
RESEARCH ARTICLE

War pact model of shrinking networks

Luka NaglićID
1, Lovro ŠubeljID
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Abstract

Many real systems can be described by a set of interacting entities forming a complex net-

work. To some surprise, these have been shown to share a number of structural properties

regardless of their type or origin. It is thus of vital importance to design simple and intuitive

models that can explain their intrinsic structure and dynamics. These can, for instance, be

used to study networks analytically or to construct networks not observed in real life. Most

models proposed in the literature are of two types. A model can be either static, where

edges are added between a fixed set of nodes according to some predefined rule, or evolv-

ing, where the number of nodes or edges increases over time. However, some real networks

do not grow but rather shrink, meaning that the number of nodes or edges decreases over

time. We here propose a simple model of shrinking networks called the war pact model. We

show that networks generated in such a way exhibit common structural properties of real

networks. Furthermore, compared to classical models, these resemble international trade,

correlates of war, Bitcoin transactions and other networks more closely. Network shrinking

may therefore represent a reasonable explanation of the evolution of some networks and

greater emphasis should be put on such models in the future.

Introduction

The most natural representation of many real complex systems is a network of nodes con-

nected by edges also called a graph in discrete mathematics. Despite being a very simplistic

representation, networks have given us a better understanding of complex real-world phenom-

ena such as epidemic spreading of diseases [1, 2], small-worlds of human society [3, 4],

mobility and navigation [5, 6], emergence of complex organization [7, 8], robustness and con-

trollability of manmade technology [9, 10], and the structure of science [11], to name just a

few examples. Indeed, the networks have proven to be an invaluable tool for data analysis in

the last two decades [12].

One of the key reasons for the successes mentioned above is the realization that real net-

works share a number of structural properties regardless of their type or origin. For instance,

most real networks exhibit a scale-free structure like power-law node degree distribution [7,

13], short distances between the nodes called the small-world structure [3, 4], resilience or

robustness to targeted attacks [9], pronounced mixing between the nodes [14, 15], a distinctive

mesoscopic network structure [16, 17], characteristic node connection patterns [18, 19] and a
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key position or centrality of a small number of nodes [20, 21]. It is therefore a common belief

that real networks form according to some shared rules or principles giving rise to these com-

plex structures.

The network science literature is abundant with generative models of network formation

that try to explain their intrinsic structure and dynamics. Most network models are static,

meaning that edges are added between a fixed set of nodes according to some predefined rule.

These include the simplest Erdős-Rényi random graphs [22], and somewhat more realistic

configuration [23], hierarchical [24], geometric [19] and optimization [25] graphs that can

already explain some non-trivial properties of real networks. Moreover, stochastic block

models [26] can generate networks with an arbitrary mesoscopic structure. However, greater

insights into the structure and dynamics of real networks were actually obtained with evolving

network models where the number of nodes or edges increases over time. Most well-known

examples of evolving models are undoubtedly the Price cumulative advantage model [13], the

Barabási-Albert scale-free networks [7] and the copying network model [27].

On the other hand, some real networks do not grow but rather shrink, meaning that the

number of nodes or edges decreases over time. Apart from a few exceptions, such as [28],

shrinking network models have been largely neglected in the literature [29]. To fill this gap, we

here propose a simple model of shrinking networks called the war pact model. The model

starts with some fixed number of edges and the maximal possible number of nodes, hence the

initial seed network is a perfect matching. The nodes are then iteratively merged until the

desired number of nodes is obtained. We show that networks generated by the war pact model

match the most common properties of real networks. More importantly, the model provides

an intuitive explanation of the evolution of diverse real networks. The paper therefore puts

forth an intriguing question whether growing or shrinking models explain the evolution of

real networks better.

Materials and methods

The present section describes networks, models and methods used in the paper. We start with

a detailed description of the war pact model and its implementation. Next, we introduce four

real networks used for empirical validation of the model and alternative random graph models

used for comparison. Finally, we review two information-theoretic measures used for compar-

ing networks or graphs.

