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Abstract

Objective

Low parity women are at increased risk of cardiovascular mortality. Unfavourable lipid pro-

files have been found in one-child mothers years before they conceive. However, it remains

unclear whether unfavourable lipid profiles are evident in these women also after their first

birth. The aim was to estimate post-pregnancy lipid levels in one-child mothers compared to

mothers with two or more children and to assess these lipid’s associations with number of

children.

Methods

We used data on 32 618 parous women (4 490 one-child mothers and 28 128 women with

�2 children) examined after first childbirth as part of Cohort of Norway (1994–2003) with

linked data on reproduction and number of children from the Medical Birth Registry of Nor-

way (1967–2008). Odds ratios (ORs) with 95% confidence intervals (CIs) for one lifetime

pregnancy (vs.�2 pregnancies) by lipid quintiles were obtained by logistic regression and

adjusted for age at examination, year of first birth, body mass index, oral contraceptive use,

smoking and educational level.

Results

Compared to women with the lowest quintiles, ORs for one lifetime pregnancy for the high-

est quintiles of LDL and total cholesterol were 1.30 (95%CI: 1.14–1.45) and 1.43 (95%CI:

1.27–1.61), respectively. Sensitivity analysis (women <40 years) showed no appreciable

change in our results. In stratified analyses, estimates were slightly stronger in overweight/

obese, physically inactive and women with self-perceived bad health.

Conclusions

Mean lipid levels measured after childbirth in women with one child were significantly higher

compared to mothers with two or more children and were associated with higher probability
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of having only one child. These findings corroborate an association between serum lipid lev-

els and one lifetime pregnancy (as a feature of subfecundity), emphasizing that these partic-

ular women may be a specific predetermined risk group for cardiovascular related disease

and death.

Introduction

A women’s reproductive history may affect future cardiovascular disease (CVD) risk [1, 2, 3].

Studies suggest an association between subfertility and later incidence of CVD [4]. Substantial

increase in CVD mortality has been found in women with only one child [2, 5, 6, 7] and lipid

disorders are suggested to play a role in both subfertility and later CVD development [1, 4, 8,

9].

Animal studies have reported association between dyslipidemia and infertility, showing ste-

rility in high-density-lipoprotein (HDL) receptor-deficient female mice [10]. Emerging

research further support involvement of lipids in human fertility [11, 12, 13, 14, 15, 16]. Cho-

lesterol is known to be essential for the process of steroidogenesis, and serum free cholesterol

concentrations have been associated with fecundity in both sexes [11, 15]. HDL cholesterol is,

along with Apolipoprotein b (Apo b) [17, 18], the predominant lipoprotein in ovarian follicles,

and is associated with embryo quality and fertility treatment outcomes [16, 19]. Human stud-

ies have reported appreciably higher clinical pregnancy rate and number of top-quality

embryos in high Apo b patients undergoing fertility treatment, compared with low Apo b

patients, even after exclusion of ovarian-related disorders [17].

Lipid profile is susceptible to change during women’s lifespan, influenced by pregnancy [3,

8, 20, 21] and menopause [22, 23]. Estrogen is recognized to induce an early increase of low-

density-lipoprotein (LDL) receptors and enhance biliary secretion of cholesterol, with its

decline in menopause leading to increased levels of both lipids [22]. There are conflicting evi-

dence for plasma lipid changes associated with parity [3, 20, 21, 24], with most analyses using

nulliparous women as the reference group. Although relevant from the aspect of total parity,

this design has limited the ability of prior studies to identify the high-risk group of women hav-

ing only one-child (as a feature of subfecundity). We have previously found that one-child

mothers have unfavorable lipid profiles compared to women with two or more children, years

before they conceive [25]. Given the effect of pregnancy on lipid levels [3, 20, 21], as well as

their change during a woman’s lifecycle [22], it is not clear whether unfavorable lipid profiles

are evident in one-child mothers also after their first birth.

Our aim was to estimate post-pregnancy lipid levels in one-child mothers compared to

mothers with two or more children and to assess these lipid’s associations with number of

children.

Materials and methods

Data sources

We used data from Cohort of Norway (CONOR) linked with the Medical Birth Registry of

Norway (MBRN). CONOR is a population-based collection of health data with blood samples

and lifestyle questionnaires obtained from participants aged 20 years or more, residing in dif-

ferent regions in Norway during 1994–2003 [26]. Women participating in the current study

�69 years were examined after their first childbirth (singleton gestation�22 weeks) and
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provided questionnaire data on smoking, oral contraceptive use, years of attained education

(in Norway, the first 10 years are mandatory) and lifestyle factors. The health examination

included standardized measurements of height, weight and non-fasting lipid levels.

