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Abstract

Assuring election integrity is essential for the legitimacy of elected representative demo-

cratic government. Until recently, other than in-person election observation, there have

been few quantitative methods for determining the integrity of a democratic election.

Here we present a machine learning methodology for identifying polling places at risk of

election fraud and estimating the extent of potential electoral manipulation, using synthetic

training data. We apply this methodology to mesa-level data from Argentina’s 2015 national

elections.

Introduction

Assuring that an election was run in a free and fair manner has been the focus of a significant

body of research. Much of that research, especially efforts to document the integrity of elec-

tions outside the United States, has utilized direct in-person election observation methods [1,

2]. In-person election observation can be an effective tool for detecting and deterring election

fraud [3]; however it is costly to implement, and in a large national election where there may

be tens or hundreds of thousands of polling places requiring observation, it can be difficult or

impossible to provide sufficient coverage for assurance that the election was conducted freely

and fairly.

The desire for a less-costly, quantitative, and broad coverage means of detecting potential

election fraud has led researchers to propose a number of quantitative approaches for detecting

irregularities using different methods for anomaly detection [4]. Some have advocated for the

examination of the distributions of elections data (especially turnout), arguing that oddly dis-

tributed elections data can often indicate problems in the administration of an election [5].

Others have studied the use of “digit-tests”, which look for anomalies in the distribution of dig-

its in multi-digit elections data [6–8], but see [9]. Researchers have also used “flow of votes”

analyses, parametric statistical models, or statistical tests to look for anomalies in elections data

[10–17].
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These various approaches for detecting potential election fraud all suffer from different

methodological problems [18]. These relatively simple forensics tools can be difficult to use at

the scale of a large national election: they do not necessarily take into consideration informa-

tion from past elections, they do not consider a priori knowledge about the forms that election

manipulation may take in a particular context, and may fail to detect many forms of potential

fraud.

These methodological issues have led some scholars to advocate the use of machine learning

approaches for detecting potential election fraud [18–21]. There are many advantages of using

machine learning approaches for trying to detect potential fraud. In particular, they can easily

make use of large amounts of election data, finding anomalous observations, and can do so

using methodologies that make minimal parametric and distributional assumptions. Addition-

ally, machine learning allows us to avoid the reliance on single models, and instead we can use

ensembles of models to improve our ability to find election anomalies. Finally, as we argue in

this paper, we can incorporate into our machine learning models the knowledge that social sci-

entists have accumulated about election regularities—and potential election fraud—to increase

the likelihood that our models detect the types of anomalies in elections data that may be the

result of manipulation or error.

Our approach differs from those in previous studies. While we use a supervised machine

learning ensemble approach (Random Forest), we lack a priori labeling of voting precincts for

whether they may have been affected by manipulation—and the form and extent of that elec-

toral manipulation. Thus, we develop a relatively naïve hierarchical model, that we use to esti-

mate what a “clean” election might look like across all of the voting precincts in the election we

study, which forms our “clean” synthetic training data. Based on our substantive knowledge of

the election, and on past studies of election fraud, we focus on two forms of manipulation: bal-

lot-box stuffing and vote stealing. We then use our a priori and theory-driven knowledge

about the potential forms and extent of potential election fraud to generate synthetic examples

of voting precincts exposed to manipulation. We fit the model using cases labeled as ‘clean’

and ‘at risk’ in the synthetic training data, then apply that trained model to national data from

the 2015 national elections in Argentina. With this method we are able to locate polling pre-

cincts resembling training examples susceptible to manipulation or error, and to estimate the

extent of this potential electoral manipulation. This approach is discussed in detail below,

where we also provide a variety of validation analyses.

