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Abstract

Biomass is an important indicator for monitoring vegetation degradation and productivity.

This study tests the applicability of Hyperspectral Remote-Sensing in situ measurements for

high-precision estimation aboveground biomass (AGB) on regional scales of Khorchin

grassland in Inner Mongolia, China. In order to improve prediction accuracy of AGB which is

frequently used as an indicator of aboveground net primary productivity (ANPP), this paper

combined ground measurement with remote sensing inversion to build the spectral model.

The ground normalized difference vegetation index (SOC_NDVI) calculated from ground

spectral of grassland vegetation which was measured by a portable visible/NIR hyperspec-

tral spectrometer (SOC 710). Meanwhile, the remote normalized difference vegetation

index (TM_NDVI) calculated from remote spectral of grassland vegetation which was mea-

sured by Thematic Mapper (TM) from Landsat 8 which launched by National Aeronautics

and Space Administration (NASA). According to regression analysis for the relationship

between AGB and SOC_NDVI, SOC_NDVI and TM_NDVI, the evaluation model for

aboveground biomass was developed (AGB = 12.523×e3.370×(0.462×TM_NDVI+0.413), standard

error = 24.74 g m-2, R2 = 0.636, p < 0.001). The model accuracy verification results show

that the correlation between the measured value and the predicted value of biomass was

better with low model standard error. The model could make up for the lack of timeliness

and comprehensiveness of conventional ground biomass survey, and provide technical sup-

port for high-precision large-area productivity estimation and ecological degradation diagno-

sis of regional scale grassland.

Introduction

Grassland biomass is not only the most important indicator for degraded ecosystem but also

for grassland productivity. Therefore, how to improve the accuracy of regional grassland
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biomass estimation has become a research hotspot. With the development of technique,

remote sensing data were increasingly used in the regional vegetation survey such as vegetation

biomass [1–5], vegetation cover (VC) [6–7], nitrogen content [8], and the leaf area index of

vegetation [1, 9] based on the analysis of relationship between vegetation spectral features and

vegetation characteristics. The main method of spectral feature extraction was to describe the

spectral features by red, yellow and blue (three sides) optical parameters, Red Valley and

Green Peak variables, from which the best reflection spectral band which was most closely

related to biomass could be found.

The cost of remote sensing survey was lower than that of field survey at regional scale.

Therefore, regional vegetation investigation was carried out by establishing models based on

remote sensing data [10–12]. Many vegetation indices which calculated from remote sensing

spectral data were used as predictors of parameters, such as the normalised difference vegeta-

tion index (NDVI), ratio vegetation index, vegetation condition index, perpendicular vegeta-

tion index, soil adjusted vegetation index, and transformed soil adjusted vegetation index [13–

17]. NDVI can reduce the interference of solar zenith angle and atmospheric noise, reduce the

influence of topography and vegetation community and the impact of light changes [18],

improve the reflectance contrast of vegetation and soil[9, 19], meanwhile, NDVI has a wide

range of vegetation monitoring and high detection sensitivity [3, 4], therefore, NDVI is widely

applied in many studies about vegetation monitoring which can provide possibility for com-

parative analysis with other results [3, 4, 19–23]. NDVI has been calculated by various satellite

data sets such as MODIS, SPOT, TM et al [24–27]. TM 8 satellite data had been chosen in this

study, because the narrowband indices of TM 8 were highly suitable to map AGB accurately.

Spectral reflectance especially can be influenced by variable factors of the landscape such as

the distribution of plant communities [28], soil colour [29], hydrology[30], and topography

[31], and sensor radiance may be strongly affected by atmospheric scattering[32], so it is

important to combine the ground hyperspectral survey in the method and develop the model

from the perspective of relationship between remote-sensing data and the biophysical proper-

ties of vegetation in order to improve the accurate estimation of the grassland aboveground

biomass [6,33–37].

Khorchin grassland is one of the four great grasslands in China, it is important to provide

the scientific and accurate estimation of AGB for the sustainable utilization of grassland

resources. In this study, we aimed to develop a model for estimating AGB of grassland during

the growing season in order to improve the estimation accuracy of AGB. We used remote

sensing of Landsat 8 and ground hyperspectral to calculate the NDVI, and on-field AGB mea-

sured in the same period to establish a model to assess spatial AGB of the Khorchin grassland.