All deliveries in Norway are subject to compulsory reporting to the MBRN since 1967. The

registry contains information on maternal health prior to pregnancy, health and complications

during pregnancy and perinatal data [27]. Registration is completed on a standardized form

by the attending midwife or obstetrician. Data on in-vitro-fertilization (IVF) were available

from 1988. A unique personal identification number (given to all Norwegian residents)

enabled linkage of data from CONOR with the MBRN and identification of all births to each

participating woman during 1967 to 2008. All included women from CONOR were followed

for the occurrence of a second birth until 2008. One-child mothers were identified as women

being 7 years out from their first pregnancy and with no additional births in the MBRN. In

Norway >95% of women will have their second pregnancy within 7 years [5]. Given that the

aim was to explore the association between post-pregnancy lipid status and number of live-

born children, stillbirths and/or abortions were not included.

The study was approved by the ethical review board REK-Vest (Ref number 2013/118) and

access to data was granted by the steering committee of CONOR and by the MBRN. Our study

used banked blood samples collected in CONOR, and subjects were not re-contacted for the

analysis. Written informed consent included use for research and linkage to health registries,

and was obtained for each participant. Personal identification numbers are omitted from data

when used in research purposes. The CONOR recruitment process and the obtainment of

written informed consent are described in detail elsewhere [26].

Health measurements

Non-fasting blood samples were obtained by trained personnel and analyzed on a Hitachi 911

Auto Analyzer (Hitachi, Mito; Japan) [26]. Serum concentrations of total cholesterol, HDL

cholesterol and triglyceride (TG) were analyzed subsequent to sampling, with the use of

reagents from Boehringer Mannheim (Mannheim, Germany). Total cholesterol and HDL cho-

lesterol were measured by applying an enzymatic colorimetric cholesterolesterase method,

with HDL cholesterol measured after precipitation with phosphortingsten and magnesium

ions. An enzymatic colorimetric method was applied for measuring TG, while glucose was

measured by using an enzymatic hexokinase method [28].

The day-to-day coefficients of variation were: total cholesterol: 1.3%-1.9%; HDL choles-

terol: 2.4%; TG: 0.7%-1.3% and glucose: 1.3–2.0%. We calculated LDL using the Friedewald

formula [29]: Total serum cholesterol minus HDL cholesterol minus one fifth of the TG con-

centration. LDL cholesterol levels were calculated only for participants with TG concentrations

< 4.5mmol/l (due to the lower precision of calculation with highly increased TG levels) [29].

We additionally used non-HDL cholesterol levels (calculated as total cholesterol minus HDL

cholesterol) as a useful toll in individuals with higher TG levels [30]. TG/HDL ratio was

expressed in mmol/l.

Height and weight was measured by trained personnel with the participants wearing light

clothes and no shoes; height to the nearest 1.0 cm and weight to the nearest 0.5 kg. Body mass

index (BMI) was calculated as weight in kilogram/(height in meters) 2.

All CONOR participants signed a written informed consent for research and linkage with

health registries when they participated in the survey. This study used banked blood samples

collected in CONOR, and subjects were not re-contacted for this analysis. The CONOR

recruitment process and the obtainment of written informed consent are described in detail

elsewhere [26].
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Statistical analyses

Baseline characteristics were presented as means with standard deviations (continuous data)

and numbers with percentages (categorical data). Differences between lipid quintiles were

assessed by p values (Wald test) and between one-child mothers and mothers with two or

more children, using Chi-square test and t-test, where appropriate.

We used logistic regression to calculate odds ratios (ORs) for one lifetime pregnancy by

lipid levels. Estimates were adjusted for mother’s age at examination (linear term), year of first

birth (linear term), body mass index (BMI) (linear term), oral contraceptive use (now, previ-

ously, never), smoking (at examination: yes, no), education (�11 years (low), >11 years

(high)) and time since last meal (linear term). Besides accounting for time elapsed since first

birth, year of first birth was also used as a proxy for generational/environmental factors [31,

32]. Oral contraceptive (OC) use was defined as current use of OC, previous use or never.

Effect of BMI (<25 and�25), self-perceived health (good and bad) and education (high and

low) were also assessed in stratified analyses. Answers ‘poor’ and ‘not so good’ were classified

as ‘bad’, while ‘good’ and ‘very good’ were classified as ‘good’ perceived current health. We

performed sensitivity analysis on women <40 years of age to explore the effect of menopause

on women’s lipid profile. Missing data were low for the majority of parameters, and were

excluded from the main analyses, except for the OC use. Due to higher numbers of missing

values for the glucose, this variable was excluded from further analyses.

