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Abstract

To investigate morphological characteristics and generation mechanism of the machined

gears surface, image characteristics of machined surface morphology including profile

roughness, fractal and textural characteristics were studied. the change of profile curves for

the surface image is subject to the normal probability density function and the W-M function.

The orientation angle of surface texture is 0˚, the surface profile curves are the smoothest

and have the most uniform, regular textures. When the texture orientation is 45˚ or 135˚, the

surface profile curves show large fluctuations, while surface image textures present the

deepest grooves and are shown to be distributed most irregularly. Additionally, the influence

mechanism of different grinding parameters on the morphological characteristics of

machined surface was investigated. The quality of machined surfaces increased with the

grinding speed while deteriorated with increasing radial, or axial, feed speeds.

Introduction

Surface morphological characteristics exert a significant influence on the properties of gear

surface including microcontact, friction, wear and lubrication behaviours. How to characterise

the micromorphological characteristics of rough surface image has been a research focus in

evaluating the quality of machined surfaces. The commonly used roughness coefficient fails to

reflect the stochastic behaviour and minutiae of the features of rough surface morphologies,

therefore, multiple methods, such as grey-level statistics and fractal theory of surface morpho-

logical image, have been widely used to describe the characteristics of surface morphology [1–

5]. Haralick [6] proposed a grey level co-occurrence matrix (GLCM) and transformed the

grey-level information of Landsat images into texture information. Tian et al. [7] established a

set of new methods for evaluating unconventional rough surfaces of such ceramics was devel-

oped by using GLCM and a neural network. The influences of three parameters including step

size, greyscale quantisation and direction on the GLCM were investigated to measure the

machined surface morphology of Si3N4 ceramic. Yang et al. [8] introduced a new feature

extraction method for texture classification application using dual-tree complex wavelet
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transform and GLCM. Dual-tree complex wavelet transform is performed on the original

image to obtain sub-images, and GLCM of each sub-image is calculated and the corresponding

statistical values are used to construct the final feature vector. Fractal theory forms the basis for

fractal geometry in modern mathematics and suggests that the local characteristics of different

factors including morphology, structure, information, function, and energy have a certain sim-

ilarity or regularity in the spatio-temporal domain. By utilising the fractal dimensions of an

image region, the surface morphological characteristics of the image region can be investigated

[9,10]. Presently, the estimating method of the fractal dimensions for complex rough surfaces

based on three-dimensional spatial information or image colour information [11]. Pentlan

et al. [12] proposed that there is a corresponding relationship between fractal theory and grey-

level image information. Panin et al. [13] studied the influence of various methods of obtaining

surface images on the calculated value of fractal dimension as a quantitative characteristic of

the surface state. It is demonstrated that images obtained both by a scanning electron micro-

scope and by a photocamera are characterized by a noticeable noise level, which alters the

behavior of the fractal dimension. Agnieszka et al. [14] applied fractal dimension as a measure

of surface roughness, to address structure and function of G protein-coupled receptors. Luo

et al. [15] proposed a new graphical evaluation of micron-scale surface topography reated to

fractal dimension, and investigated the effect of wire electric discharge machining process

parameters on surface topography. It shown that the pulse-on times is the most dominant fac-

tor in affecting the surface texture. In this study, the roughness, fractal characteristic, and tex-

ture characteristic, of the machined surfaces image were investigated. The method helps in the

acquisition of global information about the morphological characteristics and the forming

mechanism of machined surfaces for gears made by form-grinding.

Materials and methods

The form grinding wheel was fixed in the principal axis of the FANUC BV 75 vertical machin-

ing centre and made to rotate at a high velocity and then the gears were fixed using a parallel-

jaw vice and installed on a dynamometer. The axial feed was realised by moving the worktable

and then the gear surface was subjected to grinding under liquid-based cooling conditions.

Sixteen groups of orthogonal experiments were constructed by using three factors and four

levels, as shown in Table 1. The form grinding wheel was a novel wheel made of the binding

agent of microcrystal corundum ceramics developed by Sinomach Precision Industry Co., Ltd

Table 1. Parameters of the orthogonal experiments.

