94, 95]. The discrimina-

tion of 13CO2 by plants through diffusional and biochemical reactions from carbon fixing

enzymes can help assist in separating different types of photosynthetic groups [96]. C3 plants

tend to have depleted values ranging from -40 to -20 ‰ typically constituting woody species,

whereas C4 plants consist of mostly grasses with enriched values of -17 to -9 ‰ [94, 97]. The

C4 plant water couch (Paspalum distichum) has a typical δ13C value of -18.7 ‰, while the C3

plant common reed (Phragmites australis) has typical values of -28.2 to -27.6 ‰ [59, 98 p. 90]

(S1 Table). The δ13C profile from Buck03 suggests a C4 signature in the upper 10 cm, while

below 10.5 cm, δ13C values indicate a C3 signature (Fig 6F). In contrast, Will03 revealed a pos-

sible mixture of C3 and C4 vegetation throughout the core as the values remain close to -20

‰, although there appears to be a shift towards C3 species at 59–62 cm (Fig 8F). It is worth

noting that the factors which affect δ13C values in wetlands and which can complicate interpre-

tations of carbon source and C3 or C4 vegetation [96, 99, 100], include bacteria, algae, sugars,

starch in organic matter, and isotope fractionation.

Total organic carbon decreased in the cores with increasing depth and had a negative rela-

tionship with δ13C in Buck03, indicating that the storage of carbon in the wetlands is minimal

and is restricted to the upper organic-rich at a depth of ~10 cm of the cores. This was observed

in a previous study of carbon in the Macquarie Marshes [59]. Overall, it is not possible to inter-

pret changes in δ13C and total organic carbon results (Figs 6F and 8F) or to extend these to

relate to vegetation succession and/or fires as this is beyond the scope of the study.

Magnetic susceptibility results from Buckiinguy and Willancorah were inconsistent and did

not show any step-changes or correlations with sedimentology or macro-charcoal peaks (Figs

5–8). Magnetic susceptibility was used as a proxy to help distinguish between sources of mag-

netically transported allogenic clastic minerals in lakes [101–104]. Fire can remove surface

coverage of vegetation and strip the ground clear leaving it susceptible to erosional processes

[102]. Magnetic susceptibility coupled with charcoal records could possibly help in an attempt

to discriminate the allochthonous input of minerogenic material from fire events [19, 105].

Millspaugh and Whitlock [105] and Long et al. [19] attempted to use magnetic susceptibility

and charcoal results to assess the role of fires as triggers for erosional events. However, in their

work, only some charcoal peaks were correlated with magnetic susceptibility peaks suggesting

that fire is not the only disturbance agent to instigate erosional processes. Magnetic susceptibil-

ity in a system like the Macquarie Marshes could vary due to sediment particle size, pedogenic

nodules of iron or manganese, or more complex processes related to the input of sediment and

river discharge that govern the system.

As previously noted some elements (e.g., K, Ti, Si, Zr, and Fe) were used to infer sediment

grain size from Itrax core scanning in other studies [84, 106]. Sedimentary profiles with Fe and

K are associated with clay-rich layers, Si and Zr with sandy coarse silts, and Ti with silts [84].

However, selected proxies for grain size analysis did not reveal any significant changes in grain

size correlating with sedimentary changes in our cores (S3 Fig). The exception is Buck03 core

where there were two distinct declines in selected elements (K, Ti, Si, Zr, and Fe) respectfully

at ~20 cm and ~35 cm, this sharp decline is most likely due to organic material (i.e., plant root

at ~20 cm) and minor split in the core (S3 Fig).
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The elemental ratios derived from Itrax for sediment profiles in Buckiinguy and Willan-

corah Swamps were highly variable but did not show step-changes and could not clearly differ-

entiate detrital inputs from in situ products of soil formation (i.e., pedogenic processes) (S4

and S5–S8 Figs). In other systems, ratios of geochemically stable elements have been used to

track chemical or physical weathering in catchments and as indicators of detrital inputs [107].

