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Abstract

Malignant gliomas remain incurable with a poor prognosis despite of aggressive treatment.

We have been studying the development of brain tumors in a glioma rat model, where rats

develop brain tumors after prenatal exposure to ethylnitrosourea (ENU), and there is a siz-

able interval between when the first pathological changes are noted and tumors become

detectable with MRI. Our aim to define a molecular timeline through proteomic profiling of

the cerebrospinal fluid (CSF) such that brain tumor commitment can be revealed earlier

than at the presymptomatic stage. A comparative proteomic approach was applied to profile

CSF collected serially either before, at and after the time MRI becomes positive. Elastic net

(EN) based models were developed to infer the timeline of normal or tumor development

respectively, mirroring a chronology of precisely timed, “clocked”, adaptations. These CSF

changes were later quantified by longitudinal entropy analyses of the EN predictive metric.

False discovery rates (FDR) were computed to control the expected proportion of the EN

models that are due to multiple hypothesis testing. Our ENU rat brain tumor dating EN

model indicated that protein content in CSF is programmed even before tumor MRI detec-

tion. The findings of the precisely timed CSF tumor microenvironment changes at presymp-

tomatic stages, deviation from the normal development timeline, may provide the

groundwork for the understanding of adaptation of the brain environment in tumorigenesis

to devise effective brain tumor management strategies.
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Introduction

Despite years of research, malignant gliomas remain incurable once detected and is the costli-

est cancer in terms of hospital care and lost productivity [1, 2]. We hypothesized that a better

understanding of the ongoing in situ environmental changes preceding the development of

clinical abnormalities may lead to novel diagnostic and therapeutic strategies in primary brain

tumors. However, characterization of the impact of brain environmental changes in tumori-

genesis has been significantly limited by the relative inaccessibility of this tissue. Although it

would be difficult to visualize tumors at very early stages in brain parenchyma, cerebrospinal

fluid (CSF) represents a readily accessible source that may help report brain environment

adaptations before and after tumor development [3].

We have chosen to focus on the asymptomatic environment in a glioma rat preclinical model

in which brain tumors invariably developed after a single in utero exposure to the carcinogen

ethylnitrosourea (ENU) [4, 5]. This rodent model permits observational imaging and histological

analysis of a tumor from its earliest, presymptomatic stages. Our findings [6, 7] suggest that early

pathological changes can be detected as early 30 days of age (P30) and that tumor development

occurs in a characteristic, predictable (albeit stochastic) pattern. To understand what is happen-

ing within the presymptomatic environment, we have also analyzed CSF at these early time

points using a mass spectrometric proteomics profiling method. In our controlled rat model

study, matched ENU- and saline-exposed rats’ CSF proteomics changes were quantified at

approximately 30, 60, 90, 120, 150 days of age (P30, P60, P90, P120, P150). The profiling of the

samples are described in Table 1. We previously identified the presence of increased albumin,

fragments of CSF proteins, and glutathione-related posttranslational modifications of transthyre-

tin protein in temporal association with the development of cellular hyperplasia [8, 9]. In addi-

tion, we applied our transition-based network entropy (TNE) method and identified a dynamic

driver network (DDN) of CSF proteins related with the emerging tumorigenesis progressing

from the non-hyperplasia state, and the critical transition state prior to impending hyperplasia

[8]. Our analysis indicates that there are major presymptomatic environmental changes.

The major aim of this study was to examine whether analysis of cerebrospinal fluid (CSF)

collected before and after MRI detectable brain tumor development would allow the identifica-

tion of a protein panel capable of tightly tracking the timed events of tumor initiation, promo-

tion, and progression. We hypothesize that the precisely timed changes in the CSF proteome

mirrors a proteomic clock for malignant gliomas (Fig 1), and that deviation from the normal

rat development chronology, provides the groundwork for the understanding of the seed and

soil relationship in brain primary tumorigenesis. This information may help device effective

brain tumor early detection and therapeutic strategies.

Materials and methods

Study design

This study was designed, and shown in Fig 1, to determine whether a timed CSF proteome

change can be detectable during tumor growth in a rat model.

Table 1. Cohorts of case and control rats.