No. 1 2 3 4 5 6 7 8

Grinding speed

vs (m/s)

35 35 35 35 45 45 45 45

Radial feed

fr (mm)

0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

Axial feed rate

vw (mm/min)

1500 3500 5500 7500 3500 1500 7500 5500

No. 9 10 11 12 13 14 15 16

Grinding speed

vs (m/s)

55 55 55 55 60 60 60 60

Radial feed

fr (mm)

0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

Axial feed rate

vw (mm/min)

5500 7500 1500 3500 7500 5500 3500 1500

https://doi.org/10.1371/journal.pone.0223825.t001
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with dimensions of F 200 mm × 20 mm× F 32 mm. These gear workpieces are made of carbu-

rized and quenched 20CrMnTi steel. By applying the levelling image measurement instru-

ment, the surface morphologies of machined gears were magnified 160 times. Moreover, the

morphology of machined gear surfaces at 200 times magnification was observed by using an

three-dimensional Olympus profilometer. Apart from traditional methods for evaluating

roughness, the morphological characteristics of the surface for the workpiece can be also

described by means of grey-level image information, texture features and fractal dimensions.

Results and discussion

Profiles characterisation of the machined surface

The three-dimensional morphology for the machined surface of 20CrMnTi steel gear is shown

in Fig 1. The processing parameters used for the surface is: a grinding speed (vs) of 40 m/s, an

axial feed rate (vw) of 5,500 mm/min, and a radial feed (fr) of 0.2 mm. Micro-cutting traces and

defects in the grinding process arising from abrasive particles on the workpiece surface could

be seen. In fact, the grinding process of the workpiece is the accumulated micro-cutting effects

simultaneously exerted by large amount of abrasive particles on the workpiece. The grinding

processes successively involve scratches, ploughing, and chip formation. Under the effect of

ploughing, plastic uplift occurred as the surface materials were pushed to each side. This typi-

cal machined surfaces of gears exhibited an approximate arrangement of texture primitives.

The orientation angle of surface texture that is parallel to the direction to the machining

trace is defined as 0˚, while the surface rotates along the clockwise direction passing through θ,

the orientation angle of surface texture also seen as θ. Based on the experimental parameters of

each group, the roughnesses for the machined surface in three groups at four texture orienta-

tions of 0˚, 15˚, 45˚, and 90˚ were stochastically measured.

Fig 2 shows the distributions of mean values for two parameters (asperity height Ra (arith-

metic average deviation of profile height) and spacing Rsm of different microscopic asperities)

at different texture orientations. The characteristic parameters of microscopic asperity height

Fig 1. Image of the three-dimensional surface morphology.

https://doi.org/10.1371/journal.pone.0223825.g001
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are the smallest at the texture orientation of 0˚. As the texture orientation θ increased from 0˚

to 90˚, the surface profile curves become increasingly rough, the characteristic parameters of

microscopic asperity height reach their maximum at the texture orientation of 45˚, and then

gradually decline. The spacing Rsm of microscopic asperities reflects the number of distributed

wave crests and troughs of the surface profile curves. As θ increases from 0˚ to 90˚, the lower

the value of Rsm, the greater the number of wave crests and troughs on the machined surface in

the evaluated wave length, which causes more significant superposition of stresses leading to

greater stress concentration. This decreased the fracture strength of a machined surface sub-

jected to applied tensile load. The skewness coefficient Rsk and kurtosis coefficient Rku are

parameters illustrating the distribution shapes of the surface profile curves. The larger the

skewness and kurtosis coefficients, the more prone the protruding peaks of the profile curves

are to being sharper, indicating a weaker bearing capacity. Fig 3 shows the parameters of distri-

bution shapes of the surface profiles at different texture orientations. As the texture orientation

θ gradually increases from 0˚ to 90˚, the sharp peak of wave crests of the surface profile

declines at first, and then rises. The wave crests of the surface profile at the texture orientations

of 0˚ and 90˚ exhibited the largest sharp peaks. The mean values of the skewness coefficients

Rsk at the four texture orientations all ranged from 0 to 0.4 while those of kurtosis coefficients

Rku ranged from 3 to 4. Therefore, the protruding peak shapes of surface profile curves at dif-

ferent texture orientations mainly appeared as sharp peaks and the stochasticity of distribu-

tions of surface profile curves approximately conformed to the normal distribution function.