We compared the occurrence of IVF in first pregnancy, diabetes, use of antihypertensive

medications, polycystic ovary syndrome (PCOS), and thyroid disease between one-child

mothers and women with two or more children. We also excluded women using antihyperten-

sives in main analyses.

In sub-analyses we explored the impact of past year physical activity (�1 hour per week and

�1 hour per week) and alcohol use (�1 time per month and>1 time per month). We also

excluded women with reported hearth attack and/or angina in siblings and/or parents, with

additional exclusion of women with diabetes in parents.

In order to assess how robust the associations are to potential unmeasured confounding,

we calculated E-values [33] for both the adjusted main analyses and adjusted sensitivity analy-

sis on women <40 years of age. The E-vale is defined as “the minimum strength of the associa-

tion, on the risk ratio scale, that unmeasured confounder would need to have with both the

exposure and the outcome to fully explain away this exposure-outcome association, condi-

tional on the measured covariates” [32, 33].

Results

We identified 44 126 women�69 years at examination and with viable singleton first births

(�22 weeks of gestation) that had participated in CONOR. After exclusion of women that

were pregnant or had unknown pregnancy status, women with missing lipid assessments and

women on lipid lowering drugs we had 32 618 women for our main analyses. A flow chart of

inclusions and exclusions is presented in Fig 1.

One-child mothers were older at examination and had a shorter time span from first child-

birth to examination, compared to women with two or more births. They had higher educa-

tion but were more frequent smokers and reported more often having bad health. Mean values

of all examined lipids and glucose, except TG/HDL ratio, were higher in one-child mothers

(Table 1).

Adjusted ORs with 95% CIs for having one lifetime pregnancy (vs.�2 pregnancies) by lipid

quintiles are presented in Fig 2 (numbers and crude estimates in S1 Table). The OR of one life-

time pregnancy for women with the highest LDL quintile (compared with women with the
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lowest quintile) was 1.30 (95% CI 1.14–1.45), while 1.24 (95% CI 1.12–1.37) and 1.43 (95% CI

1.29–1.59) for the two highest quintiles of total cholesterol. However, there were significant

differences in ORs of one lifetime pregnancy between quintiles also for HDL and TG/HDL

ratio in addition to LDL and total cholesterol.

Stratified analyses by BMI at examination are presented in Table 2. Associations were

strengthened for levels of LDL, total cholesterol and TG in women with BMI�25. ORs of one

lifetime pregnancy for women with post-pregnancy lipids above clinically recommended levels

of LDL and total cholesterol were: 1.32 (95% CI 1.08–1.60) and 1.46 (95% CI 1.20–1.78) for

fourth and fifth quintile of LDL and 1.41 (95% CI 1.16–1.71), 1.45 (95% CI 1.20–1.76) and 1.62

(95% CI 1.33–1.97) for third to fifth quintiles of total cholesterol. For the highest quintile of

Fig 1. Flow chart of inclusions and exclusions.

https://doi.org/10.1371/journal.pone.0223602.g001
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TG OR of having one lifetime pregnancy was 1.25 (95% CI 1.03–1.53). Associations between

lipid quintiles and having only one child in women with BMI<25 were only slightly attenuated

from the overall results. Stratified analyses on self-perceived health are presented in Table 3. In

women reporting good health, ORs of one lifetime pregnancy were similar to the main results.

In women reporting bad health, ORs of one lifetime pregnancy for values above clinically rec-

ommended range of LDL, total cholesterol and TG were slightly increased. Additional analyses

on non-HDL cholesterol showed similar results as for LDL levels (S2 Table). Stratification on

level of education showed increased ORs among low educated women, while the higher proba-

bility of one child persisted in high-educated women, although attenuated (LDL (highest quin-

tile): OR 1.21 (95% CI 1.02–1.43); Total cholesterol (highest quintile): OR 1.29 (95% CI 1.09–

1.53)).

One-child mothers had significantly more IVF in first pregnancy (1.3% vs. 0.1%, p<0.001),

were more frequent users of antihypertensive medications (3.6% vs. 2.9%, p = 0.01), had

slightly higher proportion of stroke (0.6% vs. 0.4%, p = 0.05) and a significantly lower propor-

tion of thyroid disease (0.5% vs. 1.0%, p<0.001), compared to women with two or more chil-

dren. Exclusion of all women with thyroid disease from our main analyses had no effect on

Table 1. Characteristics of 32 618 parous Norwegian women, Cohort of Norway, 1994–2003. Values are numbers (percentages) unless stated otherwise.