Data and methods

Data

We use data from the first round of the 2015 presidential election in Argentina at the polling

station (mesa) level [22]. This dataset contains information about the number of votes received

by the six parties in the national election, the number of invalid and blank votes, and the num-

ber of eligible voters. The six parties include three larger parties, Frente para la Victoria (FPV),

Cambiemos, Unidos por una Nueva Alternativa (UNA), and three smaller parties, Progresis-

tas, Compromiso Federal, and Frente de Izquierda y de Los Trabajadores. Since the smaller

parties received zero votes in many precincts, we combine their votes into votes for “other”

parties to facilitate modeling. We supplement this data by incorporating results from the previ-

ous presidential election and demographic information (such as home ownership, gender

ratio, illiteracy, and age) at the department level. We focus on rows from the electoral data cor-

responding to mesas where votes were cast for the larger parties and the combined “other”

party. We remove mesas with less than 100 total ballots cast, as these very small mesas have

highly variable turnout and vote share results. After removing these cases, we have 90,012
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mesas from 24 provinces (96% of the original sample size). A summary of the voting results

from these mesas is shown in Table 1. For a full description of data sources, see the replication

materials [23].

We focus on the 2015 election as it took place in the context of widespread distrust in the

integrity of the electoral process. A recent scholarly publication presented evidence suggestive

of election irregularities in the previous presidential election [24]. Uncertainty about election

integrity remained an issue in 2015. In September 2015, news reports circulated about allega-

tions of election fraud in a gubernatorial election in Tucuman [25]. The general election,

which took place only a month after these events, was set against a background of allegations

of election irregularities and doubts about ballot secrecy [26]. These concerns make this elec-

tion an ideal case for exploring possible anomalies in election returns.

Synthetic data generation

We generate synthetic clean and at-risk data to train a supervised classification model that can

be used on the actual election data to classify mesas into clean or at-risk categories. We first

generate clean synthetic data using a mixed effects regression. We use the vote share of each

party as the dependent variable, and incorporate demographic variables as well as whether

FPV won a majority of votes in 2011 as fixed effects, while allowing the intercepts to vary by

department. We use this model to predict the expected clean vote share for each party, given

their demographics and results from 2011.

One concern is that the actual vote shares on which we train the multilevel model may

themselves be tainted by some type of manipulation, and hence the model predictions may not

accurately reflect an entirely “clean” distribution. However, by using potentially manipulated

data as the “clean” baseline for the model, it tempers the overall distribution of our predictor

variables, which makes extreme values less unlikely. As our models seek anomalous behaviors

in the turnout and vote shares, this tempering means that our model is more conservative in

detecting voting locations that may be at risk for manipulation or error.

Next, we alter the clean synthetic data in two ways that fall into one of the two hypothetical

fraudulent behaviors: (1) vote stealing (VS), where agents from one of the major parties steal

votes from other parties by transferring some of these votes to the perpetrating party and

destroying the rest, and (2) ballot box stuffing (BBS), where party agents artificially inflate the

votes for their party. Here we focus on the FPV, the incumbent Peronist party, for two reasons.

First, a previous study found that FPV monitors may have interfered with election results in

areas covered by their party monitors in past elections [24]. Second, the other two major

Table 1. Summary statistics of turnout and vote shares.

Min. Median Mean Max.

Electorate 110 350 340 390

Turnout 0.30 0.82 0.81 1.00

Vote Share

FPV 0.01 0.27 0.29 0.88

Cambiemos 0.00 0.26 0.27 0.80

UNA 0.00 0.17 0.17 0.55

Other 0.00 0.05 0.06 0.76

Residual 0.00 0.03 0.03 0.66

This table, from top to bottom row, summarizes the distributions of the size of electoral population, turnout, and

vote shares (measured as a proportion of the electorate) received by various parties across all 90,012 mesas.

https://doi.org/10.1371/journal.pone.0223950.t001
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parties in contention did not have strong capacity or incentive to commit potential fraud.

Cambiemos was a new party in the 2015 election and hence did not have comparable ability to

access and cover large areas with its party monitors, whereas UNA did not have a substantial

chance of winning against FPV and thus had no incentive to commit these two types of possi-

ble fraud.

