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Abstract

In this paper, we define novel graph measures for directed networks. The measures are

based on graph polynomials utilizing the out- and in-degrees of directed graphs. Based on

these polynomial, we define another polynomial and use their positive zeros as graph mea-

sures. The measures have meaningful properties that we investigate based on analytical

and numerical results. As the computational complexity to compute the measures is polyno-

mial, our approach is efficient and can be applied to large networks. We emphasize that our

approach clearly complements the literature in this field as, to the best of our knowledge,

existing complexity measures for directed graphs have never been applied on a large scale.

1 Introduction

Graph complexity measures have been studied extensively [1–4]. Although a large number of

complexity measures have been defined, few deal specifically with directed graphs. However,

many real-world networks such as transportation networks [5] and biological networks [6] are

directed graphs whose edges express critical interactions, flows and so forth. Examples of com-

plexity measures for undirected graphs include treewidth [2], cycle rank [2] and numerous so-

called topological indices, see [4, 7]. Some of the classical graph complexity indices like the dis-

tance-based Wiener index [8] or the graph entropy measure based on vertex orbits due to

Mowshowitz [9] can be computed for directed graphs as well. For example, Knor et al. [10]

studied the Wiener Index on directed graphs. Other classical and distance-based measures like

the Szeged index [11] could also be applied to directed graphs. But to the best of our knowl-

edge, there is no body of literature that focuses on comparing structural graph measures for

undirected and directed graphs.
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Measures for analyzing directed graphs [12] include DAG-width [3], directed treewidth

[13] and girth [1]. Treewidth and directed treewidth are both based on a game-theory

applied to special graph decompositions. It might be difficult to apply these measures to

large real-world networks. Also, the girth of a directed graph has been defined as the mini-

mum length of a directed cycle [1]. If the graph is acyclic, the girth is infinite [1]. Another

technique is due to Bertz et al. [14]; they investigate the complexity of digraphs by identify-

ing all possible subgraphs with a certain number of vertices representing patterns such as

trees, paths, rings etc. Degree sequences are then used to quantify the complexity or diversity

of the digraphs [14]. Hunter and Kreutzer [15] investigate the meaning of several methods

for determining the complexity of directed graphs and point out differences between undi-

rected and directed graphs. Berwanger and Grädel [16] use special tree-decompositions and

define the graph measure entanglement and its relationship to treewidth. Estrada and

Hatano [17] define the measures reciprocity and returnability based on eigenvalues of spe-

cial graph-theoretical matrices. Heterogeneity measures, interpreted as irregularity based on

differences between in-degrees and out-degrees, have been developed by Ye et al. [18]. We

emphasize that in this paper, we put the emphasis on examining complexity measures for

analyzing complex networks. Another important branch of Quantitative Graph Theory [19]

relates to measure the similarity between networks. See [20] for an up-to-date review to sur-

vey this area.

In this paper, we propose an approach that departs from the contributions sketched above.

Based on the occurrences of out- and in-degrees of directed graphs, we define certain graph

polynomials. We show that every directed graph can be characterized by an out- and in-degree

polynomial. In order to obtain positive zeros, we define modified graph polynomials and show

they must possess a unique, positive zero in the interval (0, 1), depending on certain parame-

ters. So, we analyze properties of these polynomials and prove interrelations between their

zeros. Based on these zeros, we define graph complexity measures and investigate issues such

as the correlation between the measures and the homogeneity of the zeros which are associated

with a graph.

2 Methods

2.1 New complexity measures for directed graphs

In this section, we introduce some preliminaries. The directed graphs [21] considered here are

without loops and multiple edges.

Definition 2.1 Let G = (V, E), E� V × V, |V|<1 be a directed graph.

N þ
ðvÞ ≔ f~v 2 Vn fvgjðv; ~vÞ 2 Eg is the set of out � neighbors of v; ð1Þ

N �
ðvÞ ≔ f~u 2 Vn fvgjð~u; vÞ 2 Eg is the set of in � neighbors of v; ð2Þ

doutðvÞ≔ jN
þ
ðvÞj;

dinðvÞ ≔ jN
�
ðvÞj: ð3Þ
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Definition 2.2 Let G = (V, E), E� V × V, |V|<1 be a directed graph.

N þ

0
≔ fv 2 VjdoutðvÞ ¼ 0g; ð4Þ

N þ

0
≔ fv 2 VjdoutðvÞ ¼ 1g; ð5Þ

..

. ..
.