Titanium (Ti) is used more readily than other elements (e.g., iron, Fe) as a reliable indicator of

detrital input as Fe and other elements can be affected by reduction and oxidation processes

[108]. Variations in grain size combined with geochemical data (e.g., Fe/Ti) of allochthonous

material in lake sediment has been used to infer different types of energy conditions at the

time of deposition and the nature of the derived material [108, 109]. Buck03 is the only core

that has two distinct CHAR peaks that correlate with Itrax data for Fe/Ti coinciding with Fe-

rich clastic material suggesting detrital input or a fire exposing bare soil (S4 Fig). Haberzettl

et al. [110] used Ca/Ti ratios to infer hydrological variability where high values indicate drier

conditions and low values indicate wetter conditions. Buck03 has increases in Ca/Ti at ~20 cm

and ~35 cm that seem to correspond with an increase in macro-charcoal concentration, which

may be related to drier conditions and coincides with higher sand content suggesting the pos-

sibility of increased fluvial deposition of charcoal and sediment together. Will02 at ~52 cm

also has a spike in Ca/Ti (S4 Fig); however, this is not seen in all cores, since Will03 has no Ca/

Ti peak at 35 cm corresponding with a charcoal peak, nor does Buck02 have matching peaks

(except for ~15 cm). Will03 at ~55 cm has a break prior to the start of the second core and is

most likely due to contamination. PCA and stratigraphic (S5–S8 Figs) analysis indicate that

there are natural breaks in the cores geochemically, but they do not reveal any significant

trends. Overall, both PCA and stratigraphic analysis of cores from Buckiinguy and Willan-

corah Swamps showed highly variable results with no significant trends or correlations

between the records.

Problems and prospects for reconstruction of fire regimes and

environmental conditions in floodplain wetlands

Investigations of fire activity in large, open-system wetlands in dryland regions have been few

and far between [36, 111, 112]. For example, fire has been studied in the large (~12,000 km2),

dynamic wetlands of the Okavango Delta, Botswana using satellite imagery, but macro-char-

coal was not utilised as an indicator of fire activity [111–113]. The Sudd in southern Sudan

(~40,000 km2) is another significant inland wetland system susceptible to fire, however again

there are very sparse fire and associated environmental records [114, 115]. Most palaeo-fire

studies examine and interpret macro-charcoal from one or two sediment cores at high resolu-

tion [7, 8, 25, 116, 117]. Commonly, this is done in small, closed-system lakes or wetlands due

to their propensity to accumulate and preserve charcoal and sediment over time. There has

been a limited of number studies that attempt to cross-correlate charcoal records between

cores within wetlands, or to confirm the reproducibility of down-core patterns of charcoal

concentration [87]. In this study, we attempted to correlate charcoal records from two key wet-

lands in a large, dynamic, open-system; however the results were difficult to interpret and indi-

cate that charcoal accumulation, fluvial supply of charcoal, and wetland fire regimes are highly

variable in space and time.

Any attempt to reconstruct fire regimes in large wetlands and/or catchments may be diffi-

cult due to the issues associated with using macro-charcoal of unknown or variable origin as

an indicator of local fire history. The major problems facing fire history reconstruction using

macro-charcoal records in large, dynamic, open-system wetlands include: (1) large spatial and

temporal variations in fire activity, ash and charcoal products within the wetlands, (2) large
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variations in inputs of allochthonous charcoal from various upstream sources, (3) high likeli-

hood of geomorphic dynamism affecting flow dispersal and sediment and charcoal accumula-

tion, and (4) propensity for post-depositional reworking, modification and/or destruction of

macro-charcoal by floods and taphonomic processes. Importantly, human activity affects these

for factors in different ways, and can be viewed as an additional layer of impact that would

need to be quantified in any future research.

The results of this study indicate that there are significant implications for any future recon-

struction of macro-charcoal records in large, dynamic, open-system wetlands. Firstly, spatial

and temporal variations in fire activity and ash and charcoal products within the wetlands are

important because they generate an uneven distribution of charcoal in these wetland systems.

Wetlands that experience fires do not burn uniformly and this is due to the local environmen-

tal conditions (e.g., ignition mechanism, flammability, vegetation type, and fuel production)

and climatic and weather controls (e.g., rainfall, water balance, wind, temperature) that influ-

ence the ignition and spread of fires [118–120]. For example, research has shown fires were

absent from some permanent wetlands in semi-arid north-eastern South Africa [120]. Con-

versely, fire is a common occurrence in some seasonal wetlands, as they are more susceptible

to fire activity due to the drying of vegetation during the winter months and the hydrological

regime [120]. Research examining the spread of fires (following a prescribed burn) across

savanna-wetland ecotones also showed different burning patterns between herbaceous and lig-

neous vegetation types [118]. Herbaceous plants (i.e., non-woody) tend to undergo full com-

bustion leaving no residual macro-charcoal, whereas their ligneous counterparts (i.e., woody)

produce a majority of macro-charcoal in the sedimentary record [121–123]. This complicates

the spatial and temporal patterns of fire activity and contributes to the unevenness of the distri-

bution of charcoal across a wetland after a fire event. Understanding the detailed patterns of

vegetation, fuel availability, soil carbon and water balances in wetlands could assist in the

development of fire management practice in the future.