War pact model

The top row in Fig 1 shows a diagram of a particular realization of the war pact model. The

model starts with an initial seed network which is a perfect matching of nodes with some pre-

defined number of edges. The model then iteratively merges the nodes until one obtains a net-

work with the desired number of nodes. Note that the number of edges stays fixed during the

evolution of the model, while the number of nodes decreases by one in each step. The nodes to

be merged in each step can be selected uniformly at random, preferentially according to their

degrees or using some other selection rule.

More formally, let n and m be the desired number of nodes and edges, where 2m� n. The

model starts with m edges connecting 2m nodes as in Fig 1. In each step, the model merges

two nodes i and j into a newly added node k by first replacing nodes i and j with node k and

then connecting the neighbors of nodes i and j to node k. The model proceeds for 2m − n steps

when the number of nodes equals n.

As shown in the bottom row in Fig 1, the model can generate a rich local structure depend-

ing on the distance d between the nodes being merged. Merging nodes at distance d = 1 (i.e. an
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edge) creates a self-edge, which is not allowed, merging nodes at distance d = 2 creates parallel

edges and thus a multigraph, while merging nodes at distance d = 3 creates a triangle resulting

in non-trivial network clustering [4]. In general, merging nodes at distance d creates a cycle on

d nodes.

The war pact model is free from parameters. Nevertheless, one can still freely choose the

strategy of selecting the nodes to be merged in each step and also the initial state of the model.

In the letter case, initializing the model with a perfect matching as above is somewhat artificial

and not realistic in practice. However, as we show in the Results and discussion section, the

particular choice of the model initialization has no apparent effect on the final structure of the

generated networks. For this reason, the model is initialized with a perfect matching unless

explicitly stated otherwise.

On the other hand, the particular choice of the node selection rule can have a profound

effect on the structure of the generated networks. Therefore, we consider four different node

selection rules that proved reasonable in practice. In particular, the two nodes to be merged

can be selected uniformly at random among all nodes (denoted RR model) or preferentially

according to their degrees (KK model). Hence, a node is selected with the probability propor-

tional to k, where k is the current degree of the node. Finally, we also consider two mixed rules

where the first node is selected with the probability proportional to its degree k, while the sec-

ond node is selected uniformly at random (KR model) or with the probability proportional to

its inverse degree k−1 (KI model). Other possible rules either do not generate realistic networks

or we could not find an intuitive explanation for such a model.

For a visual representation, Fig 2 shows layouts of three particular realizations of the war

pact model networks. In all three cases, the first node is selected with the probability propor-

tional to its degree k, whereas the second node is selected with the probability proportional to

its degree k, inverse degree k−1 or uniformly at random (KK, KI and KR models, respectively).

Notice that clusters revealed with Bayesian stochastic blockmodeling [30] show diverse meso-

scopic structures of these networks ranging from hub and spokes arrangements to a commu-

nity and core-periphery structure.

Fig 1. War pact model. (top) Realization of the war pact model network with n = 5 nodes and m = 4 edges. The nodes selected for merging in each step are shown with

filled ellipses, while the sizes of the nodes are proportional to their degree k. (bottom) Examples of the merging procedure for nodes at different distances d.

https://doi.org/10.1371/journal.pone.0223480.g001
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The implementation of the war pact model is relatively straightforward using the hash

map H as shown in Algorithm 1. Each node of graph G is represented by its hash value

h 2 H initialized as H(i) = i for each node index i = 1, . . ., 2m (lines 4-5). Note that each

hash value h 2 H corresponds to a unique node in graph G and each node has a unique hash

value. Merging two nodes H(i) and H(j) then merely requires unifying their hash values as

H(i) = H(j) and updating graph G accordingly (lines 12-13). For choosing a node uniformly

at random, one selects a random hash value h 2 H (line 9), while if choosing a node with the

probability proportional to its degree, one selects the hash value H(i) of a randomly selected

node index i 2 [1, 2m] (line 10). The pseudocode in Algorithm 1 assumes that graph G is ini-

tialized with a perfect matching of nodes (line 6) and ensures that no self-edges are created

during the evolution of the model (line 11). Note that, in practice, one should use a disjoint-

set data structure instead of a hash map to ensure a near-constant time complexity of all

operations.