The heights of the surface profiles along different surface and texture orientation angles of

the machined surface exhibited different changes. The measured parameters used to estimate

the profiles for the machined surface morphology along different textural orientations are

shown in Table 2. When the orientation angle of surface texture is 0˚, the longitudinal height

of surface profile presents a slow fluctuation. When Ra is 0.6947 um, the microscopic asperity

height Ra is the smallest. The profile curves leans towards the upper part of the zero-angle

curves with a large transverse span and exhibits the microstructure typical of the surface profile

Fig 2. Parameters of microscopic asperity.

https://doi.org/10.1371/journal.pone.0223825.g002
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that was shown to be the most sparse. When Rsm is 172 um, the spacing of microscopic asperi-

ties, Rsm is the largest. The heights of the surface profile curves at texture orientations of 15˚

and 45˚ show large fluctuations, while the value of Ra is at its maximum. The transverse spans

of the surface profiles at 15˚ and 45˚ decrease compared with that at 0˚. The profile curves at

the texture orientation of 90˚ were used to evaluate samples based on this being a standard

detection. The profile curves are generally distributed in the two sides of the zero-angle curves

while mainly concentrate on the upper part thereof. The longitudinal height of the profile

curves exhibits smaller changes than those at 15˚ and 45˚ while being larger than that at 0˚.

The transverse span of the surface profile curves reaches its minimum at Rsm is 79 um, in this

case, finest microstructure of profile curves and the spacing of microscopic asperities Rsm is

smallest. By analysing the parameters of distribution shapes of profile curves in Table 2, it can

be seen that, at texture orientations of 0˚ and 90˚, the skewness coefficient Rsk is greater than 0

while the kurtosis coefficient Rku is greater than 3 and the protruding peaks of surface profiles

mainly appear as sharp peaks; however, at the texture orientations of 15˚ and 45˚, the skewness

coefficients Rsk� 0 while kurtosis coefficients Rku� 3, while protruding peak of their profiles

is mainly seen to be a combination of sharp and blunt peaks.

As change in the profile heights of rough surface morphologies is seen as an unstable sto-

chastic process, probability distribution function can be used to describe the distribution and

Table 2. Parameters of evaluating the profile shapes of the machined gear.

Angle Ra (μm) Rsm (μm) Rsk (μm) Rku (μm)

0˚ 0.6947 172 0.8881 3.882

15˚ 0.8996 115 -0.1677 2.9274

45˚ 1.0573 105.5 -0.0715 2.9714

90˚ 0.8730 79 0.7144 3.0227

https://doi.org/10.1371/journal.pone.0223825.t002

Fig 3. Parameters of profile distribution shapes.

https://doi.org/10.1371/journal.pone.0223825.g003
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concentration of heights of the protruding peaks on the profile curves. When Rsk is between -1

and 1, and Rku ranges from 2 to 4, the probability distribution of the height change of profile

curves of these rough surfaces is approximately normal. If a and σ separately refer to the mean

value and variance, the probability density function can be expressed as follows [16]:

pðzÞ ¼
1
ffiffiffiffiffiffi
2p
p

s
exp �

ðz � aÞ2

2s2

� �

ð1Þ

Table 3 shows the calculation results of the mean value a and variance σ of the profile curves

of the rough surface at four texture orientations of 0˚, 15˚, 45˚, and 90˚. The value of a reflects

the distribution tendency of the location of the primary profile curves. The larger the absolute

value of a, the further the median line of the arithmetic mean for the profile lies from the zero-

angle curve. When a = 0, the profile curves are approximately uniformly distributed on the

two sides of the zero-angle curve; when a> 0, the profile curves are mainly found on the

upper part of the zero-angle curve, meanwhile, the larger the mean value, the larger the posi-

tive deviation; when a< 0, the profile curves are found to distributed on the lower part of the

zero-angle curve, while the profile shapes at texture orientations of 0˚ and 90˚ are located on

the upper part of the zero-angle curve while those for 15˚ and 45˚are distributed on the lower

part thereof. The variance σ reflects the fluctuations in the height of the rough surface profiles:

the larger the variance, the more significant the fluctuations in the profile curves, and the

larger the height of the microscopic asperities. The variance, at 45˚, was maximised, implying

that the fluctuation of the height of the profile curves was the most obvious. The variance was

minimised at 0˚, which indicated that the height fluctuations were moderate.

Traditional parameters for characterising surface roughness are affected by both the dimen-

sions and resolution, thus having a certain limitation in the analysis of surface morphology.