Mean values 4490 28128 p

one child mothers women with� 2 children

Age (SD) at examination 42.0 (7.1) 40.8 (6.9) <0.001

Years (SD) from first pregnancy to examination 14.4 (8.2) 16.3 (7.7) <0.001

Body mass index (SD) at examinationa 25.1 (4.6) 25.0 (4.0) 0.24

Oral contraceptive use

now 318 (7.1) 2 164 (7.7) 0.28

previously 2 730 (60.8) 16 973 (60.3)

never 1 280 (28.5) 7 834 (27.8)

missing 162 (3.6) 1 157 (4.1)

Smoking at examination

yes 1 987 (44.5) 9 415 (33.7) <0.001

now 2 476 (55.5) 18 510 (66.3)

missing 27 (0.6) 203 (0.7)

Education

<11 years (low) 2 086 (46.4) 13 976 (49.7) <0.001

�11 years (high) 2 362 (52.6) 13 978 (49.5)

missing 42 (0.9) 234 (0.8)

LDL (SD) mmol/l 3.7 (1.0) 3.6 (0.9) <0.001

Total cholesterol (SD) mmol/l 5.5 (1.1) 5.3 (1.0) <0.001

TG (SD) mmol/l 1.3 (0.7) 1.2 (0.7) 0.03

HDL (SD) mmol/l 1.5 (0.4) 1.4 (0.4) <0.001

TG/HDL (SD) mmol/l 3.3 (1.4) 3.4 (1.4) 0.14

Self-perceived health

god 3 430 (76.4) 22 788 (81.0) <0.001

bad 1 020 (22.7) 5 120 (18.2)

missing 40 (0.9) 220 (0.8)

Glucose (SD) mmol/L 5.16 (1.1) 5.09 (0.9) <0.001

missing 941 (20.1) 4 300 (15.2)

aMissing data on 51 case of BMI.

https://doi.org/10.1371/journal.pone.0223602.t001
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Fig 2. Adjusted odds ratios (ORs) with 95% confidence interval (CI) for one lifetime pregnancy by lipid quintiles

in 32 618 women (�69 years of age) examined in Cohort of Norway during 1994–2003. All estimates were adjusted

for age at examination, year of the first birth, body mass index (linear term), oral contraceptive use, smoking and

educational level. a) Low-density lipoprotein (LDL) and total cholesterol, b) Triglyceride (TG), high-density

lipoprotein (HDL) cholesterol and TG/HDL cholesterol ratio.

https://doi.org/10.1371/journal.pone.0223602.g002
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Table 2. Adjusted odds ratio (OR) with 95% confidence interval (CI) for one lifetime pregnancy by lipid quintiles stratified by BMI (kg/m2), Cohort of Norway,

1994–2003, Estimates were obtained by logistic regression and adjusted for age at examination, year of first birth, oral contraceptive use, smoking, educational level

and time since last meal.

BMI < 25 (N = 18 938) BMI� 25 (N = 13 629)

Lipid quintiles

in mmol/l

1 child mothers

(%)

� 2 children

mothers

total

mothers

OR (95%CI) 1 child mothers

(%)

� 2 children

mothers

total

mothers

OR (95%CI)

LDL cholesterol

� 2.87 674 (12.8) 4600 5274 1.0 reference 206 (11.3) 1619 1825 1.0 reference

2.88–3.38 609 (13.6) 3856 4465 1.02 (0.90–

1.16)

316 (13.5) 2027 2343 1.18 (0.96–

1.45)

3.39–3.89 545 (13.9) 3369 3914 1.08 (0.95–

1.24)

368 (12.6) 2543 2911 1.10 (0.90–

1.35)

3.90–4.56 423 (13.6) 2686 3109 1.00 (0.87–

1.16)

453 (13.9) 2792 3245 1.32 (1.08–

1.60)

� 4.57 353 (16.2) 1823 2176 1.23 (1.05–

1.45)

537 (16.2) 2768 3305 1.46 (1.20–

1.78)

Total cholesterol

� 4.60 608 (12.2) 4359 4967 1.0 reference 232 (10.9) 1894 2126 1.0 reference

4.61–5.14 588 (13.1) 3895 4483 1.08 (0.95–

1.23)

317 (12.8) 2149 2466 1.30 (1.06–

1.56)

5.15–5.69 571 (14.2) 3453 4024 1.19 (1.04–

1.36)

412 (14.2) 2492 2904 1.41 (1.16–

1.71)

5.70–6.39 471 (14.7) 2722 3193 1.23 (1.06–

1.42)

424 (13.8) 2637 3061 1.45 (1.20–

1.76)

� 6.40 366 (16.1) 1905 2271 1.37 (1.17–

1.61)

