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Abstract

Monitoring of blood glucose is an invasive, painful and costly practice in diabetes. Conse-

quently, the search for a more cost-effective (reagent-free), non-invasive and specific diabe-

tes monitoring method is of great interest. Attenuated total reflectance Fourier transform

infrared (ATR-FTIR) spectroscopy has been used in diagnosis of several diseases, however,

applications in the monitoring of diabetic treatment are just beginning to emerge. Here, we

used ATR-FTIR spectroscopy to evaluate saliva of non-diabetic (ND), diabetic (D) and insu-

lin-treated diabetic (D+I) rats to identify potential salivary biomarkers related to glucose moni-

toring. The spectrum of saliva of ND, D and D+I rats displayed several unique vibrational

modes and from these, two vibrational modes were pre-validated as potential diagnostic bio-

markers by ROC curve analysis with significant correlation with glycemia. Compared to the

ND and D+I rats, classification of D rats was achieved with a sensitivity of 100%, and an aver-

age specificity of 93.33% and 100% using bands 1452 cm-1 and 836 cm-1, respectively.

Moreover, 1452 cm-1 and 836 cm-1 spectral bands proved to be robust spectral biomarkers

and highly correlated with glycemia (R2 of 0.801 and 0.788, P < 0.01, respectively). Both

PCA-LDA and HCA classifications achieved an accuracy of 95.2%. Spectral salivary bio-

markers discovered using univariate and multivariate analysis may provide a novel robust

alternative for diabetes monitoring using a non-invasive and green technology.

Introduction

Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia which results

from insufficient secretion and/or reduced insulin action in peripheral tissues [1, 2]. Accord-

ing to the International Diabetes Federation (IDF), there are an estimated 425 million adults
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with diabetes worldwide, these include 212 million who are estimated undiagnosed [3]. Fre-

quent monitoring of diabetes is essential for improved glucose control and to delay clinical

complications related with diabetes. Besides, the early screening of DM is paramount to reduce

the complications of this metabolic disorder worldwide [4]. Despite being relatively invasive

and painful, blood analysis per glucometer is currently feasible for screening, monitoring and

diagnosing diabetes by needle finger punctures [5, 6]. The constant need of piercing the fingers

several times daily by most patients is inconvenient and may lead to the development of finger

calluses and difficulty in obtaining blood samples [5].

Saliva reflects several physiological functions of the body [7, 8]. In this way, salivary bio-

markers might be an attractive alternative to blood for early detection, and for monitoring sys-

temic diseases [9]. Among the advantages, saliva is simple to collect, non-invasive, convenient

to store and, compared to blood, requires less handling during clinical procedures. Besides,

saliva also contains analytes with real-time monitoring value which can be used to check the

individuals condition [8, 10]. Currently, a broad set of methods are used to analyze saliva

including immunoassays, colorimetric, enzymatic, kinetic, chromatographic and mass spec-

trometric analysis [11]. Several studies showed higher salivary glucose levels in DM patients

than non-hyperglycemic controls, however, the studies reject the idea of a direct relationship

between salivary glucose and glycemia in diabetic patients [6, 12–17]. Another limitation of

salivary-based measurement of glucose for diabetes monitoring is the presence of glucose in

foods, which can disturb the monitoring process as it induces changes in salivary glucose con-

centration. Therefore, other alternatives of salivary monitoring should be studied.

Infrared (IR) spectroscopy is emerging as a powerful quantitative and qualitative technique

for monitoring characterization of biological molecules in fluids [18]. Attenuated total reflec-

tion Fourier-transform infrared (ATR-FTIR) spectroscopy is a global, sensitive and highly

reproducible physicochemical analytical technique that identifies structural molecules on the

basis of their IR absorption [19]. Considering that a biomolecule is determined by its unique

structure, each one will exhibit a unique ATR-FTIR spectrum, representing the vibrational

modes of the constituent structural bonds [19, 20]. ATR-FTIR is a green technology due to

processes that eliminate the use of hazardous elements an overarching approach that is appli-

cable to monitoring diseases. The IR spectral modes of biological samples, such as saliva, may

be considered as biochemical fingerprints that correlate directly with the presence or absence

of diseases, and, furthermore, provide the basis for the quantitative determination of several

analytes for monitoring several diseases and to diagnostic interest [21, 22]. The potential of sal-

ivary diagnostic for diabetes by IR spectroscopy using barium fluoride (BaF2) slides was sug-

gested previously [23], however, the efficacy of DM monitoring in insulin-treated conditions

using ultra-low volumes of saliva remains unknown.