We generate at-risk synthetic examples as follows. We choose two separate parameters that

dictate the probability of any mesa being tainted by VS and BBS, and two additional parame-

ters that determine the extent of VS or BBS in tainted mesas. The extent of VS is given by the

proportion of votes from other parties being converted to FPV votes. The extent of BBS is

given by the proportion of abstention votes counted as FPV votes. We then use a random pro-

cess to choose which at-risk mesas face which type of potential fraud, and the extent of poten-

tial fraud in affected mesas. As the next step in our synthetic data generation, we subtract the

potential stolen votes from the other parties and give a portion of them to FPV, and add addi-

tional votes to FPV to simulate ballot box stuffing. On average, synthetic mesas at risk of VS

show relatively small turnout rates, whereas those at risk of BBS have high turnout rates. Both

types of simulated manipulation show higher vote shares for the FPV. Distributions of turnout

and the vote share of each party are shown in Fig 1. As can be seen in panel (1) of Fig 1, the

simulated turnout is lowest with VS, and highest with BBS. Panel (2) shows that both VS and

BBS would contribute positively to the vote share of FPV. The remaining panels (3-5) show

that while BBS does not have a substantial impact on the vote share of other parties, VS does

drastically lower other parties’ vote shares.

Modeling

We then use the labeled synthetic data to train a model that can be used on actual election data

to see whether there is evidence suggesting that a voting precinct is at risk of VS or BBS. The

outcome variable of the model has three classes: clean, risk of VS, or risk of BBS. The predic-

tors are turnout and the vote shares of each party. We use Random Forest to train this model

[27]; Random Forest is an ensemble supervised machine learning approach, which our previ-

ous work has shown works well for detecting potential election fraud [18].

To test the performance of our model, we divide the synthetic data into 10 folds, train the

model on 9 folds, and examine its performance on the remaining one fold of data saved for

testing. We average the prediction accuracy for the 10 tests and show the performance in

Table 2. As Table 2 suggests, the model does a highly accurate job predicting whether a syn-

thetic mesa is clean or at risk of manipulation, correctly predicting 97% of the clean synthetic

examples.

We next train a Random Forest model on the full set of synthetic data to utilize all available

information. Fig 2 shows permutation-based measures of the importance of each variable in

this Random Forest model for predicting at-risk status. Turnout is by far the most important

predictor for fraud, followed by the vote shares of the three largest parties. By construction, the

vote share of other smaller parties does not contribute much to the overall fit. Finally, we apply

this model to the actual data and classify each mesa into one of the three categories: clean, at

risk of BBS, or at risk of VS.

Results

We first present the prediction results using a set of discretionary parameters. We show the

proportion of clean and at risk mesas in the prediction, as well as the distribution of turnout

and vote shares. Then we evaluate the sensitivity of results to changes in key parameters used
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Fig 1. Distribution of electoral variables in synthetic training data. N = 86,815; NClean = 29,093; NBBS = 28,999; NVS = 28,723. These figures show

turnout and the vote share of different parties across mesas that are simulated to be either: (1) at risk of ballot box stuffing (shown by the red line), (2)

clean (shown by the green line), or (3) at risk of vote stealing (shown by the blue line).

https://doi.org/10.1371/journal.pone.0223950.g001
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to generate the synthetic data—the probability an at-risk mesa is tainted with potential fraud

or error and the extent of the manipulation in at risk mesas.
Table 3 summarizes the proportion of mesas that are predicted to be clean and at risk in the

actual data, using the Random Forest model trained on randomly generated synthetic data

drawn from hypothetical clean and at-risk distributions. In generating the synthetic data, we

initially assume that 1/3 of at-risk mesas are affected by BBS and VS, respectively, and that

these two forms of fraud are exclusive events. We also assume that, on average, 3/4 of voter

abstention in mesas at risk of BBS is counted as votes for the incumbent, and that 1/2 of votes

Table 2. Random Forest model performance on synthetic training data.