Times Sample description

Case (samples) Control (samples) Features

Day 30 13 11 247

Day 60 16 16

Day 90 22 23

Day 120 6 5

Day 150 7 5

https://doi.org/10.1371/journal.pone.0223558.t001
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ENU exposed anaimla model

ENU produces N- and O-ethylation damage to DNA to which targeted cells then apply repair

mechanisms. This insult occurs rapidl since drug is cleared within minutes [4, 5]. However,

repair processes soon ensue over a longer period that result in a random mutagenesis includ-

ing deletions, substitutions and translocations [10, 11]. Rat brains removed acutely after expo-

sure in the late embryonic period (usually between E16 and E19) reveal a marked increase in

apoptotic rate for 48–72 hours primarily in the subventricular zone (SVZ), after which brains

then become indistinguishable from normal controls at birth. Then ensues a prolonged

asymptomatic interval that can last many months depending on dosage [1], after which rats

invariably die of brain tumors. ENU-induced glioma. ENU administration, rat CSF collection

and subsequent histological analysis were as previously described [8]. CSF proteomic profiling

and subsequent data analysis were as previously performed [9, 12–13]. Case (ENU) and con-

trol rat handling was in accordance with guidelines for animal safety and welfare. Rat CSF

proteomic experiments were approved by the Administration Panel on Laboratory Animal

Care, the accredited body at Stanford.

Bayesian inference and early brain tumor detection

Bayesian inference [14] is one of the two broad categories of interpretations in statistical infer-

ence. Specifically, for a given observation (or rat) x, the probability of the observation belongs

to the normal group is Pr(normal|x), whereas the probability of the observation belongs to the

normal group is Pr(tumor|x). Let

DPr ¼ PrðtumorjxÞ � PrðnormaljxÞ; ð1Þ

It is easy to see that the more ΔPr approaches -1.0, the observation can be classified in the

normal group with more confidence. Similarly, the more ΔPr approaches +1.0, the observation

can be classified in the tumor group with more confidence. However, it is difficult to compute

Pr(normal|x) or Pr(tumor|x) directly from the data. Follow the Bayesian theorem, we can get

PrðnormaljxÞ ¼
PrðnormalÞ

PrðxÞ
� Pr xjnormalð Þ; ð2Þ

Fig 1. Study outline of the development of the “clock”. (1A) Development of the normal clock. (1B) Development of

the tumor clock. (2) & (3) The distance to the normal clock and the tumor clock can be used as a criterion to predict

the tumor rats before the symptom appears.

https://doi.org/10.1371/journal.pone.0223558.g001

A proteomic clock for malignant gliomas

PLOS ONE | https://doi.org/10.1371/journal.pone.0223558 October 10, 2019 3 / 11

https://doi.org/10.1371/journal.pone.0223558.g001
https://doi.org/10.1371/journal.pone.0223558


PrðtumorjxÞ ¼
PrðtumorÞ
PrðxÞ

� Pr xjtumorð Þ; ð3Þ

In (2) and (3), Pr(normal) and Pr(tumor) are the probability of normal and tumor, respec-

tively. In our study,

PrðnormalÞ ¼ #control=ð#controlþ#caseÞ � 0:48; ð4Þ

PrðtumorÞ ¼ #case=ð#controlþ#caseÞ � 0:52; ð5Þ

Omitting the difference of Pr(normal) and Pr(tumor), we have

DPr ¼ PrðtumorjxÞ � PrðnormaljxÞ � PrðxjtumorÞ � PrðxjnormalÞ; ð6Þ

Note that Pr(x|tumor) is the probability of the observation given the tumor group, which

can be interpreted as the randomness criteria in the tumor clock (Fig 1.1B). Similarly, Pr(x|nor-
mal) is the probability of the observation given the normal group, which can be interpreted as

the randomness criteria in the normal clock (Fig 1.1A). As stated above, the closer an observa-

tion is to the regression line in the tumor clock, the more it is subject to the tumor clock,

which is less random in the tumor clock, and vice versa. Therefore, (6) can be derived as (Fig

1.2 and 1.3)

DPr � PrðxjtumorÞ � PrðxjnormalÞ � disðxtonormalÞ � disðxtotumorÞ; ð7Þ

Therefore, early brain tumor can be detected using the criteria in (7) derived from the

Bayesian Inference theorem.

Feature selection and statistical analysis

To assess the relative contributions of each of the m/Z features to the normal/tumor clock, the

Elastic Net (EN) algorithm [15] is used as a feature selection and regression tool, since the EN

algorithm can automatically balances regression algorithm against the number of markers in

the normal/tumor clock estimation. For a matrix X of all protein intensities of peaks and a vec-

tor of estimated age at time of sampling Y, a multivariate model was developed for each normal

rat to minimize the loss function from the EN algorithm:

LðbÞ ¼ jY � Xbj2 þ g1jbj1 þ g2jbj2; ð8Þ

In (8), the first term is the least square error for the regression, which represents the overall

differences between the actual and the predicted clock of the controls. The second term per-

forms the L1 regularization to limit the number of markers are used. The third term performs

the L2 regularization to allow the inclusion of highly correlated and potentially biologically rel-

evant features. The parameters γ1 and γ2 were optimized using cross-validation.