Secondly, varying inputs of allochthonous charcoal from various upstream sources are

problematic because interpreting local fire history relies on the assumption of primary char-

coal being rapidly deposited and buried during and immediately after a fire event; any charcoal

incorporated later is regarded as being from a secondary source or from non-fire years [15].

While we did not determine the source/s of allochthonous macro-charcoal in the Macquarie

Marshes, there is potential for it to have come from the catchment (e.g., relatively young parti-

cles in topsoil), or from reworking of material along the river corridor (e.g., relatively older

particles from subsoils and river banks). Nevertheless, our findings illustrate that macro-char-

coal inputs from other sources in the upstream catchment are a significant component depos-

ited in the open-system wetlands of the Macquarie Marshes during non-fire years. Altogether,

catchment conditions, geomorphic setting and processes, climate and hydrology, ignition

sources, and readily burnable biomass can all affect the transport, deposition, and taphonomy

of charcoal in a sediment profile [20, 31, 124].

Theoretical models of charcoal dispersal predict that charcoal particle size should decrease

with distance from the burn area [21, 125]. Research shows that allochthonous macro-charcoal

can remain in suspension for a longer duration in comparison to smaller charcoal particles

[126]. Nevertheless, it is likely that in a large catchment with a subhumid to semiarid climate

such as the Macquarie, macro-charcoal distribution occurs sporadically during seasonal flows,

infrequent large floods, or rainfall events. However there have been a limited number of

empirical studies validating this, through either natural or prescribed burns using traps within

proximity of the burn (e.g., <200 m) to collect charcoal and track dispersal patterns [16, 123,

127, 128]. Tracking macro-charcoal dispersal patterns in catchments and determining the

major sources and pathways of transport and storage in large river and wetland systems would
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be an immense undertaking that could potentially yield a greatly enhanced understanding of

charcoal dynamics in fluvial systems. This could assist in the future analysis of macro-charcoal

in open-system wetlands.

Thirdly, geomorphic dynamism affects flow dispersal and sediment and charcoal accumula-

tion patterns in floodplain wetlands. The complexity of landforms and geomorphic processes

that control the distribution of water and sediment in these wetlands plays an important role

for the interpretation and understanding of sedimentary macro-charcoal and fire records.

Anabranching and distributary channels that feed water into wetlands such as the Macquarie

Marshes [35, 47], the Okavango Delta [129], and the Sudd [114] distribute macro-charcoal

from upstream, and may rework previously buried charcoal through erosion processes within

channels and on the floodplain, leading to new and/or multiple foci of charcoal accumulation.

Reticulate surface drainage patterns, low levees, flood retention zones, floodouts, and gilgai

(i.e., depressions and low mounds) also influence dispersal of water, sediment, and charcoal in

these systems [47]. These geomorphic units are a function of channel and floodplain erosion,

sedimentation and post-depositional processes such as clay shrink-swell behaviour that also

affect charcoal supply, distribution, deposition, and reworking. While overbank flooding is a

critical driver of wetland vegetation and habitat for various aquatic and terrestrial species,

changes in rainfall, evapotranspiration, and flood regime variability are likely to influence

channel patterns and thus macro-charcoal accumulation patterns [46, 130]. Channel erosion

leading to a loss of channel-floodplain connectivity may exacerbate the risk of major fires

across the system due to reduced surface water distribution to the contemporary wetlands.

Characterising the landforms and processes responsible for geomorphic dynamism and flow

distribution in wetlands is critical for assessment of the role of these processes in macro-char-

coal accumulation and for fire history reconstructions.