495 (16.1) 2577 3072 1.62 (1.33–

1.97)

TG

(Triglyceride)

� 0.74 760 (14.4) 4507 5267 1.0 reference 195 (12.1) 1409 1604 1.0 reference

0.75–0.98 623 (13.2) 4074 4697 0.87 (0.77–

0.99)

282 (13.2) 1849 2131 1.12 (0.89–

1.39)

0.99–1.27 533 (13.6) 3380 3913 0.88 (0.77–

1.00)

354 (13.6) 2245 2599 1.10 (0.89–

1.37)

1.28–1.76 404 (13.0) 2701 3105 0.83 (0.72–

0.96)

451 (13.6) 2859 3310 1.07 (0.88–

1.32)

� 1.77 284 (14.5) 1672 1956 0.95 (0.81–

1.12)

598 (15.0) 3387 3985 1.25 (1.03–

1.53)

HDL cholesterol

� 1.19 317 (12.0) 2315 2632 0.87 (0.77–

0.99)

577 (14.5) 3397 3974 0.87 (0.71–

1.07)

1.20–1.38 465 (13.6) 2962 3427 0.75 (0.65–

0.86)

395 (12.7) 2713 3108 0.85 (0.70–

1.03)

1.39–1.55 478 (12.5) 3344 3822 0.76 (0.67–

0.88)

348 (13.0) 2314 2662 0.77 (0.64–

0.93)

1.56–1.79 594 (14.2) 3589 4183 0.66 (0.56–

0.77)

294 (13.9) 1810 2104 0.85 (0.71–

1.01)

� 1.80 750 (15.4) 4124 4874 1.0 reference 266 (14.9) 1515 1781 1.0 reference

TG/HDL-c ratio

� 0.45 806 (14.9) 4609 5415 1.0 reference 196 (12.5) 1365 1561 1.0 reference

0.46–0.64 613 (13.6) 3875 4488 0.84 (0.75–

0.96)

282 (14.2) 1702 1984 1.03 (0.83–

1.29)

0.65–0.90 524 (13.1) 3463 3987 0.83 (0.73–

0.95)

327 (12.7) 2245 2572 0.94 (0.76–

1.16)

0.91–1.37 420 (13.3) 2735 3155 0.78 (0.68–

0.90)

468 (13.9) 2881 3349 0.99 (0.81–

1.21)

(Continued)
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results. Diabetes (1.1% vs. 0.9%) and history of heart attack (0.2% vs. 0.1%) were not signifi-

cantly different in one-child mothers and women with two or more births. There was only one

case of PCOS registered in our sample. Exclusion of women on antihypertensive therapy did

not alter the main results.

Table 2. (Continued)

BMI < 25 (N = 18 938) BMI� 25 (N = 13 629)

Lipid quintiles

in mmol/l

1 child mothers

(%)

� 2 children

mothers

total

mothers

OR (95%CI) 1 child mothers

(%)

� 2 children

mothers

total

mothers

OR (95%CI)

� 1.38 241 (12.7) 1652 1893 0.77 (0.65–

0.91)

607 (14.6) 3556 4163 1.07 (0.89–

1.29)

https://doi.org/10.1371/journal.pone.0223602.t002

Table 3. Adjusted odds ratio (OR) with 95% confidence interval (CI) for one lifetime pregnancy by lipid quintiles, Cohort of Norway, 1994–2003. Data stratified by

self-perception of health (32 358 women), analyzed by logistic regression, adjusting for age at examination, year of first birth, body mass index (linear term), oral con-

traceptive use, smoking, educational level and time since last meal.

Lipid quintiles

(mmol/l)

1 child mothers

(%)

� 2 children

mothers

total

mothers

Good health

(N = 26 218)

OR (95% CI)

1 child

mothers

(%)

� 2 children

mothers

total

mothers

Bad health (N = 6

140)

OR (95%CI)

LDL cholesterol

� 2.87 706 (11.8) 5276 5982 1.0 reference 169 (15.8) 898 1067 1.0 reference

2.88–3.38 745 (13.1) 4935 5680 1.07 (0.95–1.21) 172 (15.8) 913 1085 0.97 (0.75–1.26)

3.39–3.89 698 (12.6) 4816 5514 1.04 (0.92–1.18) 209 (16.4) 1062 1271 1.14 (0.89–1.45)

3.90–4.56 657 (13.2) 4320 4977 1.08 (0.95–1.23) 206 (15.5) 1124 1330 1.14 (0.88–1.47)

� 4.57 624 (15.3) 3441 4065 1.25 (1.09–1.43) 264 (19.0) 1123 1387 1.38 (1.07–1.78)