Actual Prediction

Clean BBS risk VS risk

Clean 0.965 0.002 0.032

BBS risk 0.004 0.996 0.000

VS risk 0.010 0.000 0.990

This table presents prediction accuracy of a Random Forest model trained using 90% of the synthetic data on the

remaining 10% of the synthetic data. The proportions in this table are the average of 10 models, where we divide the

data into 10 folds, train a Random Forest model on 9 folds, and predict the outcome in the remaining one fold.

https://doi.org/10.1371/journal.pone.0223950.t002

Fig 2. Importance of predictors. This figure shows the importance of variables used in the Random Forest model trained on synthetic data. The importance here is

measured by the average decrease in the Gini index across decision trees upon permutation of the values of each predictive feature.

https://doi.org/10.1371/journal.pone.0223950.g002
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cast for opposition parties in mesas at risk of VS are counted as votes for the incumbent. Set-

ting these last two parameters at large levels helps limit the chance that clean mesas closely

resembling the at-risk data will by chance be classified as at-risk. When simulation parameters

are held at these baseline levels, 86.3% of mesas are predicted to be clean in the actual data. In

total, 13.7% of mesas are classified as at-risk; 12.3% are found at risk of BBS and only 1.4% at

risk of VS.

Fig 3 presents the distributions of key metrics, turnout and shares for different parties,

across different categories of mesas. Similar to the synthetic data, mesas at risk of BBS have

much higher turnout, while turnout is the lowest in mesas at risk of VS. While VS and BBS

have somewhat similar effects on the vote share of the FPV in the synthetic data, mesas at risk

of VS show much stronger support for FPV than mesas at risk of BBS. Unsurprisingly, the risk

of VS is significantly associated with lower vote shares for all other parties, whereas the risk of

BBS is associated with decreased support for Cambiemos more than the other parties. Overall,

the distributions of turnout and vote shares in the actual data using model predicted categories

are consistent with the distributions in the synthetic data.

We next looked at the relationship between predictions and basic demographics of the

departments where voting precincts are located. The department-level demographic infor-

mation was drawn from the 2010 national population census. This analysis suggests that

while there is little difference between the aggregate demographics of mesas labeled clean

and at risk of BBS, mesas labeled at risk of VS are located in less urbanized departments, with

populations experiencing greater need and higher incidence of illiteracy (see Fig A in S1

File). Part of this demographic heterogeneity can be explained by the fact that predicted

shares of at-risk mesas vary markedly across Argentinean provinces, as provinces differ

much in terms of demographic composition. Figs 4 and 5 illustrate the geographic distribu-

tion of BBS and VS risk, respectively, over the entire country (for numerical figures, see

Table A1 in S1 File). While BBS risk reaches double digits in 10 out of 24 provinces and is rel-

atively frequent in provinces in the central area of the county; VS risk is fairly prevalent in

five northern provinces (specifically, in Chaco, Corrientes, Formosa, Salta, and Santiago del

Estero) and is otherwise uncommon.

Finally, we evaluate the sensitivity of our predictions to changes in the set of four key

parameters used in generating the synthetic training data, holding other parameters con-

stant. Fig 6 shows the results of this sensitivity analysis (for province-level results, see Figs

B-E in S1 File). When we increase the probability that any synthetic at-risk mesa is subject to

VS, the percentage of mesas classified as clean remains relatively stable—e.g. 88% labeled

clean when only 10% of synthetic at-risk mesas are subject to VS, compared to 81% when

60% of synthetic at-risk mesas are subject to VS. Predictions are slightly more sensitive to the

probability of BBS in the synthetic training data. When only 10% of at-risk mesas are affected

by BBS, we predict 91% of mesas to be clean, compared to 77% when we increase the affected

population to 60%. The extent of BBS and VS in tainted synthetic mesas has a greater impact

Table 3. Percentage of clean and at risk mesas in real data.