ð6Þ

N þ

dmaxout
≔ fv 2 VjdoutðvÞ ¼ d

max
out g: ð7Þ

Definition 2.3 Let G = (V, E), E� V × V, |V|<1 be a directed graph.

N �

0
≔ fv 2 VjdinðvÞ ¼ 0g; ð8Þ

N �

1
≔ fv 2 VjdinðvÞ ¼ 1g; ð9Þ

..

. ..
.

ð10Þ

N �

dmaxin
≔ fv 2 VjdinðvÞ ¼ d

max
in g: ð11Þ

Now, we define two special graph polynomials with real coefficients. Note that the coeffi-

cients capture structural information of the given graph.

Definition 2.4We define the coefficients of the graph polynomial PG,out(x) by

aoutk ≔ jN þ

dmaxout
j; ð12Þ

aoutk� 1
≔ jN þ

dmaxout � 1
j; ð13Þ

..

. ..
.

ð14Þ

aout
1

≔ jN þ

1
j; ð15Þ

aout
0

≔ jN þ

0
j: ð16Þ

Finally, PG;outðxÞ≔ aoutk x
dmaxout þ � � � þ aout

1
xþ aout

0
x0.

Similarly,

Definition 2.5 we define the coefficients of the graph polynomial PG,in(x) by

aink ≔ jN þ

dmaxin
j; ð17Þ

aink� 1
≔ jN þ

dmaxin � 1
j; ð18Þ

..

. ..
.

ð19Þ

ain
1

≔ jN þ

1
j; ð20Þ

ain
0

≔ jN þ

0
j: ð21Þ

Finally, PG;inðxÞ≔ aink x
dmaxin þ � � � þ ain

1
xþ ain

0
x0.

Obviously PG,out(x) and PG,in(x) have no positive zeros since their sequences of coefficients

have no sign changes. This follows from Descartes’ Rule of Signs, see [22]. In the following, we

establish the conditions under which two associated polynomials have a unique, positive zero

2 (0, 1).

Theorem 2.1 Let G = (V, E) be a directed graph. Now we define the polynomials

P�G;outðxÞ ≔ aout � PG;outðxÞ; ð22Þ

P�G;inðxÞ ≔ ain � PG;inðxÞ: ð23Þ

Measuring the complexity of directed graphs
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There exist parameters aout 2 R and ain 2 R, such that the polynomials P�G,out(x) and P�G,in(x)

have a unique, positive zero δout(G) and δin(G), respectively. In fact, the values of δout(G) and
δin(G) depend on αout and αin, respectively.

Proof: In order to simplify the notation, we write the polynomial as

PGðxÞ ¼ akxk þ � � � þ a1xþ a0; ai 2 Z: ð24Þ

Also, we need to define

P?GðxÞ ¼ a � PGðxÞ ¼ a � ðakx
k þ � � � þ a1xþ a0Þ: ð25Þ

Observe that lim x!1P?GðxÞ ¼ � 1. Assuming P?Gð0Þ > 0 yields the inequality

a � a0 > 0 or a > a0: ð26Þ

Since the sequence of coefficients of P?GðxÞ has only one sign change, Descartes’ Rule of

Signs tells us that P?GðxÞ has a unique zero δ. Now δ 2 (0, 1) if

P?Gð1Þ ¼ a � ðak þ � � � þ a1 þ a0Þ < 0; ð27Þ

and, finally

a < ak þ � � � þ a1 þ a0: ð28Þ

Thus the inequalities (26) and (28) provide a range for δ 2 (0, 1). It is evident that δ depends

on the choice of α needed to satisfy the Inequalities (26) and (28). Finally, the theorem holds

for the two different polynomials represented by the Eqs (22) and (23) along with the corre-

sponding parameters αout and αin.

In the following, we elaborate briefly on the problem of choosing αout and αin. Again, con-

sider the Inequalities (26) and (28), whose parameters can be real numbers or positive integers.

If we choose real numbers, we get an infinite number of polynomials P�G,out(x) and P�G,in(x)

whose roots lie in the interval (0, 1). If αout and αin are taken to be positive integers, the set of

possible polynomials is finite. To determine the effect of the parameters on the roots, we appeal

to the continuity theorem for complex and real polynomials, see [22]. This theorem states that

the zeros of a polynomial are continuous functions of the coefficients of the polynomial, which

mean a small change in the coefficients will cause only a small change in value of the zeros

[22]. It seems to be unclear who was the first who proved the continuity theorem. Yet, it

appears that a proof was already given by Weber in 1895, see [23]. Several other proofs of this

statement have also been given independently, see [22].