Finally, post-depositional reworking, modification and/or destruction of macro-charcoal

by floods and/or taphonomic processes are major problems in wetlands in drylands that flood

irregularly and dry out regularly. Large or energetic floods have the potential to rework sedi-

ment and charcoal in wetlands. Taphonomic processes of physical, biological, and chemical

nature could also affect charcoal preservation, including disturbance and/or erosion of top-

soils, bioturbation (mixing) by ants and other burrowing organisms in the upper sections of

profiles [131], and decomposition and/or degradation of charcoal and other organic matter

under varying anoxic and oxidising conditions [132, 133]. In particular, oxidation of charcoal

and the overall loss of susceptible charcoal particles to biochemical degradation could poten-

tially lead to an underestimation of macro-charcoal used as a proxy for fire regime reconstruc-

tion [132, 133]. Soil and sediment erosion, trampling impact of livestock and other animals, a

suite of activities related to agriculture, and other human activities can also alter sediment rec-

ords. Livestock are known to spend a significant amount of time around wetlands where they

trample and churn the topsoil [64, 134, 135]. For this reason, knowledge of site, system history,

and careful site selection is essential to avoid sampling disturbed sediments. Furthermore, the

inherent behaviour of vertisol soils [47, 136] can influence the preservation of charcoal, where

the physical shrink-swell properties of clay soils in response to sporadic wetting and drying

cycles could impact the distribution of charcoal in the profile (i.e., self-mulching clay soils).

The physical, biological, and chemical processes that govern taphonomy and the propensity

for deposition and reworking of charcoal in open-system wetlands should be understood and

interpreted with care, while considering the other environmental and geomorphic conditions

previously mentioned.

Looking to the future, we must acknowledge that large, open-system floodplain wetlands

have complex and highly variable macro-charcoal records that defy simple interpretations and

straightforward fire history reconstructions. This study quantified the mean allochthonous
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macro-charcoal supply for one wetland in the Macquarie Marshes, and then extrapolated this

to another wetland in the same system. While this method can help to discriminate the

allochthonous macro-charcoal signal which can then be subtracted from total charcoal counts

to obtain corrected autochthonous macro-charcoal profiles in sediment cores, a better

approach would be to quantify the fluvial input to each individual wetland through a long-

term monitoring program. Furthermore, in the sediment profiles, higher sensitivity and reso-

lution sedimentological, geochemical and isotope analyses may be able to detect subtle changes

in sediment and carbon character related to changing inundation regimes, which could be

linked to changing macro-charcoal concentrations and/or taphonomic processes. Doing so

would greatly improve the confidence around interpretations of macro-charcoal accumulation

rates, carbon sources and fire history.

Determining whether fire activity contributes significantly to macro-charcoal accumulation

in floodplain wetlands, and whether macro-charcoal of a local origin is useful for fire history

reconstruction, is a complex task due to the nature of sediment and charcoal sources, transport

and taphonomic processes in dynamic, open-system wetlands. For contemporary fire regime

assessments, satellite remote sensing (e.g., Sentinel Hotspot information) combined with on-

ground fire assessment and monitoring could be a powerful tool for wetland and water manag-

ers who need to understand fire activity, patterns, and regimes in floodplain wetlands in the

future. Combining the use of satellite imagery with on-ground studies, and expanding on pre-

vious charcoal dispersal studies in smaller closed-system wetlands, could be an ideal prospect

for future fire studies in open-system wetlands [21, 22, 123, 128, 137].

Assessing the longer-term history of fire in key wetlands based on reliable palaeo-environ-

mental records could help guide future wetland management, especially when:

1. the sites are geomorphologically stable and are prone to fire in the recent and long-term

past;

2. there is significant potential for preservation of macro-charcoal and other biological

remains when their disturbance and degradation is minimal;

3. the links between fire, inundation regimes, and ecological processes are understood and

valued for management purposes.

Ultimately, knowledge of historical fire regimes in wetlands over recent decades and during

the historical period is critically important. Using sediment and macro-charcoal profiles to

yield accurate and reproducible information can provide a longer-term context for under-

standing fire regimes.

Conclusions

Understanding allochthonous and autochthonous contributions to macro-charcoal accumula-

tion in open-system floodplain wetlands is critical for robust interpretation of fire history. The

spatial and temporal patterns of fire activity are complex and deserve detailed study in terms

of patterns of vegetation, fuel availability, soil carbon and water balances in wetlands. Tracking

macro-charcoal dispersal patterns in catchments and determining the major sources and path-

ways of transport and storage in large wetland systems could potentially yield an improved

understanding of charcoal dynamics in fluvial systems, including open-system wetlands. Char-

acterising the landforms and processes responsible for geomorphic dynamism and flow distri-

bution in wetlands is critical for assessment of macro-charcoal accumulation and for the

reconstruction of fire history. Knowledge of site and system history, and careful site selection

is essential to avoid sampling disturbed sediments that may obscure the interpretation of the
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macro-charcoal record. We have outlined the major problems and prospects for reconstruc-

tion of fire regimes and environmental conditions in large, dynamic, open-system wetlands.