Total cholesterol

� 4.60 665 (11.3) 5232 5897 1.0 reference 169 (14.8) 974 1143 1.0 reference

4.61–5.14 728 (12.6) 5057 5785 1.15 (1.02–1.30) 169 (15.1) 953 1122 1.10 (0.85–1.42)

5.15–5.69 753 (13.4) 4878 5631 1.21 (1.06–1.36) 222 (17.7) 1030 1252 1.43 (1.12–1.83)

5.70–6.39 679 (13.8) 4249 4928 1.28 (1.13–1.46) 208 (16.2) 1075 1283 1.32 (1.02–1.71)

� 6.40 605 (15.2) 3372 3977 1.38 (1.20–1.58) 252 (18.8) 1088 1340 1.61 (1.24–2.08)

TG (Triglyceride)

� 0.74 779 (13.2) 5109 5888 1.0 reference 168 (17.8) 774 942 1.0 reference

0.75–0.98 719 (12.6) 4970 5689 0.92 (0.82–1.04) 178 (16.1) 926 1104 0.88 (0.68–1.15)

0.99–1.27 708 (13.3) 4595 5303 0.95 (0.84–1.07) 177 (15.1) 995 1172 0.84 (0.65–1.09)

1.28–1.76 628 (12.6) 4363 4991 0.87 (0.76–0.99) 217 (15.8) 1152 1369 0.87 (0.67–1.13)

� 1.77 596 (13.7) 3751 4347 0.96 (0.84–1.11) 280 (18.0) 1273 1553 1.10 (0.85–1.41)

HDL cholesterol

� 1.19 623 (12.5) 4341 4964 0.87 (0.77–0.98) 262 (16.5) 1327 1589 0.80 (0.62–1.03)

1.20–1.38 637 (12.4) 4507 5144 0.76 (0.67–0.86) 216(16.0) 1133 1349 0.76 (0.59–0.98)

1.39–1.55 644 (12.2) 4638 5282 0.73 (0.65–0.83) 175 (15.1) 983 1158 0.71 (0.56–0.91)

1.56–1.79 713 (13.6) 4521 5234 0.69 (0.61–0.79) 169 (16.7) 845 1014 0.76 (0.60–0.97)

� 1.80 813 (14.5) 4781 5594 1.0 reference 198 (19.2) 832 1030 1.0 reference

TG/HDL-c ratio

� 0.45 820 (13.7) 5169 5989 1.0 reference 176 (18.7) 767 943 1.0 reference

0.46–0.64 711 (13.1) 4707 5418 0.88 (0.78–0.99) 174 (17.0) 849 1023 0.81 (0.63–1.05)

0.65–0.90 669 (12.5) 4660 5329 0.84 (0.75–0.95) 180 (14.9) 1021 1201 0.78 (0.61–1.01)

0.91–1.37 671 (13.2) 4398 5069 0.83 (0.74–0.95) 210 (15.2) 1175 1385 0.72 (0.56–0.93)

� 1.38 559 (12.7) 3854 4413 0.79 (0.69–0.91) 280 (17.6) 1308 1588 0.93 (0.72–1.20)

https://doi.org/10.1371/journal.pone.0223602.t003
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The calculated E-values for the significant estimates were as follows: main analyses—for the

ORs of one lifetime pregnancy by highest quintiles of LDL and total cholesterol levels: 1.54 and

1.68, respectively; sensitivity analyses (women <40 years of age)—for the ORs of one lifetime

pregnancy by highest quintiles of LDL and total cholesterol levels: 1.50 and 1.60, respectively.

E-value calculations showed that an unmeasured confounder would need to have nearly four

times as large an effect as maternal age (covariate with the strongest effect in the adjusted

model, with Exp (B) = 1.13), and be associated with both the exposure and the outcome to

completely explain away the observed associations [33].

After excluding 12 730 women with reported CVD in parents or siblings and 144 women

with missing information (S3 Table), probability of one lifetime pregnancy by lipid quintiles

showed almost no alteration across LDL and total cholesterol levels, with slightly stronger

effect on TG. Additional exclusion of diabetes in parents had no effect on results. Stratified

analyses on alcohol use showed slight modifiable effect of alcohol on lipid levels. ORs of one

lifetime pregnancy for LDL (highest quintile vs lowest) in low frequent users was 1.42 (95% CI

1.20–1.69) and, 1.17 (95% CI 0.98–1.39) for high frequent users. Similar results for the highest

total cholesterol quintiles were 1.55 (95% CI 1.30–1.84) and 1.34 (95% CI 1.12–1.59), respec-

tively. In women being less physically active, OR of one lifetime pregnancy was 1.40 (95% CI

1.19–1.63) for the highest LDL quintile versus lowest and 1.58 (95% CI 1.35–1.85) for total

cholesterol. In women with high physical activity similar estimates for LDL and total choles-

terol were 1.14 (95% CI 0.92–1.41) and 1.27 (95% CI 1.02–1.58). Other lipids showed no sub-

stantial changes in sub-analyses.