Suppose, G is a directed graph and we wish to apply Theorem (2.1). To do this we have to

determine the sets fa
½1�
out; . . . ; a

½p�
outg and fa

½1�

in ; . . . ; a
½q�
in g, if we choose positive integers. The fol-

lowing ordering can be obtained by permuting the indices

a
½1�
out < a

½2�
out < � � � a

½p�
out; ð29Þ

and

a
½1�

in < a
½2�

in < � � � a
½q�
in : ð30Þ

The sets of roots fd
1

outðGÞ; . . . ; d
p
outðGÞg and fd

1

inðGÞ; . . . ; d
q
inðGÞg in the interval (0, 1) can

also be obtained. Applying the continuity theorem may lead to a simplification. For instance,

we always choose the minimum value namely a
½1�
out 2 Z and a

½1�

in 2 Z satisfying the Inequalities

(26) and (28). Consequently, we could reduce the problem to the zeros fd
1

outðGÞg and

Measuring the complexity of directed graphs
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fd
1

inðGÞg. In Section (3.5), we investigate numerically the effect of parameters αout and αin on

the zeros of P�G,out(x) and P�G,in(x) numerically.

2.2 Graph complexity measures

In this section, we define some complexity measures on directed graphs based on the findings

of Section (2.1). Recall the two polynomials, defined earlier, based on out- and in-degrees (see

the Definitions (2.4), (2.5), and the modified polynomials with unique positive zeros in the

interval (0, 1). Here, we argue that these zeros can serve as measures of the structural complex-

ity of a directed graph. These measures are similar to those defined as a function of the eigen-

values of certain graph polynomials, see, e.g., [24, 25]. The eigenvalue based measures,

represented by Eqs (33)–(36), have been defined with an eye to reducing their degeneracy, see

also [24–26]. Degeneracy implies that a measure is unable to distinguish between non- isomor-

phic graphs, [4, 26], and is thus an undesirable property. Taking account of this we define the

following measures.

Definition 2.6

I1ðGÞ ¼ doutðGÞ; ð31Þ

I2ðGÞ ¼ dinðGÞ; ð32Þ

I3ðGÞ ¼
1

2
doutðGÞ þ

1

2
dinðGÞ ð33Þ

I4ðGÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
doutðGÞ

p
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
dinðGÞ

p
; ð34Þ

I5ðGÞ ¼ jlnðdoutðGÞÞj þ jlnðdinÞðGÞj; ð35Þ

I7ðGÞ ¼
jEj

jVj2 � jVj
ð36Þ

δout(G) and δin(G) are unique, positive zeros of the respective out- and in-degree polynomials.

I7 is the well-known edge density [27].

2.3 Examples

In the previous section, we briefly discussed how to find the parameters αout and αin by using

Theorem (2.1). Now, we calculate the polynomials P�G,out(x) and P�G,in(x) as well as their roots

in some special cases. Consider the graphs shown in Fig (1). For G1 we determine

N þ

0
¼ fv7; v8; v9g; N þ

1
¼ fg; N þ

2
¼ fg;

N þ

3
¼ fv6g; N þ

4
¼ fv4; v5g; N þ

5
¼ fg;

N þ

6
¼ fv3g; N þ

7
¼ fv1; v2g;

N �

0
¼ fv1; v2g; N �

1
¼ fg;

N �

2
¼ fv3g; N �

3
¼ fv4g; N �

4
¼ fv5g;

N �

5
¼ fv6; v7g; N �

6
¼ fv8; v9g:

Measuring the complexity of directed graphs
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and

aout
7
¼ 2; aout

6
¼ 1; aout

5
¼ 0; aout

4
¼ 2; aout

3
¼ 1; aout

2
¼ 0; aout

1
¼ 0; aout

0
¼ 3;

ain
6
¼ 2; ain

5
¼ 2; ain

4
¼ 1; ain

3
¼ 1; ain

2
¼ 1; ain

1
¼ 0; ain

0
¼ 2:

From definitions (2.4), (2.5), we obtain

PG1 ;out
ðxÞ ¼ 2x7 þ x6 þ 2x4 þ x3 þ 3;

PG1 ;in
ðxÞ ¼ 2x6 þ 2x5 þ x4 þ x3 þ x2 þ 2:

To determine the range of αout, we use the Inequalities (26) and (28) and infer

aout > 3 and aout < 2þ 2þ 1þ 1þ 1þ 2 ¼ 9: ð37Þ

According to Theorem (2.1), P�G,out(x) and P�G,in(x) have a unique positive zero in the

interval (0, 1) if 3< αout < 9. If we choose positive integers, we obtain the set {4,5,6,7,8} as

valid candidates. In Section (2.1) we explained that due to the continuity of the zeros, it makes

sense to choose the minimum value of this set in order to calculate the zero. Thus,

P�G;outðxÞ ¼ aout � PG;outðxÞ ¼ 4 � ð2x7 þ x6 þ 2x4 þ x3 þ 3Þ ¼ 0; ð38Þ

gives δout(G1)¼
:

0.683953. Following the same procedure, we get

ain > 2 and ain < 9: ð39Þ

This leads to

P�G1;in
ðxÞ ¼ ain � PG1 ;in

ðxÞ ¼ 3 � ð2x6 þ 2x5 þ x4 þ x3 þ x2 þ 2Þ ¼ 0: ð40Þ

Fig 1. Two example graphs from G1.

https://doi.org/10.1371/journal.pone.0223745.g001
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Solving Eq (40) finally gives δin¼
:

0.608309. Similarly, for G2 in Fig (1),

PG2 ;out
ðxÞ ¼ 8xþ 1; ð41Þ

PG2 ;in
ðxÞ ¼ 8xþ 1: ð42Þ

We see that PG2 ;out
ðxÞ ¼ PG2 ;in

ðxÞ. Also, we infer

aout ¼ ain > 1 and aout ¼ ain < 9: ð43Þ

So, αout = αin 2 {2, 3, 4, 5, 6, 7, 8}. Finally,

P�G2 ;out
ðxÞ ¼ aout � PG2 ;out

ðxÞ ¼ 2 � ð8xþ 1Þ ¼ 0; ð44Þ

P�G2 ;in
ðxÞ ¼ ain � PG2 ;in

ðxÞ ¼ 2 � ð8xþ 1Þ ¼ 0: ð45Þ

Hence, δout = δin¼
:

0.125. These findings are summarized in Table (1).

3 Numerical results

3.1 Software and computation

For the work of this paper, we used R [28] to generate the numerical results. To generate the

classes of directed graphs, we used igraph and its functions [29], see Section (3.2). Also, we

performed tests using igraph to ensure the graphs are pairwise non-isomorphic as well as

connected. Moreover, the packages graph and QuACN were used to determine the in-degree

and out-degree distribution of the generated graphs [30, 31].

3.2 Definition of graph classes

In this section, we define the graph classes we used for performing the numerical analysis.

Note that we always performed 1000 repetitions when generating the graphs as we deal with

random graphs.

Definition 3.1 The class G1 contains 20.000 directed, connected randomly chosen graphs
G = (V, E) with 9 vertices.

Table 1. Characteristics of the example graphs G1 and G2.

Op. G1 = (V, E), |V| = 9, |E| = 31 Op. G2 = (V, E), |V| = 9, |E| = 8

PG,out(x) = 2x7 + x6 + 2x4 + x3 + 3 PG,out(x) = 8x + x
P�G;outðxÞ = 1 − (2x7 + x6 + 2x4 + x3) P�G;outðxÞ = 1 − 8x

αout 2 {4, 5, 6, 7, 8} αout 2 {2, 3, 4, 5, 6, 7, 8}

PG,in(x) = 2x6 + 2x5 + x4 + x3 + x2 + 2 P�G;inðxÞ = 8x + 1

P�G;inðxÞ = 1 − (2x6 + 2x5 + x4 + x3 + x2) P�G;inðxÞ = 1 − 8x

αin 2 {3, 4, 5, 6, 7, 8} αin 2 {2, 3, 4, 5, 6, 7, 8}

I1 = 0.683953 I1 = 0.125

I2 = 0.608309 I2 = 0.125

I3 = 0.646131 I3 = 0.125

I4 = 0.803478 I4 = 0.353553

I5 = 0.876937 I5 = 4.158883

I7 = 0.430555 I7 = 0.111111

Op.—operator

https://doi.org/10.1371/journal.pone.0223745.t001
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Note that we have relied on the Erdős—Rényi model [32] to generate these digraphs where

min(|E|) = 8 and max(|E|) = 36. The number of edges and their direction were randomly

selected.