Clean At risk BBS risk VS risk

All mesas 86.30 13.70 12.32 1.38

This table shows the predicted percentage of at risk mesas (either through possible ballot box stuffing or vote

stealing), using the Random Forest model trained on synthetic data. Key parameters used in generating the synthetic

training data: probability for any mesa to be subject to BBS = 1/3, probability for any mesa to be subject to VS = 1/3,

proportion of votes stolen = 1/2, proportion of abstention votes being stuffed = 3/4.

https://doi.org/10.1371/journal.pone.0223950.t003
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Fig 3. Distribution of electoral variables in actual data by predicted risk. N = 86,815; NClean = 76,604; NBBS = 9,014; NVS = 1,197. These figures

show turnout and vote share of different parties across mesas that are predicted by the Random Forest model to be either: (1) at risk of ballot

box stuffing (shown by the red line), (2) clean (shown by the green line), or (3) at risk of vote stealing (shown by the blue line).

https://doi.org/10.1371/journal.pone.0223950.g003
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Fig 4. Spatial distribution of BBS risk. The map illustrates the share of voting precincts (mesas) classified as at risk of

BBS in each Argentinean province. Darker shades correspond to greater risk.

https://doi.org/10.1371/journal.pone.0223950.g004
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Fig 5. Spatial distribution of VS risk. The map illustrates the share of voting precincts (mesas) classified as at risk of

VS in each Argentinean province. Darker shades correspond to greater risk.

https://doi.org/10.1371/journal.pone.0223950.g005
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on our predictions: when we assume that FPV converts, on average, 10% of other parties’

votes into their own votes in synthetic mesas affected by VS, 62% of mesas are labeled clean,

compared to 97% when FPV converts 90% of competitions’ votes. When we assume that

FPV engages in limited BBS (adding only enough ballots to decrease abstention by 10% in

synthetic mesas affected by this potential fraud), 68% of mesas are labeled as clean; however,

when we assume that FPV engages in much more substantial BBS (adding enough ballots to

decrease abstention by 90%), the model labels 95% of mesas as clean. While this may seem

counterintuitive, it is what we expect to see in a simulation like this: when we increase the

proportions of at-risk mesas subject to VS and BBS, the predicted percentages of clean mesa
decrease, as we are allowing fewer mesas to be clean. When we increase the extent of VS or

BBS in tainted synthetic mesas, however, only mesas with exceedingly large turnout or FPV

vote share can be detected by the model as fraudulent, leading to conservative predictions

where most mesas are labeled clean.

Fig 6. Sensitivity analysis. These figures present how sensitive our predictions of proportion of clean mesas are to different parameter values. Top graphs show what

happens when the proportion of synthetic mesas subject to possible vote stealing or ballot box stuffing varies from 10%, 20%, 33%, 40%, 50% to 60%. The bottom

graphs shows what happens when the extent of potential vote stealing or ballot box stuffing in at-risk synthetic mesas varies from 10%, 20%, 30%, 40%, 50%, 60%, 70%,

80%, to 90%.

https://doi.org/10.1371/journal.pone.0223950.g006
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Conclusion

The approach we use in this paper relies upon synthetic training data to generate precinct-

level predictions of fraud risk. Both the use of synthetic data and generation of granular predic-

tions are important contributions of our work. For supervised machine learning tools to be

useful for election forensics, the analyst needs training data of some form. It is rare for the

analyst to have a list of labeled units (like mesas or precincts) to use for forensic purposes, so

researchers will need some type of synthetic data. As we discuss above, researchers can use his-

torical demographic and political data, along with substantive or theoretical knowledge about

the forms that possible election manipulation or error might take in a particular election, to

develop the sort of synthetic training data that we deploy in this paper. These training exam-

ples can then be used to identify electoral locations at risk of possible election error or fraud

and to estimate the overall extent of potential electoral manipulation, as we illustrated using

data from a recent election in Argentina. Clearly, this is an important area for future research;

users of forensic methods like these will need reliable guidance about how to develop synthetic

training data.
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Sensitivity to changes in amount of possible BBS in mesas at risk of BBS. Percentage of mesas
classified as clean when the extent of potential ballot box stuffing within synthetic at risk mesas
varies between 10% and 90%. Fig C, Sensitivity to changes in probability that mesas are at risk

of BBS. Predicted percent of mesas that are classified as clean when the proportion of synthetic

mesas subject to potential ballot box stuffing varies between 10% and 90%. Fig D, Sensitivity

to changes in amount of potential VS in mesas at risk of VS. Percentage of mesas classified as

clean when the extent of potential vote stealing within synthetic at-risk mesas varies between
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