The application of macro-charcoal and other environmental proxy information in wetlands in

drylands is inherently difficult due to variations in charcoal sources, sediment and charcoal

deposition rates, and taphonomic processes. To reconstruct and interpret wetland fire regimes,

recognition of complex fire-climate-hydrology-vegetation interactions is essential and high-

resolution, multifaceted approaches are required to assess and understand spatial and tempo-

ral patterns of fire.
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sample depth.

(TIF)

S6 Fig. Stratigraphic profile and Principle component analysis (PCA) for Buck03. Demon-
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sample depth.
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S7 Fig. Stratigraphic profile and Principle component analysis (PCA) for Will02. Demon-
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sample depth.
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(TIF)

S1 Table. Comparison of different values of δ13 C (‰) derived from C3 and C4 vegetation.

Some selected stable isotope information of δ13 C (‰) from the literature for different types of

vegetation located in Murray-Darling Basin in south-eastern Australia

(XLSX)

Acknowledgments

This research was funded by Macquarie University and the New South Wales Office of Envi-

ronment and Heritage (OEH) through the Macquarie Marshes Fire History Project (S16019).

Stable isotope analysis was supported by an Australian Nuclear Science and Technology Orga-

nisation (ANSTO) research portal grant to TR and BG (11017). BG was supported by an Aus-

tralian Institute of Nuclear Science and Engineering (AINSE) honours scholarship. We thank

Tim Hosking (OEH) for project design and logistical support, Linda Barry (ANSTO) for car-

bon stable isotope and total carbon analysis, David and John Thornton (Buckiinguy) and Matt

Bell (Willancorah) for permission to access the field sites, Carl Helander (MQU) for assistance

with sediment and macro-charcoal analysis, and Saadu Umar (MQU) for assistance in the

field. We thank four anonymous reviewers for their comments which improved the clarity of

the manuscript.

Author Contributions

Conceptualization: Timothy J. Ralph.

Data curation: Bradley P. Graves.

Formal analysis: Bradley P. Graves, Timothy J. Ralph, Kira E. Westaway, Patricia S. Gadd.

Funding acquisition: Timothy J. Ralph, Debashish Mazumder.

Investigation: Bradley P. Graves, Timothy J. Ralph, Paul P. Hesse, Tsuyoshi Kobayashi, Patri-

cia S. Gadd.

Methodology: Bradley P. Graves, Timothy J. Ralph, Paul P. Hesse, Kira E. Westaway, Patricia

S. Gadd, Debashish Mazumder.

Project administration: Bradley P. Graves, Timothy J. Ralph.

Resources: Bradley P. Graves, Timothy J. Ralph, Tsuyoshi Kobayashi, Patricia S. Gadd,

Debashish Mazumder.

Software: Bradley P. Graves.

Supervision: Timothy J. Ralph, Tsuyoshi Kobayashi.

Validation: Bradley P. Graves, Timothy J. Ralph, Paul P. Hesse, Kira E. Westaway.

Visualization: Bradley P. Graves, Timothy J. Ralph, Paul P. Hesse.

Writing – original draft: Bradley P. Graves, Timothy J. Ralph.

Macro-charcoal accumulation in floodplain wetlands: Problems and prospects

PLOS ONE | https://doi.org/10.1371/journal.pone.0224011 October 24, 2019 26 / 33

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224011.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224011.s011
https://doi.org/10.1371/journal.pone.0224011


Writing – review & editing: Bradley P. Graves, Timothy J. Ralph, Paul P. Hesse, Kira E. West-

away, Tsuyoshi Kobayashi, Patricia S. Gadd, Debashish Mazumder.