Definition 3.2 G1

2
contains 500 directed, connected, hierarchical graphs G = (V, E) which are

randomly generated. The vertex and the edge sets are given by [33]

V ¼ fv01; � � � ; v0jV0 j
; v11; � � � ; v1jV1 j

; v21; � � � ; v2jV2 j
; v31; � � � ; v3jV3 j

g;

E � E1 [ E2:
ð46Þ

These graphs have four levels. Level 0 is the root level. |Vi|, 0� i� 3 is the number of vertices on
level i. E1 represents the set of edges which jump exactly one level. E2 is the set of jump edges
which over-jump at least one level.Here, all edges move upwards, which means from level 3 to
the root level. Thus, 5� |V|� 30.

Note that these graphs are usually called directed universal graphs and have been intro-

duced in [33]. An example of such a graph is depicted in Fig (2).

Definition 3.3 G2

2
contains 500 directed connected hierarchical graphs G = (V, E) based on

Definition (3.2), where |V| = 20 and 8� |E|� 30.

The reason we choose hierarchical (random) graphs for our analysis is that they appear in

many real world applications, see [33]. Hierarchical graphs appear in many disciplines such as

biology, management and manufacturing, see [34, 35]. Noteworthy are BOM-structures (Bill

of Material) [34, 35]. These graphs have been widely used to analyze production systems and

for representing optimizational tasks.

3.3 Correlation analysis

In this section, we discuss correlations between the graph measures applied to the classes of

graphs defined above. The discussion is limited to the results shown in Figs (3) and (4). Other

correlations have been found but are not presented explicitly here. We begin with results

shown in Fig (3) for graph class G1. Observe that there are many degenerate cases, i.e., non-iso-

morphic graphs having the same measure values. Interestingly, the two zeros of the polynomi-

als P�G,out(x) and P�G,in(x) represented by the measures I1 and I2 are rather weakly correlated.

See Fig (3a). Thus, these indices capture structural information differently on random graphs

with 9 vertices. A plausible explanation for the values of the Spearman correlation being higher

Fig 2. An example graph G 2 G1

2
where |V| = 23, |E| = 35.

https://doi.org/10.1371/journal.pone.0223745.g002
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Fig 3. Scatter plots for I1 vs. Ij, 2� j� 5.

https://doi.org/10.1371/journal.pone.0223745.g003
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Fig 4. Scatter plots for I7 vs. Ij, 2� j� 5.

https://doi.org/10.1371/journal.pone.0223745.g004
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for the random graphs of G1 (shown by Fig (3d), (3g) and (3h) is that I3, I4, I5 also depend on

I1. For some combinations of I1 vs. Ij, 2� j� 5, the correlation is also weak and, hence, the

associated measures give quite different values. For instance, this is the case for I1 and I2 on G1

2
.

A possible reason for the weak correlation and for the wide spread shown on the scatter plots

is that the underlying hierarchical graphs have a more distinct structure compared to the

completely random graphs 2 G1. This also implies that the degeneracy is much lower com-

pared with 2 G1, which also holds for the scatter plots shown in Fig (3) for G2

2
. All the values of

the Spearman correlation are given in Table (2).

Similar results are obtained for all other combinations of Ii vs. Ij, 2� j� 5, 2� i� 6, which

is the reason they are not shown explicitly here. Finally, consider Fig (4). These scatter plots as

well as the values in Table (2), show that the edge density I7 has no structural relationship with

all other measures. The left column of Fig (4), also shows that I7 is highly degenerated. This is

not surprising given its definition. As indicated earlier, the measures applied to graph classes

containing hierarchical graphs have fewer degeneracies.

3.4 Extremal graphs/relations

Now we take a closer look at graphs that attain maximum or minimum values under the graph

measures of Definition (2.6). Fig (5) shows two graphs for which max(I1) and min(I1) obtains.

Take graph G3 as an example. To calculate P�G3 ;out
ðxÞ, we apply Theorem (2.1) and solve the

Table 2. Spearman correlation of the graph measures for G1, G1

2
and G2

2
.

G1 G1

2
G2

2

I1 I2 I3 I4 I5 I1 I2 I3 I4 I5 I1 I2 I3 I4 I5

I2 0.3709 I2 0.0046 I2 -0.0146

I3 0.8221 0.8194 I3 0.8259 0.5106 I3 0.8403 0.4818

I4 0.8203 0.8199 0.9989 I4 0.7735 0.5956 0.9898 I4 0.7948 0.5626 0.9911

I5 -0.8171 -0.8188 -0.9959 -0.9990 I5 -0.7013 -0.6794 -0.9559 -0.9873 I5 -0.7316 -0.6422 -0.9626 -0.9894

I7 0.6112 0.6218 0.7439 0.7541 -0.7624 I7 0.0140 -0.0666 -0.0135 -0.0215 0.0286 I7 0.1825 0.4427 0.3741 0.4168 -0.4570

https://doi.org/10.1371/journal.pone.0223745.t002

Fig 5. Two graphs 2 G1 maximizing and minimizing I1 and I2.

https://doi.org/10.1371/journal.pone.0223745.g005
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equation

aout � ðx8 þ 8Þ ¼ 0: ð47Þ

According to Theorem (2.1), we know that Eq (47) has a unique, positive zero in the inter-

val (0, 1) which obviously depends on the parameter αout. Solving Eq (47) gives x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aout � 88

p
.