The main objectives of this study are: (i) developed the model of AGB based on Hyperspec-

tral Data from field and TM8 to clarify the corresponding relationship between remote sensing

image and the measured vegetation index on the ground of the Khorchin steppe, and (ii) to

improve the accuracy in the estimation of AGB calculated by the model, which is related with

grass yield, and be able to provide support in guiding the development of the livestock industry

in future.

Materials and methods

Study area

The Khorchin grassland is one of the four grasslands in China. We choose the region of Bairin

Youqi in Inner Mongolia of China which located in the western of Khorchin grassland as the

study area (Fig 1), which is an important component of the Khorchin grassland with sensitive

and fragile ecology. Bairin Youqi has a semiarid, temperate, continental monsoon climate with

An evaluation model for aboveground biomass

PLOS ONE | https://doi.org/10.1371/journal.pone.0223934 February 28, 2020 2 / 12

https://doi.org/10.1371/journal.pone.0223934


mean annual temperature of 4.9˚C and mean annual precipitation of 358 mm (precipitation is

less than evaporation). The elevation is 400–1900 m above sea level, the main vegetation are

meadow, sandy vegetation, and low mountain grassland. The dominant grassland species

include Achnatherum splendens (Trin.) Nevskia, Stipa capillata Linn., Leymus chinensis (Trin.)
Tzvel., and Agropyron cristatum (Linn.) Gaertn.

There were no endangered or protected species in the sturdy area. The research was funded

by National Environmental Conservation Research Program; therefore, we achieved the per-

mit of Bairin Youqi government to carry out the research on the state-owned land.

Field investigation and image process

Field work was conducted during 15–30 July 2016. Based on the topography and land use, 39

plots were established with different types of vegetation. The plot size was set at 30 × 30 m,

equivalent to the size of a TM8 pixel. The plots contained a total of 173 quadrats of 1 × 1 m.

The data collected were divided into 2 groups. Group one, which contained 153 quadrats were

used to build the ground spectral model; group two, which contained 20 quadrats, were used

for the accuracy test of the spectral inversion model. Meanwhile, within group one, the data of

approximately two thirds of the total quadrats (n = 115) were chosen randomly to build the

model while the rest were used for testing the terrain model in terms of selecting the best fit-

ting function and precision.

The ground object spectral were collected using the SOC 710 Hyperspectral Imaging Sys-

tem which Manufactured by Surface Optics Corporation in America. The SOC 710 is a preci-

sion instrument with an integrated scanning system and analysis software that can quickly

obtain high-quality hyperspectral images at visible to near-infrared (NIR) wavelengths in the

range 0.4–1.0 μm. The system can be used under normal lighting conditions at variable expo-

sures and gains. The distance between the SOC sensor and the plant canopy was about 1.2 m,

ensuring that the lens is vertically downward, and the diameter of the ground field of view was

about 0.2 m.

Fig 1. Map of Inner Mongolia (left) and the location of the sampling sites in Bairin Youqi (right).

https://doi.org/10.1371/journal.pone.0223934.g001

An evaluation model for aboveground biomass

PLOS ONE | https://doi.org/10.1371/journal.pone.0223934 February 28, 2020 3 / 12

https://doi.org/10.1371/journal.pone.0223934.g001
https://doi.org/10.1371/journal.pone.0223934


All hyperspectral image data collected in sunny conditions, in order to reduce the influence

of solar irradiance change and the error caused by the instrument itself, the reference plate is

measured at the same time in the process of target ground object measurement, and the reflec-

tivity of the reference plate is 1. Meanwhile, the electronic noise of electronic device was

affected by electronic system, operating environment, such as temperature, etc., so dark cur-

rent measurement need to be carried out after the instrument is used for a certain period of

time, and the saved results are used for later data processing. One dark current measurement

can be carried out for a sample plot. The collected hyperspectral image data were standardized

by SRAnal 710 software which belongs to SOC 710 system for reflectivity or radiance

calibration.

After the spectral data had been recorded, the standing biomass was collected in the quad-

rats at each sample location. The fresh weight of standing biomass had been weighed by a bal-

ance. Then taken them back to the laboratory and dry them with an oven, record the

corresponding spectral data number, dry weight of biomass data and vegetation description of

each quadrat.

The satellite data of TM8 were acquired from the Landsat 8 land imager of the United States

Geological Survey which imaging time was synchronous with the field investigation time and

the images were free of clouds and haze. Four suitable TM8 satellite scenes at PATH/ROWs

123/29, 123/30, 122/29, and 122/30 were analysed. The satellite data were geometrically recti-

fied by Digital Elevation Model (DEM) and GLS2005 [38] ground control points from Land

Survey. The four TM8 scenes were processed for atmospheric correction with the Fast Line-of-

sight Atmospheric Analysis of Spectral Hypercubes software package.