References
1. Bowman DMJS Balch JK, Artaxo P Bond WJ, Carlson JM Cochrane MA, et al. Fire in the Earth Sys-

tem. Science. 2009; 324(5926):481–4. https://doi.org/10.1126/science.1163886 PMID: 19390038

2. NPWS. Fire Management Plan 2000–2004: Macquarie Marshes Nature Reserve. 1999.

3. Mariani M, Fletcher M-S, Holz A, Nyman P. ENSO controls interannual fire activity in southeast Austra-

lia. Geophysical Research Letters. 2016; 43(20):10,891–10,900. https://doi.org/10.1002/

2016GL070572

4. Fletcher M-S, Benson A, Heijnis H, Gadd PS, Cwynar LC, Rees ABH. Changes in biomass burning

mark the onset of an ENSO-influenced climate regime at 42˚S in southwest Tasmania, Australia. Qua-

ternary Science Reviews. 2015; 122:222–32. https://doi.org/10.1016/j.quascirev.2015.05.002.

5. Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, et al. Climate-induced

variations in global wildfire danger from 1979 to 2013. Nature Communications. 2015; 6:7537. https://

doi.org/10.1038/ncomms8537 PMID: 26172867

6. Ross B, Trent P, Matthias B, Owen P, Hamish C. Divergent responses of fire to recent warming and

drying across south-eastern Australia. Global Change Biology. 2014; 20(5):1412–28. https://doi.org/

10.1111/gcb.12449 PMID: 24151212

7. Stahle LN, Whitlock C, Haberle SG. A 17,000-Year-Long Record of Vegetation and Fire from Cradle

Mountain National Park, Tasmania. Frontiers in Ecology and Evolution. 2016; 4(82). https://doi.org/10.

3389/fevo.2016.00082

8. Michael-Shawn F, B. WB, Cathy W, P. PD, Hendrik H, G. HS, et al. The legacy of mid-Holocene fire on

a Tasmanian montane landscape. Journal of Biogeography. 2014; 41(3):476–88. https://doi.org/10.

1111/jbi.12229

9. Mooney SD, Harrison SP, Bartlein PJ, Daniau AL, Stevenson J, Brownlie KC, et al. Late Quaternary

fire regimes of Australasia. Quaternary Science Reviews. 2011; 30(1):28–46. https://doi.org/10.1016/

j.quascirev.2010.10.010.

10. Whitlock C, Anderson RS. Fire History Reconstructions Based on Sediment Records from Lakes and

Wetlands. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW, editors. Fire and Climatic Change

in Temperate Ecosystems of the Western Americas. New York, NY: Springer New York; 2003. p. 3–

31.

11. Wilkins D, Gouramanis C, De Deckker P, Fifield LK, Olley J. Holocene lake-level fluctuations in Lakes

Keilambete and Gnotuk, southwestern Victoria, Australia. The Holocene. 2013; 23(6):784–95. https://

doi.org/10.1177/0959683612471983

12. Stevenson J, Brockwell S, Rowe C, Proske U, Shiner J. The palaeo-environmental history of Big

Willum Swamp, Weipa: An environmental context for the archaeological record. Australian Archaeol-

ogy. 2015; 80(1):17–31. https://doi.org/10.1080/03122417.2015.11682041

13. Burrows MA, Fenner J, Haberle SG. Humification in northeast Australia: Dating millennial and centen-

nial scale climate variability in the late Holocene. The Holocene. 2014; 24(12):1707–18. https://doi.

org/10.1177/0959683614551216

14. Black MP, Mooney SD, Martin HA. A >43,000-year vegetation and fire history from Lake Baraba, New

South Wales, Australia. Quaternary Science Reviews. 2006; 25(21):3003–16. https://doi.org/10.1016/

j.quascirev.2006.04.006.

15. Whitlock C, Larsen C. Charcoal as a Fire Proxy. In: Smol JP, Birks HJB, Last WM, Bradley RS, Alver-

son K, editors. Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Sili-

ceous Indicators. Dordrecht: Springer Netherlands; 2001. p. 75–97.

16. Clark JS, Lynch J, Stocks BJ, Goldammer JG. Relationships between charcoal particles in air and sed-

iments in west-central Siberia. The Holocene. 1998; 8(1):19–29. https://doi.org/10.1191/

095968398672501165

17. Whitlock C, Millspaugh SH. Testing the assumptions of fire-history studies: an examination of modern

charcoal accumulation in Yellowstone National Park, USA. The Holocene. 1996; 6(1):7–15. https://

doi.org/10.1177/095968369600600102

18. Clark JS, Royall PD. Local and Regional Sediment Charcoal Evidence for Fire Regimes in Presettle-

ment North-Eastern North America. Journal of Ecology. 1996; 84(3):365–82. https://doi.org/10.2307/