So, to maximize graph measure I1 we have to determine max aout
f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aout � 88

p
g: Note that Theo-

rem (2.1) also gives 8< αout < 9. In Table (3), we set αout = 8.5 in order to compute the values

of the graph complexity measures. Clearly, this is the maximum value of I1 for the given

parameter. The case min(I1) for G4 can be shown analogously.

Now, we are in position to begin our analysis of extremal conditions and relations between

digraphs.

Theorem 3.1 Let G = (VG, EG) and H = (VH, EH), be two digraphs. Define

PGðxÞ ≔ a � ðaG
1
xþ aG

0
Þ; aGi 2 N; ð48Þ

PHðxÞ ≔ a � ðaHn x
n þ aHn� 1

xn� 1 þ � � � þ aH
1
xþ aH

0
Þ; aHi 2 N; ð49Þ

and assume that there exist graphs G and H with the given polynomials. Also, assume that the
conditions of Theorem (2.1), namely,

aG
0
< a < aG

1
þ aG

0
; ð50Þ

aH
0
< a < aHn þ a

H
n� 1
þ � � � þ aH

1
þ aH

0
; ð51Þ

are satisfied, and there exists α satisfying the Inequalities (50) and (51). The equation

a � aG
0

aG1
¼ d

a
ðGÞ > d

a
ðHÞ; ð52Þ

Table 3. Polynomials, parameters and graph measures for calculating I1 and I2 for G3, G4 2 G1.

Op. G3 = (V, E), |V| = 9, |E| = 8 Op. G4 = (V, E), |V| = 9, |E| = 8

PG,out(x) = 1x8 + 8 PG,out(x) = 8x + 1

P�G;outðxÞ = 0.5 − x8 P�G;outðxÞ = 1 − 8x

αout 2 {8.5} αout 2 {2, 3, 4, 5, 6, 7, 8}

PG,in(x) = 8x + 1 PG,in(x) = x7 + x + 7

P�G;inðxÞ = 1 − 8x P�G;inðxÞ = 1 − (x7 + x)

αin 2 {2, 3, 4, 5, 6, 7, 8} αin 2 {8}

I1 = 0.917004 I1 = 0.125

I2 = 0.125 I2 = 0.796544

I3 = 0.521002 I3 = 0.460772

I4 = 0.655578 I4 = 0.623023

I5 = 2.166084 I5 = 2.306914

I7 = 0.111111 I7 = 0.111111

Op.—operator

https://doi.org/10.1371/journal.pone.0223745.t003
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holds if

a <
aHn
ðaG1 Þ

n ða � aG0 Þ
n
þ

aHn� 1

ðaG1 Þ
n� 1
ða � aG

0
Þ
n� 1
þ � � � þ

aH
1

aG1
ða � aG

0
Þ þ aH

0
: ð53Þ

Proof: Consider the polynomials represented by the Eqs (48) and (49). Since we assume the

Inequalities (50) and (50) are valid, Theorem (2.1) assures us that δα(G) and δα(H) lie in the

interval (0, 1). The notation δα makes explicit the dependence of the zeros on the parameter α.

Clearly, PGðxÞ ¼ a � ðaG1 xþ a
G
0
Þ ¼ 0 implies d

a
ðGÞ ¼ a� aG

0

aG
1

. Assuming PH(δα(G))< 0, we con-

clude that Inequality (52) must be satisfied. But

PHðd
a
ðGÞÞ ¼ a �

aHn
ðaG1 Þ

n ða � aG0 Þ
n
þ

aHn� 1

ðaG1 Þ
n� 1
ða � aG

0
Þ
n� 1
þ � � � þ

aH
1

aG1
ða � aG

0
Þ þ aH

0

" #

< 0; ð54Þ

implies the Inequality (53).