Algorithm 1 War pact model
Input: nodes n and edges m
Output: graph G
1: H  empty map {Define empty map representing nodes.}
2: G  empty graph {Define empty war pact model graph.}
3: for i 2 [1, m] do
4: H(i)  i and H(m + i)  m + i {Map nodes’ indices to their

hashes.}
5: add nodes H(i) and H(m + i) to G {Add nodes (i.e. hashes) to

graph.}
6: add edge {H(i), H(m + i)} to G {Create perfect matching of

nodes.}
7: end for
8: white G has > n nodes do
9: h  RANDOM(H) {Select random hash (i.e. random node).}

10: i  RANDOM([1, 2m]) {Select random index (i.e. node by degree).}
11: if h 6¼ H(i) and edge {h, H(i)} =2 G then
12: merge nodes h and H(i) in G {Merge selected nodes by rewiring

edges.}
13: H(i)  h {Unify hashes of selected nodes.}
14: end if
15: end while
16: return G

Fig 2. Layouts of war pact networks. Wiring diagrams of the largest connected components of the war pact model networks with n = 1000 nodes and the average degree

hki = 10. The sizes of the nodes are proportional to their degree k, while the colors of the nodes show the clusters revealed with stochastic blockmodeling. The layouts

were computed with the Large Graph Layout [31].

https://doi.org/10.1371/journal.pone.0223480.g002
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Networks and models

For empirical validation of the war pact model, we consider four real networks of different

types and origins. The networks represent international trade consisting of the strongest food

import and export relations between countries from the Food and Agricultural Organization

of the United Nations [32], historical records of international wars, non-military conflicts, bor-

der disputes and other disagreements between national alliances during 1996 collected by the

Correlates of War project [33], Bitcoin transactions between the most active users (i.e. clusters

of coappearing input addresses) between 2012 and 2013 parsed from the public ledger [34],

and the Internet map at the level of autonomous systems on the first day of 1998 reconstructed

from the University of Oregon Route Views project [35]. Networks are represented with undi-

rected graphs with self-edges and isolated nodes removed.

Table 1 shows the standard statistics of the analysed networks. These are the number

of nodes n and edges m, the average node degree hki = 2m/n, the fraction of nodes in the

largest connected component LCC, the average node clustering coefficient hCi ¼ 1

n

P
iCi

[4] with the clustering coefficient of node i defined as Ci ¼
2ti

kiðki � 1Þ
, where ti is the number of

triangles including node i and ki> 1 is its degree, the average distance between the nodes

hdi ¼ 2

nðn� 1Þ

P
i<jdij, where dij is the number of edges in the shortest paths between nodes i and

j, the maximal distance or diameter dmax = maxi<j dij, the node degree mixing coefficient r [14]

defined as the Pearson’s correlation coefficient of the degrees of connected nodes and the

modularity of network community structure Q ¼ 1

2m

P
ij Aij �

kikj
2m

� �
dðci; cjÞ [36], where A is

the network adjacency matrix, ci is the community label of node i and δ is the Kronecker delta.

The modularity Q is reported as the average over 100 runs of the Leiden algorithm [37].

The war pact model is compared against three classical random graph models. The first is

the Erdős-Rényi random graph model [22], where an edge is put between each pair of n nodes

with a probability of hki/(n − 1). Next is the Barabási-Albert scale-free model [7], where n
nodes are added one at a time and each forms hki/2 edges while preferentially linking to high

degree nodes. The model generates networks with a scale-free degree distribution pk� k−γ [7,

38], where γ is the power-law exponent. Finally, we consider the Watts-Strogatz small-world

model [4], where a fraction of edges of a regular ring lattice is randomly rewired. The model

generates networks with a high clustering coefficient hCi � 0 and a short average distance

between the nodes hdi ’ loghki n.