Global false discovery

The R-square difference of the clock in the normal group and the tumor group indicated that

the tumor group did not follow the normal clock. In order to prove that this difference did not

come from statistical randomness, we estimated the False Discovery Rate (FDR) in concurrent

statistical tests, of the same size as our normal and tumor group; in multiple permutated “ran-

dom” training data sets were constructed [13].
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Results

Sample characteristics

Nestin+ cell clusters and microtumors were assessed in 64 ENU-exposed rats on 30, 60, 90,

120, and 150 days of age (Fig 1). CSF was obtained as previously [9] described from the cis-

terna magna from 124 exposed and control rats at 30, 60, 90, 120, and 150 days and then ana-

lyzed by mass spectrometry to profile CSF proteomes. Differently expressed protein peaks

were isolated and identified. All the analyses are performed with R machine learning tool avail-

able at https://cran.r-project.org/.

The CSF proteome normal clock and tumor clock

We randomly split the control rats into 2/3 (training cohort) and 1/3 (testing cohort). Utilizing

the EN algorithm, we first developed a predictive model with the training cohort of the control

rats that was strongly associated with age (R2 = 0.98, Fig 2 upper left panel). The validity of the

EN model was tested in the testing cohort of the control rats (R2 = 0.93, Fig 2 upper middle

panel). Together, the analysis identified a timed CSF protein expression programmed dynami-

cally over the age of normal rats.

To develop a tumor clock, we also randomly split the ENU exposed rats into 2/3 training

cohort and 1/3 testing cohort. With EN algorithm, as for the control rats we first developed a

predictive model with a training cohort of the exposed rats such that the EN metric is linearly

correlated with the CSF sampling time (R2 = 0.96, Fig 2 lower left panel). The validity of the

EN model was independently tested in the testing cohort of the exposed rats (R2 = 0.91, Fig 2

Fig 2. The normal clock and the tumor clock development with real data. With EN algorithm, we modeled a precisely timed CSF protein

expression programmed dynamically over the growth of the normal rats, mirroring a normal clock of aging. Also with EN algorithm, we identified a

precisely timed CSF proteome pattern programmed over the tumor development of these ENU exposed rats, mirroring a tumor clock.

https://doi.org/10.1371/journal.pone.0223558.g002
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lower middle panel). Together, the analysis identified a timed CSF proteome pattern pro-

grammed over tumor development of these exposed rats, mirroring a tumor clock.

The normal/tumor clock malfunctions in exposed/control rats

Given that the normal clock dates the normal development, we hypothesized that EN predic-

tive model can contextualize abnormal phenotypes due to a malfunctioned brain microenvi-

ronment such as that seen in the exposed rats. In contrast, the normal clock (training R2 = 0.98

and testing R2 = 0.93, accurately predicting the growth of the normal rats) displayed a signifi-

cant drop of the R2 when tested on the exposed rats (R2 = 0.59, Fig 2 upper middle panel). Sim-

ilarly, the tumor clock (training R2 = 0.96 and testing R2 = 0.91 accurately predicting the

growth of the exposed rats) displayed a similar decrease of R2 when tested on the control rats

(R2 = 0.62, Fig 2 lower middle panel). We conclude that the normal or tumor clock can func-

tion properly if applied to the targeted group of normal or tumor rats. If cross applied, predic-

tive power (measured by R2) of the clocks was diminished.

False discovery analysis of the “clocks”

The class labels of our training rat samples were permutated 1000 times such that each time

every sample would be randomly assigned a new class label. For each of the 1000 simulated

sets, 2/3 of the labelled ’normal’ samples were used to construct the clock model, and the R-

square differences between the rest 1/3 ’normal’ samples and all the ’tumor’ samples were com-

puted and recorded (Fig 3 left panel). The density distribution was plotted in Fig 3 right panel.

FDR was calculated as the number of the R-square differences greater than that of real labelled

samples by the permutation time. As shown in Fig 3 right panel, the FDR was estimated as

2.9%, which supported the notion that the tumor samples did not follow the normal clock is

unlikely to be the outcome of chance.