The partial and overall profile curves of the machined surface morphology of the gears exhib-

ited a certain self-similarity and self-affine characteristics. Existing research shows that fractal

theory can be used to characterise the rough surface morphology of workpieces so as to estab-

lish the W-M function simulation model for surface profiles. The W-M function shows charac-

teristics including continuity and self-affine characteristics. For the stochastic surface

conforming to the normal distribution, w = 1.5n. Since the sampling length and resolution

ratio are 800 um and 5/7, respectively, so 1/800 < w< 7/10 (namely, -16� n� -1). If x, D,

and C refer to the survey coordinate, fractal dimension, and the coefficient of characteristic

scale, the W-M function for simulating the rough surface profile can be expressed as follows

[17]:

zðxÞ ¼ CD� 1
X� 1

n¼� 16

cosð2p � 1:5nxÞ
1:5ð2� DÞn

ð2Þ

Coefficients D and C are closely associated with the surface roughness. By employing the

box-counting method, the fractal dimensions, scale coefficients and the correlation test of

Table 3. The mean values and variances of the profile curves at four orientations.

Angle Mean value a Variance σ
0˚ 0.05 0.60

15˚ -0.12 2.99

45˚ -0.01 3.37

90˚ 0.11 2.66

https://doi.org/10.1371/journal.pone.0223825.t003
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profile curves for the rough surface morphologies at four texture orientations of 0˚, 15˚, 45˚,

and 90˚were calculated (Fig 1 and Table 4). It can be seen from the table that as the angle grad-

ually increases from 0˚ to 90˚, the finer the microstructure of the surface profile, the larger the

corresponding fractal dimensions D. As Ra (the height of microscopic asperities) of the profile

curves increases, that is, the larger the dimension of profiles, characteristic scale coefficient C
also increases. The results of the correlation test reveal that the correlations corr at the four ori-

entations of 0˚, 15˚, 45˚, and 90˚ all exceed 99%, implying that the profile curves of the rough

surfaces had significant fractal characteristics.

Texture characteristics of the machined surfaces

Gray level co-occurrence matrix (GLCM) uses second-order statistics to measure the gray

level variation of image, and reflects the spatial distribution characteristics of gray level of tex-

ture. The different morphological features of each different gray-scale image are formed by the

repeated changes of gray-scale distribution in spatial position[18–19].Wang et al. [7]found

that only some characteristic parameters (including contrast, inverse difference moment

(IDM), correlation, and entropy) show low correlation and the method is able to acquire a

high-accuracy textural classification precision. The test results showed that the change in con-

trast is generally consistent with that of entropy while the changes in energy and correlation

are in agreement with that of IDM. Therefore, only contrast and IDM are used to describe the

texture characteristics. In which, contrast (CON) reflects the depth of grooves on the surface

while IDM shows the uniformity and homogeneity of the texture. If P(i,j) refers to the

extracted grey level co-occurrence matrix, the contrast ratio and IDM are calculated as follows

[15]:

CON ¼
X

i

X

j

ði � jÞ2Pði; jÞ ð3Þ

IDM ¼
X

i

X

j

Pði; jÞ
1þ ði � jÞ2

ð4Þ

The optical images of morphology for the machined surface with 160 ×magnification are

collected. Using MATLAB™ software, a grey level co-occurrence matrix with a compressed

grey level of 160 and a step size of 5 is adopted. The changes in the mean values of contrast

ratio and IDM for three grey level images at four texture orientations (0˚, 15˚, 45˚, and 90˚) in

Fig 4 are obtained.

Fig 5 shows the changes of contrast and IDM with change of texture orientations. At the

texture orientation of 0˚, the contrast, the height of the grooves on the surface, and the height

of the microscopic asperities are all minimised; moreover, the IDM is maximised, a local grey

level change is seen to be slight, and surface textures are distributed most uniformly with a reg-

ular arrangement thereof. The texture is the most regular and uniform at 0˚ and that is parallel

Table 4. Fractal characteristics of profile curves at four orientations.

Angle Fractal dimensions D Characteristic scale coefficient C W-M function scale CD-1 Correlations cor

0˚ 1.2803 2.2987 1.2628 0.9974

15˚ 1.3203 2.8091 1.3921 0.9975

45˚ 1.3433 3.4199 1.5252 0.9974

90˚ 1.3614 2.3796 1.3679 0.9984

https://doi.org/10.1371/journal.pone.0223825.t004
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to the direction of the machining trace. At orientations of 45˚ or 135˚, the contrast ratio, depth

of grooves, and the height of surface microscopic asperities are maximised: however, the IDM

is minimised, while textures change most regularly evincing the poorest uniformity. Therefore,

changes of texture primitives on the machined surface at different texture orientations also dif-

fer. As the angle θ gradually increases from 0˚ to 45˚, the groove depth, uniformity and regu-

larity of the surface textures gradually increase and reach a maximum at 45˚. Afterwards, they

were slightly decreased at the texture orientation of 90˚ and were near-vertical to the direction

of the machining trace.