Network comparison

We adopt two recently proposed measures for comparing networks or graphs. These are the

simplified D-measure [39] and the portrait divergence [40, 41]. Both are principled informa-

tion-theoretic measures that can be used to compare arbitrary graphs and do not require that

the two graphs being compared are defined on the same set of nodes. Both measures compare

graphs by quantifying differences among the distances between the nodes of the graphs as

defined below.

Table 1. Statistics of real networks. Standard statistics of real networks analysed in the paper.

Network n m LCC hki hCi hdi dmax r Q

Correlates of war 41 54 87.8% 2.63 0.28 2.58 8 −0.29 0.60

International trade 130 3730 100.0% 57.38 0.50 2.24 5 −0.07 0.21

Bitcoin transactions 1288 6236 98.8% 9.68 0.33 2.83 9 −0.28 0.39

Autonomous systems 3213 11248 100.0% 7.00 0.18 3.77 9 −0.22 0.64

https://doi.org/10.1371/journal.pone.0223480.t001
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Let dij(G) denote the distance between nodes i and j in an undirected graph G and dmax(G)

the maximal distance or diameter, dmax(G) = maxi<j dij(G). Next, let Did(G) be the fraction of

nodes at distance d from node i, d = 0, . . ., dmax(G),

DidðGÞ ¼
1

n

Xn

j¼1

IðdijðGÞ ¼ dÞ;

where I is the indicator function. Finally, let DðGÞ be the average of vectors Di(G) over all

nodes in G, therefore

DdðGÞ ¼
1

n

Xn

i¼1

DidðGÞ:

The simplified D-measure [39] measuring the dissimilarity between graphs G and G0 is then

defined as

DðG;G0Þ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðDðGÞ;DðG0ÞÞ

log 2

s

þ
1

2

�
�
�

ffiffiffiffiffiffiffiffiffiffiffiffi

N ðGÞ
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

N ðG0Þ
q �

�
�; ð1Þ

where N ðGÞ is the so-called node dispersion of graph G,

N ðGÞ ¼
J ðD1ðGÞ; . . . ;DnðGÞÞ

logðdmaxðGÞ þ 1Þ
;

and J is the Jensen-Shannon divergence.

The first term of Eq (1) compares graphs through averaged distances between the nodes

and thus captures global differences between the graphs. The second term further compares

graphs through the heterogeneity of the nodes and how each particular node is connected

throughout the graph. It thus captures local differences between the graphs. It was empirically

shown that the measure returns non-zero values only for non-isomorphic graphs [39].

In the case of the complete D-measure, Eq (1) also includes the third term measuring the

dissimilarity between node centralities in graphs G and G0, and their complements. Since the

latter are computationally prohibitive for sparse graphs, and only strictly necessary to distin-

guish highly regular graphs, we here avoid the additional term without significant precision

loss [39].

Furthermore, let Pkd(G) be the number of nodes that have k nodes at distance d, d = 0, . . .,

dmax(G),

PkdðGÞ ¼
Xn

i¼1

IðnDidðGÞ ¼ kÞ;

while other details are the same as before. P(G) is called the portrait of graph G, which is invari-

ant under graph isomorphism [41]. The portrait divergence [40] measuring the distance

between graphs G and G0 is then defined as

PðG;G0Þ ¼ J ðPðGÞ;PðG0ÞÞ; ð2Þ

where J is the Jensen-Shannon divergence and

PkdðGÞ ¼
1

n
PkdðGÞ

1
P

cn2
c

Xn

k0¼0

k0Pk0dðGÞ: ð3Þ

Here, nc is the number of nodes in the connected component c and the sum in the
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denominator goes through all connected components of G. The right part of Eq (3) equals

the probability that two randomly chosen nodes are at distance d, while the left part further

demands that one of these two nodes has exactly k nodes at distance d. The portrait divergence

in Eq (2) has a number of desirable properties for comparing graphs thoroughly described in

[40].

Results and discussion

This section presents an empirical validation of the war pact model. First, we characterize the

statistical properties of the networks generated by different variants of the model. Next, we

study the model evolution by analyzing networks with growing number of nodes or edges.

Finally, we compare the war pact model against classical random graph models and clarify the

intuition behind the model for various real networks.