Characterization of the entropy kinetics

Given that our normal/tumor clocks date the timed CSF proteome changes in normal/ENU-

exposed rats, we hypothesizethe entropy, measuring the longitudinal chaotic dynamics, i.e. devia-

tion kinetics, of the EN predictive metric, should be disparate between the normal and exposed

dysfunctional “clocks”. Shown in the right panel of Fig 2, we compared the timed entropy pattern

changes of the EN predictive metric between the normal and ENU-exposed rats respectively. In

Fig 3. The False discovery analysis of the “clock”. The class labels of our training rat samples were permutated 1000

times such that each time every sample would be randomly assigned a new class label. FDR was calculated as the

number of the R-square differences greater than that of real labelled samples by the permutation time.

https://doi.org/10.1371/journal.pone.0223558.g003
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early stages (30 and 60 days of age), the entropy peaks at day 60 after birth, which is consistent

with our previous critical transition paper [1]. Another observation is that in the normal clock,

the entropy of the ENU-exposed rats is much larger than the normal controls, and vice versa. At

90 days of age, the entropy reaches a local minimum. MRI detectable tumors appear afterwards,

and the degree of chaos decreases again indicating the decrease of both entropies in Fig 2.

Two dimensional predictor of the tumorigenesis outcome

With the normal and tumor clock, we developed a two dimensional (2D) predictor to predict

the tumor outcomes of the exposed rats even before any MRI detected microtumors. To quan-

tify the deviation of tested subjects from the clock model, sampled testing subjects’ distances to

either the normal clock or the tumor clock were analyzed on a 2D plot at 30, 60, 90, 120/150

days (Fig 4, after 120 days all the microtumor developed to obvious tumors). Shown in Fig 4

right panel, at 30 days of age, there is no MRI detected mirotumors in either the control or

ENU-exposed rats. However, entropy dynamics analyses with the normal and tumor clock

revealed clear differences from the first longitudinal sampling point (day 30), therefore, we

hypothesized that integrative analytics of both normal and tumor metrics can lead to a 2D clas-

sifier to predict future MRI detectable brain tumor (AUC 0.993, Fig 4 line 1). Our MRI analysis

revealed, at 60 or 90 days of age, microtumors in the ENU-exposed rats. The 2D predictor

works well with an AUC of 0.902 and 0.889 (Fig 4 line 2 and 3). At 120 or 150 days of age, all

the rats from the ENU-exposed group have tumors but the performance of the 2D predictor

starts to deteriorate and get worse with time. The coeffcients of the selected analyte peaks at

Fig 4. The performance of the 2D predictor. The 2D predictor to predict tumor and normal rats using data collected from 30 days, 60 days, 90

days, and 120/150 days after birth, respectively. Each green circle represents a rat from the control group, each purple circle denotes a rat with no

microtumor from the ENU exposed group while each red triangle indicates the rat from the ENU exposed group that has been observed with

microtumors, and the violet circles are the rats that already have tumors in the brain.

https://doi.org/10.1371/journal.pone.0223558.g004
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different timestamps is shown in Fig 5. Since the experimental method is untargeted, it is hard

to identify the analyte peaks. This is a limitation of the study.

Discussion

To provide preclinical data to help the exploration of the mechanisms underlying gliomas

pathophysiology, we have been studying the development of brain tumor in an animal model

where rats develop brain tumors after prenatal exposure to ENU at around six months of age.

Our proteomic analysis revealed timed CSF proteome changes in the normal and ENU

exposed rat cohorts respectively. Elastic net models were developed mirroring “proteomic

clocks” that strongly track either the normal development or tumor initiation, promotion and

progression. Integrative analysis of the deviations from either the normal or glioma develop-

ment chronologies led to a robust 2D classifier predictive of tumor development prior to the

development of measurable tumors.

Despite the fact our findings revealed the disruption of the normal chronology at a stage

where there is no obvious lesion and pathological differentiation in ENU exposed rats, we can-

not delineate the causative relationship between the initiating tumor cells (seed) harboring

tumorigenic mutations and the programmed brain microenvironment (soil) adaptations due

to systemic response to injury or tumor. By design, the first sampling time point is day 30,

therefore, there are limited sampling points to characterize the chronological proteomic

changes before the MRI detectable pathological lesions. In addition, it is unlikely that all dis-

ruptive proteomic patterns prognostic and/or indicative of tumorigenesis and tumor develop-

ment will become manifest as deviations from the normal chronological profile.