As an essential inherent attribute of images, texture characteristics are able to show the

local micromorphology and the attributes of local spatial distribution for textures that approxi-

mately show a regular arrangement. Three images of the surfaces of the machined gears based

on the machined parameters in each of the four groups were stochastically collected. To guar-

antee invariance under image rotation, the mean values of texture characteristics at four

Fig 4. Grey level images of the machined surfaces of gears.

https://doi.org/10.1371/journal.pone.0223825.g004

Fig 5. Texture characteristics at different texture orientations.

https://doi.org/10.1371/journal.pone.0223825.g005
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orientations of 0˚, 15˚, 45˚, and 90˚ are calculated based on the step size of 5 and a compressed

grey level of 60 to describe the texture state of the machined gear surfaces. To investigate the

uniformity of image grains and depth of grooves on the machined surface, the results of IDM

and contrast are calculated based on the grey level co-occurrence matrix (Table 5).

Variance analysis of the different factors influencing the texture characteristic of the

machined surface was conducted: the results indicated that F ratios of the grinding speed,

radial, and axial, feed rates to IDM were 2.25, 0, and 0.75, respectively. This suggests that the

grinding speed exerts the most significant effect on IDM and the uniformity of the machined

surface morphology. The F ratios of the grinding speed, radial and axial feed rates to contrast

are 0.639, 1.994, and 0.367, respectively. This implies that the radial feed has the most signifi-

cant influence on the contrast and the depth of grooves on the machined surfaces. The changes

in the mean values of two texture characteristics under different grinding parameters and hori-

zontal conditions can be intuitively analysed, as shown in Fig 6. As the grinding speed

increases, the IDM becomes larger while contrast reduces. In the meantime, the homogeneity

and uniformity of the surface textures are increasingly improved and the depth of the grooves

on the surface gradually reduces, leading to a smoother surface. This is because, with a faster

grinding speed, the number of abrasive particles in the grinding process shows multiplicative

growth per unit time. Therefore, the workpiece materials, for the same part, are prone to be

subjected to more instances of micro-cutting effects, which result in the reduced thickness of

the maximum number of non-deformed chips, and thus is conducive to improving the surface

quality. As the radial, or axial, feed rates increase, the IDM gradually reduces and the unifor-

mity and consistency of the surfaces gradually worsen with obvious stochasticity and complex-

ity arising thereon; however, under the same conditions, the contrast gradually increases to

cause the depth of grooves on the machined surface to gradually enlarge and local fluctuations

of the surface profile increase more significantly in amplitude. The reason for this was that,

with increasing radial, or axial, feed rates, the amount of the material removed per unit time

increased and the maximum thickness of those undeformed chips also increased; additionally,

the uplift induced by plastic deformation was more significant and more residual materials

were found on the surface, which reduced the surface machining quality.

There is a corresponding relationship between the spatial information of grinding surface

and the gray information of image. The three-dimensional grinding surface morphology is

reconstructed based on the spatial gray distribution, as shown in Fig 7. Comparing the surface

characteristics of Fig 7(A) and Fig 7(B), with the increase of grinding speed, the plastic bulges

phenomenon weakens, which makes the grinding surface texture more regular and uniform,

and is conducive to improving the surface quality. Comparing the surface characteristics of Fig

7(A) and Fig 7(C), with the increase of grinding depth, plastic bulges is more easily formed,

which makes the surface texture more rough and sparse, and the deeper the texture groove, the

more uneven and irregular. Comparing the surface characteristics of Fig 7(A) and Fig 7(D),

Table 5. Characteristic parameters of the surface textures.

No. 1 2 3 4 5 6 7 8

Inverse difference moment 0.0989 0.0841 0.0759 0.0692 0.0973 0.1088 0.0884 0.0876

Contrast 285.7 528.6 596.4 768.9 255.5 336.2 591.4 690.6

No. 9 10 11 12 13 14 15 16

Inverse difference moment 0.1059 0.0955 0.1255 0.1069 0.1117 0.1161 0.1187 0.1263

Contrast 242.0 432.4 349.6 561.6 235.3 349.0 361.2 453.1

https://doi.org/10.1371/journal.pone.0223825.t005
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the greater the axial feed speed, the more plastic bulges on the grinding surface, the thinner the

surface texture, and the greater the degree of non-uniformity.