War pact networks

Fig 3 shows distributions of various node statistics of particular realizations of the war pact

model networks. We consider four variants of the node selection rule introduced in the Mate-

rials and methods section and three different choices of model initialization. The top row in

Fig 3 shows the distributions for networks initialized with a perfect matching of nodes as in

Algorithm 1, the networks in the middle row are initialized with Erdős-Rényi random graphs

[22] with the same number of nodes and edges, while the networks in the bottom row are ini-

tialized with randomly grown tree graphs.

Notice that the distributions in the top, middle and bottom rows are almost indistinguish-

able. Hence, the particular choice of the model initialization has no apparent effect on the

structure of the generated networks. In the remainder, we therefore always initialize the model

with a perfect matching of nodes.

In contrast, the choice of the node selection rule does indeed shape the structure of the gen-

erated networks as already observed in Fig 2. For instance, consider the node degree distribu-

tions pk shown in the first column in Fig 3. When both nodes to be merged are selected

preferentially according to their degree k (KK model), the degree distribution pk seems to fol-

low a power-law for low degrees k≲ 10, whereas high degree nodes k≳ 1 000 form a rich club

[44]. Actually, the subgraph induced by the nodes with degree k� 1 000 is a clique. Next,

when selecting the second node uniformly at random (KR model), the degree distribution has

a shape close to the power-law pk� k−γ with γ� 1.6 throughout the entire range of node

degrees. The war pact model can therefore generate scale-free networks as is commonly

observed in social and information domains [45, 46]. Finally, the other two node selection

rules (KI and RR models) generate networks with a peak in the degree distribution characteris-

tic of technological networks and random graphs. Hence, depending on the particular real net-

work being modeled, different node selection rules prove appropriate.

The middle column in Fig 3 shows the distributions of the average node clustering coeffi-

cient C(k) for nodes with degree k. These largely resemble the node degree distributions pk. In

the case of the KR model networks with a seemingly power-law degree distribution pk� k−γ, C
(k) distributions also seem to follow a power-law [47]. More importantly, in all cases consid-

ered, the war pact model generates networks with a non-trivial node clustering coefficient hCi
� 0 characteristic of small-world networks [4].

The small-world networks are further characterized by short distances between the nodes

[4]. The last column in Fig 3 shows the distributions of node distances pd for d> 2. Most pairs

of nodes are at distance d = 4 or 5 regardless of the particular variant of the model. Thus, in

War pact model of shrinking networks
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summary, the war pact model generates networks with a scale-free and small-world structure

as commonly observed in practice.

Fig 4 shows different properties of the war pact model networks with a growing number of

nodes or edges. These are the fractions of nodes in the largest connected component LCC, the

average node clustering coefficient hCi and the node degree mixing coefficients r. As predicted

by the percolation theory for random graphs [48], a large connected component LCC� 100%

emerges when the average node degree hki exceeds a certain threshold, which depends on the

particular variant of the model (top left plot in Fig 4). Nevertheless, when the average node

degree equals hki � 10, the largest connected component includes LCC> 90% of the nodes

regardless of the model considered. Notice that this is independent of the number of nodes n
(bottom left plot in Fig 4).

Fig 3. Distributions of war pact networks. Node degree distributions pk, the average node clustering coefficient C(k) and node distance distributions pd for d> 2 of

particular realizations of the war pact model networks with n = 10 000 nodes and the average degree hki = 10 [42]. The models are initialized either with a perfect

matching (top), corresponding Erdős-Rényi random graphs (middle) or a randomly grown tree graphs (bottom). The power-law node degree distributions pk� k−γ

are estimated using the maximum likelihood approach [43].

https://doi.org/10.1371/journal.pone.0223480.g003
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As expected, the average node clustering coefficient hCi increases with the average node

degree hki (top middle plot in Fig 4). Networks with the highest clustering coefficient hCi
are generated by the KR model with values similar to those observed in real networks (see

Table 1). In contrast, networks generated by the KK model show an increasing clustering coef-

ficient hCi only up to a certain point when the average node degree equals hki � 5, after which

hCi starts to decrease. The reason for this is that the networks start forming a well-pronounced

rich club of a few high-degree nodes with C = 1, whereas most of the nodes are pendant nodes

with C = 0. Finally, when fixing the average node degree to hki = 10 and increasing the number

of nodes n, the clustering coefficient hCi decreases for all variants of the war pact model since

the generated networks are becoming increasingly more sparse (bottom middle plot in Fig 4).