Corollary 3.1 Referring to Theorem (3.1), we assume that for the two polynomials represented
by the Eqs (48) and (49) the Inequalities (50) and (50) are satisfied. If aH

1
¼ aG

1
and aG

0
¼ aH

0
,

then Inequality (52) always holds.
Proof: Setting aH

1
¼ aG

1
and aG

0
¼ aH

0
in Inequality (53), we obtain

aHn
ðaG1 Þ

n ða � aG0 Þ
n
þ

aHn� 1

ðaG1 Þ
n� 1
ða � aG

0
Þ
n� 1
þ � � � þ

aH
2

ðaG1 Þ
2
ða � aG

0
Þ

2
> 0: ð55Þ

As a > aG
0

, Inequality (55) is always satisfied.

Finally, we state the following theorem.

Theorem 3.2 Let G = (VG, EG) and H = (VH, EH) be two digraphs, and define

PGðxÞ ≔ a � ðaGn x
n þ aGn� 1

xn� 1 þ � � � þ aG
1
xþ aG

0
Þ; aGi 2 NÞ; ð56Þ

PHðxÞ ≔ a � ðaHn x
n þ aHn� 1

xn� 1 þ � � � þ aH
1
xþ aH

0
Þ; aHi 2 N: ð57Þ

assuming that there are graphs G and H with the given polynomials. Now,

aG
0
< a < aGn þ � � � þ a

G
1
þ aG

0
; ð58Þ

aH
0
< a < aHn þ � � � þ a

H
1
þ aH

0
: ð59Þ

Choose α such that it satisfies the Inequalities (58) and (59). If

aGn < aHi for 1 � i � n; ð60Þ

then

d
a
ðGÞ > d

a
ðHÞ: ð61Þ

Both δα(G) and δα(H) lie in (0, 1).

Proof: From the Inequality-System (60), we derive

PGðxÞ ¼ a � ða
G
n x

n þ aGn� 1
xn� 1 þ � � � þ aG

1
xþ aG

0
Þ

> a � ðaHn x
n þ aHn� 1

xn� 1 þ � � � þ aH
1
xþ aH

0
Þ ¼ PHðxÞ: ð62Þ

But PG(x)> PH(x) implies Inequality (61).

Consider the two graphs G4 (see Fig (5)) and G (see Fig (2)). We use these examples to dem-

onstrate Theorem (3.1). In this demonstration, we consider only the out-degree polynomial
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and obtain

P�G4 ;out
ðxÞ ¼ a � ð8xþ 1Þ; ð63Þ

P�G;outðxÞ ¼ a � ðx
8 þ x7 þ 5x2 þ 10xþ 6Þ: ð64Þ

Note that G4 and G2 (see Fig (1) and Table (1)) have the same polynomial PG4 ;out
ðxÞ and

PG2;out
ðxÞ but the two graphs are non-isomorphic. We call such polynomials degenerate. The

Inequalities (26) and (28) give for G4, 1< α< 9 and for G, 6< α< 23. So, if we choose, e.g.,

α = 7, these two inequalities are satisfied. So, we need to check whether the Inequality (53)

7 <
1

88
ð7 � 1Þ

8
þ

1

87
ð7 � 1Þ

7
þ

5

85
ð7 � 1Þ

5
þ

10

8
ð7 � 1Þ þ 6; ð65Þ

holds in this case. Since 7< 14.920, Theorem (3.1) says

d
a¼7
ðG4Þ > d

a¼7
ðGÞ: ð66Þ

From Eqs (63) and (64) with α = 7, we finally obtain

d
a¼7
ðG4Þ ¼

3

4
and d

a¼7
ðGÞ¼: 0:099995: ð67Þ

The two graphs shown by Fig (6A) provide another illustration of Theorem (3.2). Again, we

deal only with the out-degree polynomials. From Fig (6), we determine

P�G5 ;out
ðxÞ ¼ a � ðx3 þ x2 þ 2xþ 4Þ; ð68Þ

P�G6 ;out
ðxÞ ¼ a � ð2x3 þ 2x2 þ 3xþ 6Þ: ð69Þ

The two graphs have a different number of vertices and edges but their underlying out-

degree polynomials have the same degree. Moreover, the Inequality-System (60) is satisfied.

Fig 6. The two example graphs G5 and G6.

https://doi.org/10.1371/journal.pone.0223745.g006
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For Inequalities 4< α< 8 for G5 and 6< α< 13, we can choose α = 7. Calculating the zeros

of the polynomials represented by the Eqs (68) and (69) gives

d
a¼7
ðG5Þ¼

:
0:843734 > d

a¼7
ðG6Þ¼

:
0:271069: ð70Þ

3.5 Homogeneity of The Zeros—Influence of αout and αin

In this section, we briefly investigate the influence of αout and αin. To measure the divergences

between the resulting zeros, we define a homogeneity measure.