2261199

Macro-charcoal accumulation in floodplain wetlands: Problems and prospects

PLOS ONE | https://doi.org/10.1371/journal.pone.0224011 October 24, 2019 27 / 33

https://doi.org/10.1126/science.1163886
http://www.ncbi.nlm.nih.gov/pubmed/19390038
https://doi.org/10.1002/2016GL070572
https://doi.org/10.1002/2016GL070572
https://doi.org/10.1016/j.quascirev.2015.05.002
https://doi.org/10.1038/ncomms8537
https://doi.org/10.1038/ncomms8537
http://www.ncbi.nlm.nih.gov/pubmed/26172867
https://doi.org/10.1111/gcb.12449
https://doi.org/10.1111/gcb.12449
http://www.ncbi.nlm.nih.gov/pubmed/24151212
https://doi.org/10.3389/fevo.2016.00082
https://doi.org/10.3389/fevo.2016.00082
https://doi.org/10.1111/jbi.12229
https://doi.org/10.1111/jbi.12229
https://doi.org/10.1016/j.quascirev.2010.10.010
https://doi.org/10.1016/j.quascirev.2010.10.010
https://doi.org/10.1177/0959683612471983
https://doi.org/10.1177/0959683612471983
https://doi.org/10.1080/03122417.2015.11682041
https://doi.org/10.1177/0959683614551216
https://doi.org/10.1177/0959683614551216
https://doi.org/10.1016/j.quascirev.2006.04.006
https://doi.org/10.1016/j.quascirev.2006.04.006
https://doi.org/10.1191/095968398672501165
https://doi.org/10.1191/095968398672501165
https://doi.org/10.1177/095968369600600102
https://doi.org/10.1177/095968369600600102
https://doi.org/10.2307/2261199
https://doi.org/10.2307/2261199
https://doi.org/10.1371/journal.pone.0224011


19. Long CJ, Whitlock C, Bartlein PJ, Millspaugh SH. A 9000-year fire history from the Oregon Coast

Range, based on a high-resolution charcoal study. Canadian Journal of Forest Research. 1998; 28

(5):774–87. https://doi.org/10.1139/x98-051

20. Tinner W, Hofstetter S, Zeugin F, Conedera M, Wohlgemuth T, Zimmermann L, et al. Long-distance

transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps—implications for fire

history reconstruction. The Holocene. 2006; 16(2):287–92. https://doi.org/10.1191/

0959683606hl925rr

21. Clark JS. Particle Motion and the Theory of Charcoal Analysis: Source Area, Transport, Deposition,

and Sampling. Quaternary Research. 1988; 30(1):67–80. Epub 2017/01/20. https://doi.org/10.1016/

0033-5894(88)90088-9

22. Oris F, Ali AA, Asselin H, Paradis L, Bergeron Y, Finsinger W. Charcoal dispersion and deposition in

boreal lakes from 3 years of monitoring: Differences between local and regional fires. Geophysical

Research Letters. 2014; 41(19):6743–52. https://doi.org/10.1002/2014GL060984

23. Power MJ, Marlon JR, Bartlein PJ, Harrison SP. Fire history and the Global Charcoal Database: A new

tool for hypothesis testing and data exploration. Palaeogeography, Palaeoclimatology, Palaeoecology.

2010; 291(1):52–9. https://doi.org/10.1016/j.palaeo.2009.09.014.

24. Buckman S, Brownlie KC, Bourman RP, Murray-Wallace CV, Morris RH, Lachlan TJ, et al. Holocene

palaeofire records in a high-level, proximal valley-fill (Wilson Bog), Mount Lofty Ranges, South Austra-

lia. The Holocene. 2009; 19(7):1017–29. https://doi.org/10.1177/0959683609340998

25. Black MP, Mooney SD, Attenbrow V. Implications of a 14 200 year contiguous fire record for under-

standing human—climate relationships at Goochs Swamp, New South Wales, Australia. The Holo-

cene. 2008; 18(3):437–47. https://doi.org/10.1177/0959683607087933

26. Haberle SG. A 23,000-yr Pollen Record from Lake Euramoo, Wet Tropics of NE Queensland, Austra-

lia. Quaternary Research. 2005; 64(3):343–56. Epub 2017/01/20. https://doi.org/10.1016/j.yqres.

2005.08.013

27. Kaal J, Carrión Marco Y, Asouti E, Martı́n Seijo M, Martı́nez Cortizas A, Costa Casáis M, et al. Long-
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