Discussion

Mean lipid levels measured after childbirth in women with one child were significantly higher

compared to mothers with two or more children. Women with LDL cholesterol greater than

4.57 mmol/l (highest quintile) and total cholesterol level greater than 5.70 mmol/l (two highest

quintiles), measured more than a decade after first childbirth, had higher probability of having

only one child compared to women with the lowest quintile levels. Supportive of studies that

suggest the role of lipids in human fertility [8, 9, 10, 11, 12, 13, 14], these findings potentiate

the dose-response lipid effect, implicating potentially negative fertility impact of clinically

abnormal levels of lipids.

The increased probability for being one-child mother in women with the highest LDL quin-

tiles, years after childbirth, is consistent with our previous findings of elevated LDL in one-

child mothers examined prior to conception [25]. The increased OR for the highest total cho-

lesterol levels, however, contrasts our previous findings. This could be due to different roles

and levels of cholesterol during different stages of a woman’s reproductive life, as well as

decreasing estrogen levels while approaching menopause [22, 34]. Estrogen deprivation in

menopause may lead to increased total and LDL levels [22], and we examined the menopausal

effect in a sensitivity analysis, including only women < 40 years of age. We found that the

results were only slightly attenuated from our main results (LDL (highest quintile): OR 1.23

(95% CI 0.98–1.54), total cholesterol (highest quintile): OR 1.36 (95% CI (1.09–1.70)), suggest-

ing that menopause is not the major driver of the observed associations. Aligned with this,

recent examination of the association between pregnancy and life course lipid trajectories

reported no meaningful change of the results when accounted for menopausal transition [20].

Our results of increased cholesterol levels are in line with previous reports from the LIFE study

[8] of higher proportion of women with menstrual irregularities in the highest quartiles of free

cholesterol, as well as the association of hypercholesterolemia with ovarian infertility [35].

Some previous studies have reported no consistent association between parity and LDL/TG
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levels [3, 36], while others, with longer follow-up, have found an association between declining

total cholesterol levels by parity [36] and associations between primiparity and levels of total

cholesterol and LDL [21]. Although unfavorable glucose levels in our study among one-child

mothers is not uncommonly seen finding in dyslipidemias, caution is needed in interpretation

of this result due to high number of missing data. We found no effect on probability of one

lifetime pregnancy across HDL and TG/HDL levels. This is consistent with a decreasing and

still unclear effect of higher parity on HDL levels [2, 20, 21, 24]. Although age–related factors

are suggested to play a role in the change of HDL fractions in follicular fluid [18], several stud-

ies have reported the highest magnitude of the HDL drop associated with first birth, indepen-

dent of maternal age [20, 21, 24]. While HDL concentrations in follicular fluid have been

found to correlate with plasma levels [17], exactly how HDL content is influenced by preg-

nancy or may influence fertility potential is still unclear [18], and remains to be explored.

Possible mechanisms could be genetic differences or incipient dyslipidemias, which may

induce excessive alterations in levels of lipoproteins associated with pregnancy [1, 3, 21]. It is

suggested that the most prominent lipid changes occur following first birth [20], and that one-

child mothers begin their reproductive career with unfavorable lipid profiles years before con-

ception [25]. Progesterone during pregnancy may act to reset lipostat in the hypothalamus

[37] and the placenta may convey an active role on maternal lipoprotein metabolism through

fetal polymorphisms (inherited from the father) [38]. It is possible, that in some women with

preexisting dyslipidemia, placental influence (expressed from paternal inherited allele) will

either partly compensate for or exaggerate maternal lipid profile [38]. Hormonal changes

accompanying pregnancy, related fat retention and/or redistribution and lifestyle/behavioral

practices may introduce long-term changes in lipid metabolism [1, 3, 21], particularly in pre-

disposed women.