The last column in Fig 4 shows the evolution of the node degree mixing coefficient r for the

growing war pact model networks. Notice that the values of r are largely independent of the

number of nodes n and the average node degree hki. All variants of the war pact model except

maybe the KK model generate networks with no pronounced degree mixing r� 0. On the

other hand, the KK model networks are very mildly degree disassortative with r� −0.05, due

to the reasons already mentioned above.

Comparison and discussion

The previous subsection shows that the choice of the war pact model initialization does not

have any apparent effect on the generated networks. On the contrary, different node selection

rules do indeed generate networks with a different topological structure. Most realistic

Fig 4. Evolution of war pact networks. The fractions of nodes in the largest connected component LCC, the average node clustering coefficient hCi and the node degree

mixing coefficients r during the evolution of the war pact model networks with n = 2 500 nodes and growing average degree hki (top) or growing number of nodes n and

the average degree hki = 10 (bottom). Therefore, the number of edges m is increasing from left to right in all plots that show the averages over 25 independent realizations

of the models.

https://doi.org/10.1371/journal.pone.0223480.g004
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networks matching the properties of connected scale-free and small-world networks with a

core-periphery structure [4, 7, 16] seem to be generated by the model that selects the first node

preferentially according to its current degree and the second node uniformly at random (the

KR model). This model is also theoretically the most sound, since it incorporates the important

realism of real networks known as preferential attachment [7], where new nodes preferentially

link to well-connected nodes. Here the nodes are not added but merged, while the former are

modeled by randomly selected nodes and the latter are modeled by high-degree nodes. In the

present subsection, we also evaluate this hypothesis empirically using four real networks from

diverse domains.

The first two plots in Fig 5 compare different variants of the war pact model with an inter-

national trade network [32]. The plots show distributions of the simplified D-measure pD in

Eq (1) [39] and the portrait divergence pP in Eq (2) [40]. For both measures, the KR model

clearly provides the best fit to the real network. Almost any network generated by the KR

model reproduces the real network better than any realization of any alternative model. This

also applies to other real networks analysed in the paper (exact results are omitted). In the

remainder, we therefore compare other random graph models only with the KR model.

The remaining four plots in Fig 5 compare networks generated by different random graph

models with the international trade network as above, and correlates of the war network [33],

the Bitcoin transactions network [34] and the autonomous systems graph [35]. The plots show

the distributions of the portrait divergence pP, while the models include the war pact networks,

Erdős-Rényi random graphs [22], Barabási-Albert scale-free networks [7] and Watts-Strogatz

Fig 5. Comparison of network models. Comparison of the war pact model networks and classical random graphs with the international trade network (top), and

correlates of the war network, the Bitcoin transactions network and the autonomous systems graph (bottom). The plots show distributions of the simplified D-measure pD
and the portrait divergence pP estimated over 100 independent realizations of the models.

https://doi.org/10.1371/journal.pone.0223480.g005
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small-world networks [4]. The latter are without doubt the most fundamental and commonly

analysed models in network science literature.

All real networks considered, the war pact model reproduces the structure of the networks

better than any other model. Again, almost any network generated by the war pact model fits

the real network better than any realization of any alternative model. We stress that all these

models are either static or models with a growing number of nodes and edges. In contrast, the

war pact model networks shrink over time and possibly provide a better explanation of the

evolution of the considered real networks.