For this discussion we restrict attention to out-degrees; analogous results hold for in-

degrees. Let G be a directed graph with associated polynomials PG,out(x) and P�G,out(x).

Suppose the Inequalities (26) and (28), yield kGout possible values aG;1out ; � � � ; a
G;kGout
out . Thus,

d
G;1
out ; d

G;2
out ; � � � ; d

G;kGout
out are possible roots of P�G,out(x) = 0.

To define the homogeneity of the set

SGout ¼ fd
G;1
out ; d

G;2
out ; � � � ; d

G;kGout
out g: ð71Þ

we use a real valued distance measure, namely,

dðx; yÞ ¼ jx � yj; x; y 2 R: ð72Þ

The homogeneity of SGout is defined by

hðSGoutÞ ¼
1

kGoutðkGout � 1Þ

Xk
G
out

i¼1

Xk
G
out

j¼1

dðdG;iout; d
G;j
outÞ: ð73Þ

The value for in-degrees is defined similarly. A high h-score indicates that the set SG is inho-

mogeneous while a small value of h gives a high homogeneity rank of SG. The definition is

illustrated in Fig (7).

The homogeneity values are plotted against the number of polynomials in Fig (7). First,

observe that the distributions of the homogeneity values for out-degrees and in-degrees look

very similar. Also, we observe that the differences between the zeros is quite small, which

implies that homogeneity is high. This can be seen from the value-range in Fig (7). This result

is not surprising as we explained in Section (2.1), i.e., the zeros of a polynomial are continuous

functions of the coefficients of the polynomial. In fact, if we vary αout or αin, we see that the

coefficients of the resulting polynomials are quite similar, when only the constant terms αout

and αin are changed, see the Eqs (22) and (23). Therefore, the small differences between the

roots (and the high homogeneity values) reflect the continuity theorem for complex and real

polynomials, see [22].

3.6 Computational complexity

In this section, we briefly sketch some ideas to determine the computational complexity to

compute δ. Note that calculating the vertex degrees requires polynomial time, i.e., O(n2) in

case n is the order of an input graph. Assigning the out- and in-degrees to the monomials xi

can be achieved in constant time and adding up those terms requires linear time complexity,

i.e., O(k); k is the degree of the polynomial. Altogether, we see that we are able to construct an

efficient algorithm to compute δ.
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Fig 7. Distributions of the hðSGoutÞ and hðSGinÞ values for all three graph classes.

https://doi.org/10.1371/journal.pone.0223745.g007
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4 Summary and conclusion

In this paper, we have introduced new complexity measures for real networks. One reason for

developing an alternative to degree-based measures such as the Zagreb indices [4] or entropies

based on vertex degrees [36] is their high degeneracy, meaning that many pairwise non-iso-

morphic graphs have the same measured value. Similar to [37], we developed a polynomial-

based approach for measuring the complexity of directed graphs. To the best of our knowl-

edge, there are very few measures for directed graphs, e.g., treewith and girth, and these are

true complexity measures for encoding structural information of a directed graph. Following

[37], we developed graph polynomials based on the out- and in-degrees of directed graphs and

constructed modified polynomials which posses a unique, positive zero in the interval (0, 1),

depending on up to two parameters αout and αout. These zeros δout and δin can be interpreted

as complexity measures. Interestingly, we start with a graph invariant and construct polynomi-

als which are associated with the graph. However, the graph measures defined here are alge-

braic quantities representing the zeros of polynomials.

Analytical results showing relationships between the graph measures have been demon-

strated; we have obtained numerical results that show correlations between the graph mea-

sures, and have investigated the homogeneity of the zeros (graph measures). We compared

our graph measures with the well-known edge density and found that our measures capture

structural information differently. Also some of our measures seem to have useful properties,

e.g., they possess a high discrimination power for graphs with a distinct graph topology. Our

approach to analyzing the complexity of directed graphs is promising in that low computa-

tional complexity (i.e., vertex degrees of a directed graph can be determined in polynomial

time) allows for applying the polynomial based measures to large networks.

As part of our ongoing research, we plan to continue investigating extremal properties of

the measures. Also, we should like to perform a correlation analysis with other measures on a

large scale, if we can find ones that can be computed in polynomial time. Existing measures

based on game theory are computationally complex, see, e.g., [13].
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