The unfavorable metabolic milieu of obesity may also contribute to reduced fertility,

decreasing probability of conception and influencing lipid profile [9, 39]. Aligned with this,

our stratified results for BMI�25 showed adverse effect of obesity on lipid levels [39]. Only

slight attenuation of ORs in normal weight women with the highest LDL and total cholesterol

levels supports our previous results in one child mothers, where unfavorable pre-pregnancy

lipid levels were found to be associated with one lifetime pregnancy also in lean women

(BMI<25) [25]. A non-manifest/genetic predisposition may be exaggerated by obesity, leading

to clinically high levels of certain lipids, particularly LDL and TG. This could act through

chronic low-grade inflammation, one of the hallmarks of obesity that also generates increased

conditions of oxidative stress, both of which are associated with lipid modifications [40]. This

is in line with studies showing that genetic risk for dyslipidemia is significantly modified by

obesity [41].

Self-perceived health status is considered a strong predictor of circulatory diseases and

mortality and may convey additional knowledge that is not captured by available clinical mea-

surements [42]. Indirectly, it may also provide additional insights about possible psychosocial

factors, given that women with unfavorable psychosocial status are less likely to rate their

health as good [42]. Higher probability of having one lifetime pregnancy only slightly

decreased compared to our main results in women who perceived their health as good. This

suggests that a self-rated health factor is not determining for this association, and might be

another indicator of underlying biological predisposition.

PCOS has also been linked to dyslipidemia; however, we found only one case in our study

sample. The Coronary Artery Risk Development in Young Adults Study (CARDIA) suggests

that lower concentrations of serum dehydroepiandrosterone sulfate (DHEAS) and dehydro-

epiandrosterone (DHEA) are associated with a first pregnancy rather than parity per se [3, 21].

Although increased androgen levels are seen in women in PCOS, a recent study reported
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androgen-related ovulatory dysfunction in otherwise apparently healthy, eumenorrheic

women, supportive of non-manifest subfertile type [43].

Exclusion of women with family history of CVD showed little effect on lipid associations,

apart from a slightly stronger effect on TG (S3 Table). Mounting evidence suggests that hyper-

triglyceridemia is an independent risk factor of CVD, even with well-controlled LDL levels

[44]. Sub-analyses on physical activity are consistent with research suggesting modifiable effect

of physical activity on lipid status [45]. Alcohol use showed stronger effect on LDL levels,

while for the total cholesterol levels we found OR alteration in low frequency users and

decreased OR for high frequency users. This may reflect reluctance to report drinking fre-

quency in the low frequency group or that abstinence from alcohol is a marker of other

unmeasured risk [46].

A woman’s risk of developing chronic conditions increases at menopause, which may

reflect cumulative impact of earlier alterations in CVD risk factors, accelerated by perimen-

opausal transition [34]. Increase in CVD risk in postmenopausal women is suggested to be due

to increased LDL and total cholesterol levels, along with arterial remodeling and other factors

[22, 47, 48]. The significantly higher mean values in nearly all the observed lipids in one-child

mothers compared to mothers with two or more children indicate that worsened lipid profile

among women approaching midlife is additionally exaggerated in one-child mothers. A base-

line difference of only 0.41mmol/l in serum cholesterol is independently associated with a 21%

excess risk of death from coronary heart disease [22, 47].

We used a large population-based cohort sample. Linked data from the MBRN provided

complete registration of total reproduction and enabled identification of all births to each

woman. A limitation is blood sampling in non-fasting state. However, adjusting our analyses

for time since last meal showed no substantial change in results, suggesting that non-fasting

lipids are not likely to introduce systematic bias. Non-fasting lipid levels are successfully used

in lipid and CVD research [8, 45, 49] with non-fasting TG levels being strongly associated with

incident CVD events [50]. Similarity in results obtained for non-HDL and LDL cholesterol

further strengthens the role of lipids and supports the optimal performance of LDL calcula-

tions in our study (by Friedwald formula). We lacked data on C-reactive protein, apolipopro-

tein E genotype, and thyroid tests/antibodies, factors that may affect lipid status and fertility.

However, exclusion of women with thyroid disease did not influence our results. Assessments

of duration of oral contraceptive use, sex hormone status, dietary intake or stress were also not

available. We had only one case of PCOS in our sample; hence, underreporting may be pres-

ent. As in all observational studies, unmeasured confounding in our study cannot be excluded.

However, calculated E-values indicated that any unmeasured factor would need to have nearly

four times as large an effect as maternal age, and be associated with both the lipid levels and

fecundity to completely explain away the observed associations [33]. Additionally, persistent

higher ORs in our stratified results for both the strata of women who rate their health as good

and those highly educated suggests that women’s self-perceived health and education/socio-

economic status are not the major determinants of the observed association in our study.

Our findings corroborate an association between serum lipid levels and one lifetime preg-

nancy (as a feature of subfecundity), emphasizing that these particular women may be a spe-

cific predetermined risk group for cardiovascular related disease and death [5].
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