Table 2 further shows the standard statistics of the war pact model networks that best repro-

duce real networks according to the portrait divergence. Comparing the values with those in

Table 1, these match the statistics of real networks well with a few exceptions shown in bold in

Table 2. In particular, the war pact model underestimates the average node clustering coeffi-

cient hCi and overestimates the node degree mixing coefficient r in correlates of war and Bit-

coin transaction networks, and the autonomous systems graph, while the model

underestimates the modularity Q of the community structure in international trade and Bit-

coin transactions networks, and the autonomous systems graph. On the other hand, the model

almost precisely reproduces the fraction of nodes in the largest connected component LCC,

the average distance between the nodes hdi and network diameter dmax. Overall, the war pact

model replicates the structure of these real networks better than any other model considered.

Besides, the war pact model also provides an intuitive explanation of the evolution of

many real networks. For instance, the nodes in the correlates of war network represent alli-

ances between world nations and the edges represent different military or non-military con-

flicts between them. When nations of two alliances form a pact, or nations in one alliance

occupy the nations of another, the enemies of both become common enemies, which can be

modeled by simply merging the corresponding nodes. Furthermore, the node selection rule

that proved most suitable above suggests that larger alliances with larger number of enemies

form a pact with or conquer other alliances. This intuition has motivated the name war pact

model.

The evolution of other real networks analysed in the paper can be explained in a similar

manner. The trading relations between countries or companies are shared after an alliance

between two countries or a merger of two companies. Next, when a single user controls multi-

ple Bitcoin addresses, these are likely to coappear in future transactions. Finally, when two

entities that have governed their Internet traffic independently unite for whatever reason, their

traffic is merged from an external point of view. Indeed, one can come up with a similar intui-

tive explanation of the evolution of other real networks not considered here.

As already mentioned before, the initialization of the war pact model with pairs of con-

nected nodes is somewhat artificial in the scenarios considered. However, as we show in the

empirical evaluation of the model, the particular choice of model initialization has no apparent

effect on the resulting structure of the generated networks.

Table 2. Statistics of war pact networks. Standard statistics of the war pact model networks that best reproduce real networks according to the portrait divergence esti-

mated over 100 independent realizations of the model.

Network n m LCC hki hCi hdi dmax r Q

Correlates of war 41 54 90.2% 2.63 0.06 2.64 7 −0.14 0.53

International trade 130 3730 100.0% 57.38 0.53 2.17 5 −0.04 0.02

Bitcoin transactions 1288 6236 98.0% 9.68 0.13 3.08 7 −0.05 0.24

Autonomous systems 3213 11248 98.3% 7.00 0.03 3.62 9 0.00 0.33

https://doi.org/10.1371/journal.pone.0223480.t002
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Conclusion

In this paper, we propose a simple model of shrinking networks called the war pact model.

The model starts with some fixed number of edges forming a perfect matching, and then itera-

tively merges the nodes until the desired number of nodes is obtained. In contrast to most net-

work models in literature that are either static, representing a snapshot of a network [4, 22,

23], or generate networks with a growing number of nodes and edges [7, 13, 27], the war pact

model networks shrink and thus represent a shift in the perspective of the evolution of real net-

works that has been largely neglected in the past [28, 29].

We show that networks generated by the war pact model match the common properties

of real networks. These include the emergence of a large connected component [22], a scale-

free node degree distribution [7], a small-world network structure [4], a disassortative node

degree mixing [14], a distinctive network mesoscopic structure [16] and selected other prop-

erties. Even more importantly, the model provides an intuitive explanation of the evolution

of diverse real networks representing the worldwide trade, international wars or non-mili-

tary conflicts and other disputes, cryptocurrency transactions, Internet traffic and likely

many other networks not considered here. In summary, compared to classical growing net-

work models, network shrinking possibly provides a more reasonable explanation of the evo-

lution of at least some real networks and greater emphasis should be put on such models in

the future.

There are various directions for further research. Firstly, due to the algorithmic simplicity

of the war pact model, different network properties might be derived analytically, thus render-

ing numerical simulations unnecessary. Secondly, the model could be extended to other types

of networks like weighted or valued and also signed networks. Similarly, the node selection

rule could be easily adjusted for multimode and multiplex networks. Finally, a thorough com-

parison of different network models could be conducted, possibly giving a more conclusive

answer whether growing or shrinking models, or some reasonable combination of them,

explain the evolution of real networks better.
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