Fig 5. Proteomic changes in rat CSF at different time points between tumor and normal clocks. The figure shows the coefficients of the selected

analyte peaks in the normal clock and in the tumor clock, which reflects the proteomic changes across different timestamps. The p-value is used to

measure the proteomic changes in day 30 and day 150.

https://doi.org/10.1371/journal.pone.0223558.g005
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Nevertheless, our proteomic analysis revealed a much earlier timeline for the development

of brain tumors before the late stage abnormalities, hyperplastic lesions detectable by MR

imaging usually starting between 90 and 120 days of age. The elastic-net based tumor clocks

quantitatively track the CSF proteome changes and the deviations from the normal chronol-

ogy, destined to harbor tumors as early as 30 days of age, several weeks before even cellular

hyperplasia becomes evident. The entropy dynamics analyses with the normal and tumor

clock revealed differences from the first longitudinal sampling point (day 30), and this finding

was validated by a 2D classifier of day 30 to predict future MRI detectable brain tumor (AUC

0.993). Therefore, the entropic analyses quantified the chronological differences contrasting

the tumor and normal control cohorts before tumors become detectable with MRI. Based on

our longitudinal clock findings of tumor microenvironment differentiation before the clinical

lesions, we propose a four stage timeline of brain tumor development (Fig 6): Stage nulla rep-

resents the interval from the tumorigenesis of the first initiating tumor cell harboring tumori-

genic mutation until the first pathological changes are noted; Stage I represents the interval

from when the first pathological changes are noted until pathological lesions are detectable by

MR, Stage II represents the interval between initial detection on MRI and clinical symptom-

atology and Stage III represents the stage when symptoms appear (which is the usual stage at

which these tumors are first detected clinically). Our quantitative clock analyses thus exposed

a potential intervention window, Stage nulla, when there are no pathological changes noted,

however, microenvironment might have adapated preparing the emerging tumoral lesions.

Extrapolation from the rat, in which there is a long interval between initial appearance of

pathological changes and lesion detectability on MRI (approximately 40 days, the equivalent of

almost four years in the human life span and very consistent with the observed time to onset of

brain tumors in the childhood cancer survivor [16]. With our definition of the Stage nulla in

gliomas, we propose that the best chance for cure of malignant brain tumor may lie in an early

detection and treatment strategy.

Given that early detection of malignant glioma is still an unmet clinical problem, analysis of

the CSF proteomes along the tumor development could help not only understand the

Fig 6. A four-stage timeline of brain tumor development in ENU rats model. Stage nulla represents the interval

from the tumorigenesis of the first initiating tumor cell harboring tumorigenic mutation until the first pathological

changes are noted; Stage I represents the interval from when the first pathological changes are noted until pathological

lesions are detectable by MR, Stage II represents the interval between initial detection on MRI and clinical

symptomatology and Stage III represents the stage when symptoms appear (which is the usual stage at which these

tumors are first detected clinically).

https://doi.org/10.1371/journal.pone.0223558.g006
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molecular mechanism underlying tumorigenesis and pathogenesis, but also lead to robust pro-

tein panels to allow early diagnosis at pre-symptom stage. In order to translate the findings of

current animal model results to clinical application, validation study by targeted protein analy-

sis of the tumor clock features in human glioma subject CSFs is essential.

For such an approach to work, one must define and translate our preclinical findings of this

window to clinical setting for therapeutic opportunity. In such scenario, if early detection of

the microenvironment changes could be detected using our tumor clock methodologies, pre-

diction and prevention of tumor metastasis could be achieved. Given that the ENU-model is

also ideal for comparing early and late administration of a particular treatment on outcome,

we can launch different assessment strategies by examining the overall effect on outcomes. In

that regard, our findings shall provide the groundwork for the understanding of the tumori-

genesis at the asymptomatic stage to device effective brain tumor management strategies.

Despite years of research, malignant gliomas remain incurable once detected and is the

costliest cancer in terms of hospital care and lost productivity. The possibility of asymptomatic

brain tumors has received little discussion in the literature and there is an absence of evidence

sustaining the clinical utility of brain tumor identification prior to magnetic resonance imag-

ing (MRI) detectable lesion, in terms of clinical and economic advantages [17]. To date, studies

have almost exclusively examined samples drawn from patients in whom the brain tumor is

already clinically evident, which makes it difficult to distinguish what is a result of the brain

tumor itself versus other effects including brain microenvironment disruption. Our long term

goal is to define a molecular timeline through the multi-proteomics profiling of the brain

microenvironment such that brain tumor commitment can be revealed earlier at an asymp-

tomatic stage. Our future study would be more focused upon the diverse proteome especially

in a complex dynamic environment encountered in glioma as shown in recent literature [18].
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