Data analysis

We calculated the SOC_NDVI of the samples from SOC 710 spectral reflectance using the

ENVI 5.0 image analysis software. The method for calculating NDVI [39] as follows:

NDVI ¼
NIR � RED
NIRþ RED

ð1Þ

Where the RED and NIR bands correspond to wavelengths of 630–680 and 845–885 nm,

respectively. Spectral reflectance data should be resampled within the scope of the RED and

NIR bands.

The regression analyses were carried out for the scatter diagrams of AGB vs. SOC_NDVI,

and SOC_NDVI vs. TM_NDVI. In study area, The 173 quadrats data were employed to obtain

the regression model for AGB vs. SOC_NDVI. Mean value of NDVI within a specific plot was

calculated, and then the data of the total 39 plots (Fig 1) were used in the regression analysis

for SOC_NDVI vs. TM_NDVI.

The coefficient of determination (R2) and the adjusted R2 were used to test the relationships

between the prediction of NDVI and AGB which measured by satellite data and field data

respectively. The standard error (SE, Eq 2) and coefficient of mean error (MEC, Eq 3) were

used to test the regression equation accuracy [10].

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðy � y0Þ2

n

v
u
u
u
t

ð2Þ
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MEC ¼

Xn

i¼1

y � y0

y

�
�
�
�

�
�
�
�

n
ð3Þ

Where y is a measured data, y0 is an estimated data, and n is the number of samples.

Results and discussion

AGB vs. SOC_NDVI

The analysis and evaluation of the relevance between AGB and SOC_NDVI which obtained by

the SOC 710 in the field was the important step for building the AGB model (Fig 2).

The functions were significant (P< 0.001) which consistent with the hypothesis of statisti-

cal analysis. The exponential model was superior for AGB, with R2 of 0.636, indicated by bold

type in Table 1.

The accuracy of the models was tested by SE and MEC (Table 2).

We choose the most suitable exponential equation for assessing AGB based on R2 and the

independent validations (R2 = 0.636, SE = 49.22 g m-2, MEC = 30.01%; Tables 1 and 2). The

relational model of AGB VS. SOC_NDVI of the entire Khorchin grassland as follows:

ANPP ¼ 12:523� e3:370�SOC NDVI ð4Þ

TM_NDVI vs. SOC_NDVI

The linear regression equation was selected based on the analysis of the TM_NDVI/

SOC_NDVI scatter plot. The relationship between TM_NDVI and SOC_NDVI was signifi-

cant, with R2 of 0.656 (p< 0.001) (Fig 3). The relational model of TM_NDVI VS. SOC_NDVI

for the entire Khorchin grassland as follows (Eq 5):

SOC NDVI ¼ 0:462� TM NDVI þ 0:413 ð5Þ

Spectral inversion model

The spectral inversion model of TM8 for AGB was calculated by Eqs 4 and 5:

AGB ¼ 12:523� e3:370�ð0:462�TM NDVIþ0:413Þ ð6Þ

To test the agreement between measured and predicted values, we applied Eq 6 to the TM8

NDVI greyscale image and obtained the patterns of AGB distribution in the study area by grid

computing. The test data sets were then converted into vector diagrams defined by geographic

coordinates by geographic information system. The values at the test points were recorded in

the distribution patterns as the corresponding pixels predicting values of AGB. The relation-

ship between actual and predicted values was used to evaluate the accuracy of model.

The correlation between the predicted and actual values of biomass was significant, as were

the independent validations for predicting biomass (SE = 24.74, MEC = 18.61%; Fig 4). This

study suggested that the spectral inversion model could be used to monitor grassland biomass

at regional scales.