Fig 6. Changes in contrast ratios and inverse difference matrices with grinding parameters.

https://doi.org/10.1371/journal.pone.0223825.g006

Fig 7. Three-dimensional micro-topography reconstruction based on gray image.

https://doi.org/10.1371/journal.pone.0223825.g007
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Fractal characteristics of the machined surfaces

The morphologies of the machined surface of workpieces show stochastic spatial distribution

characteristics, which all exert an important effect on their tribological characteristics includ-

ing contact mechanics, abrasive resistance, and fatigue resistance performance. The spatial

information of the machined surfaces had a corresponding correlation with its grey level

image information. If the grey level image with M×M pixels corresponds to grey level Z at

point (x,y) on a coordinate plane, the grey level image can be seen as a curved face Z = f(x,y) in

three-dimensional space. Fractal dimensions are an important measure used for describing the

irregularity, effective spatial occupation, and complexity of complex morphologies of a

machined surface. By employing a differential box-counting approach, the fractal dimension

of machined surfaces of the gears can be calculated. The effect of this three-dimensional space

covering estimation approach is similar to that involving the covering of irregular curves by

using two-dimensional square grids. MATLAB™ was programmed using the differential box-

counting approach so as to extract the values of fractal dimensions of grey-level optical images

for the machined gear surfaces. The calculated fractal dimensions and the detected surface

roughnesses for machined surfaces of the formed grinding wheel are shown in Table 6.

The variance ratios F of different influence factors on the surface fractal dimensions D and the

surface roughnesses of the surface Ra were analysed. The results showed that the influence of the

axial feed rate, grinding speed, and radial feed rate on fractal dimensionD reduce, in descending

order, and their variance ratios F are 1.8, 0.8, and 0.4, respectively: however, the influences of the

axial feed rate, grinding speed, and radial feed rate on surface roughness Ra grow in increasing

order, and the variance ratios of the three parameters are 0.664, 1.06, and 1.176, respectively.

Therefore, the axial feed rate exerts the most significant influence on the irregularity of the surface

morphology while the radial feed rate exerts the greatest effect on the height of microscopic asper-

ities on the surface. Under different horizontal conditions with multiple grinding parameters, the

change in the mean values of the surface fractal dimension D and surface roughness Ra are calcu-

lated, based on which, the curves pertinent to the effects of the different parameters are obtained

by intuitive analysis (Fig 8). The values ofD and Ra both decrease with increasing grinding speed

and increased with increasing radial, and axial, feed rates. This is because, with increased grinding

speed, the number of times the workpiece surface undergoes abrasion per unit time increases geo-

metrically. The smoother the surface morphology of the workpieces, the more uniform, regular,

and finer the texture thereon. With increasing radial, and axial, feed rates, the material removal

rate per unit time increases and the uplifting induced by plastic deformation became more signifi-

cant. Moreover, the more residual materials that have not been removed by grinding, the more

rough, complex, and irregular the surface morphology.

Conclusions

Image characteristics of the gear surface morphology machined form-grinding wheels were

investigated to assess the influence of different grinding parameters on their characteristics

Table 6. Fractal dimensions and surface roughness of the machined surfaces.

No. 1 2 3 4 5 6 7 8

Fractal dimension D 2.3570 2.3880 2.3991 2.4493 2.3675 2.3323 2.3903 2.3966

Surface roughness Ra (μm) 0.75 0.96 1.21 1.35 0.68 0.79 1.01 1.16

No. 9 10 11 12 13 14 15 16

Fractal dimension D 2.3635 2.3875 2.3135 2.3813 2.3669 2.3707 2.3616 2.3294

Surface roughness Ra (μm) 0.7 0.85 0.76 0.88 0.73 0.76 0.78 0.77

https://doi.org/10.1371/journal.pone.0223825.t006
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including profile roughness, fractal characteristics, and textural characteristics. The surface

profile curve model was characterised by using normal probability density and W-M func-

tions. As the orientation angle of surface texture increases from 0˚ to 90˚, the most complex

surface texture and the largest surface roughness at 45˚, and the sharpness of protruding peaks

reaches a minimum at 15˚. Moreover, the surface fractal dimension, roughness, and contrast

all decrease with increasing grinding speed, yet increase with increasing radial, or axial, feed

rates. The IDM increases with the grinding speed, and decreases with increasing radial, and

axial, feed rates. The grinding speed exerts the most significant influence on the uniformity or

homogeneity of the surface morphology while the influence of the radial feed rate on surface

irregularity is the most significant. Moreover, the radial feed rate exerts the most significant

effect on the height of the microcosmic asperities, or depth of grooves, on the machined sur-

face morphology image.
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