The accuracy of the model

The main goal of this study was to establish the accurate model for estimating AGB of the

grassland in Khorchin. The quality of the selected remote sensing image data has a direct

impact on the model fitting accuracy [40–42]. In a previous study, we also calculated the
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NDVI from data collected by a FieldSpec3 spectroradiometer (Analytical Spectral Devices,

Boulder, USA) [10]. To ensure that the high-quality data was retrieved to improve the accuracy

in the present study, we used the SOC 710 Hyperspectral Imaging System with spectral resolu-

tion of 2.3nm which higher than the FieldSpec3 spectroradiometer. Meanwhile, the weight of

SOC 710 about half of FieldSpec3 spectroradiometer, so it was more portable for field

Fig 2. The Simulation curves of the regression equation of the training samples.

https://doi.org/10.1371/journal.pone.0223934.g002
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observation. Compared with the previous Landsat data, Landsat 8 satellite data has been cho-

sen for the higher geometric accuracy and signal-to-noise ratio. In terms of band design, the

number of Landsat 8 bands is increasing and the division is more precise, which effectively

expands the application range of image data. In terms of imaging mode, the sweep and swing

design of the OLI imager has good stability and improves the quality of image acquisition. In

terms of geometric accuracy, the L1T data of TM 8 product has been accurately corrected

using ground control point GLS2005 and digital elevation model data.

The TM8 remotely sensed imaging data were only released in 2013, so they have not yet

been widely applied to monitor vegetational biomass. This study applied the field data for

monitoring the vegetation, thereby providing an informational baseline for this study area.

The spectral inversion model was ideal, indicating that TM8 remote imaging can be used for

research on vegetation biomass on a regional scale.

The optimal equations for the estimation of AGB (Fig 2D) indicate that the correlation of

SOC_NDVI VS. AGB from strong to weak at biomass >250 g m-2 for grassland. Estimates of

biomass above or exceed these levels would inaccurate or unreliable and may be affected by

the NDVI lower saturation phenomenon in areas of dense vegetation cover [43].

The result showed that field spectral data collected by SOC 710 are intrinsically linked to

those obtained by TM8 remote sensing. However, the model could be more accurate if field

and satellite data are collected over several years rather than only for one year. Also, the field

and satellite data should be acquired at the same time for maximal correspondence in future

field experiments.

Conclusions

This study developed a relatively accurate model for estimating AGB and tests the applicability

of hyperspectral data from field and TM8 to map AGB on regional scales by a regression analy-

sis method. The methodology we adopted in the study was a first attempt to Retrieval of vege-

tation biomass from ground hyperspectral remote sensing in Khorchin grassland.

The accuracy of ground spectral inversion is affected by many factors, and the quality of the

selected remote sensing image data has the greatest impact on the fitting accuracy of the

model. Landsat 8 satellite data is selected for remote sensing data, which has higher geometric

accuracy and signal-to-noise ratio than previous Landsat data, which effectively expands the

application range of image data. In the aspect of imaging mode, the sweep pendulum design of

OLI imager has good stability and improves the image quality, and in the aspect of geometric

Table 1. Comparison of the regression equations between AGB and SOC_NDVI.

Linear Logarithmic Power Exponential

Samples(n) 115 115 115 115

Equation y = 443.297x − 166.610 y = 284.562ln(x) + 248.525 y = 299.611x2.216 y = 12.523e3.370x

R2 0.617 0.579 0.626 0.636

AdjustedR2 0.614 0.575 0.623 0.633

https://doi.org/10.1371/journal.pone.0223934.t001

Table 2. The errors of the regression equations.

Linear Logarithmic Power Exponential

AGB Samples(n) 38 38 38 38

SE (gm-2) 52.64 55.46 51.32 49.22

MEC (%) 34.77 37.09 31.64 30.01

https://doi.org/10.1371/journal.pone.0223934.t002
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Fig 3. Linear regression between SOC_NDVI and TM_NDVI.

https://doi.org/10.1371/journal.pone.0223934.g003

Fig 4. The correlation between predicted biomass and actual biomass.

https://doi.org/10.1371/journal.pone.0223934.g004
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accuracy, L1T data product is a data product after precise correction, and the product accuracy

has been greatly improved. In this paper, TM8 data is used to retrieve vegetation biomass, and

the results show that calculated R2 and SE and MEC values for various regression models vary

among ground spectral models. By comparison, the best correlation of AGB VS. SOC_NDVI

was exponential regression models. An exponential equation was optimal for estimating AGB

in the Khorchin grassland. Accuracy verification indicated that the relationship between the

actual and predicted biomass was significant. So, it was feasible for Estimating AGB by TM8

satellite data, which accumulates experience for the application of TM8 data in vegetation

monitoring field.

The model accuracy could be further improved if spectral monitoring carried out according

to vegetation types or more spectral data of ground samples collected. In brief, this research

shows the usefulness of hyperspectral data from field and TM8 to evaluate aboveground bio-

mass at very high precision and provide theoretical and data support for RS monitoring, grass-

land governance and ecological restoration.
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