In the present study, we tested the hypothesis that non-invasive spectral biomarkers can be

identified in saliva of hyperglycemic diabetic and in insulin-treated diabetic rats, and the differ-

entially expressed vibrational modes can be employed as salivary biomarkers for diabetes moni-

toring. Thus, the aim of our study was to identify infrared spectral signatures of saliva that are

suitable to monitoring this metabolic disease in untreated and insulin-treated conditions. For

this, the salivary vibrational modes profile of non-diabetic, diabetic and insulin-treated diabetic

rats was quantitatively and qualitatively evaluated using univariate and multivariate analysis.

Results

Characterization of diabetes mellitus

To confirm the effectiveness of diabetes induction and insulin treatment, several parameters

were assessed in anesthetized animals. As expected, to confirm the diabetic state, Table 1
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shows that diabetes reduced weight gain (p< 0.05), increased water intake (p< 0.05) and

food ingestion (p< 0.05) compared with ND rats. Besides, in diabetic condition, higher

plasma glucose (p< 0.05), as well as most pronounced urine volume (p< 0.05), associated

with higher urine glucose concentration (p< 0.05), were observed in D rats compared with

ND rats. Insulin treatment contributed to increased (p< 0.05) weight gain and decreased

water intake (p< 0.05) compared with placebo-treated D rats. As expected, insulin treatment

decreased plasma glucose (p< 0.05), urine volume (p< 0.05) and urine glucose concentration

compared with D rats. Glycemia and urine volume were similar (p> 0.05) in ND and D+I ani-

mals, indicating that insulin treatment completely reverted hyperglycemia and higher urine

volume described in D rats. The insulin treatment promoted a strong reduction in the urinary

glucose concentration; however, the urinary glucose concentration was increased (p< 0.05) in

D+I compared to ND animals.

Average spectra of saliva

A representative infrared average spectrum of saliva from normoglycemic, hyperglycemic and

insulin-treated conditions, which contains different molecules such as lipids, proteins, glyco-

proteins and nucleic acid, are represented in Fig 1A. These salivary spectra indicated several

differences among non-diabetic, diabetic and insulin-treated diabetic rats. Some bands of

interest are shown in Fig 1, which contains: asymmetric stretching vibration of CH2 of acyl

chains of lipids (2924 cm-1); amide II (1549 cm-1); asymmetric CH3 bending modes of the

methyl groups of proteins (1452 cm-1); amide III band components of proteins (1313 cm-1);

mannose-6-phosphate and phosphorylated saccharide residue (1120 cm-1) and C2 conforma-

tion of sugar (836 cm-1). The representative spectral changes compared to ND rats was repre-

sented in Fig 1B.

Spectral bands analyzed by IR spectroscopy

Spectral band areas that indicate the expression of specific molecules were analyzed in saliva.

The band area values of 2924 cm-1, 1549 cm-1, 1313 cm-1, 1120 cm-1 are presented in supple-

mentary files. Herein, we showed two bands (1452 cm-1 and 836 cm-1) with a higher potential

for diabetes monitoring (Fig 2 and Fig 3, respectively). Representative spectra of 1452 cm-1

and 836 cm-1 bands are depicted in Figs 2A and 3A. Diabetes induced a decrease (p< 0.05) at

1452 cm-1 and 836 cm-1 bands compared with non-diabetic rats, however, insulin-treated dia-

betic reverted this alteration in both bands (Figs 2A and 3A, respectively).

To investigate whether these salivary vibrational modes would be reflective of glycemia reg-

ulation, these two salivary band areas were discovered to be, via univariate analysis, the best

Table 1. Effect of diabetes and insulin on body weight, water intake, food intake, glycemia, urine volume and

urine glucose concentration.

Parameters ND D D+I

Δ Body weight (g) 48.4±8.3 -2.7±11.3� 39.5±12.8#

Water intake (mL) 39.1±3.1 150.6±17.9� 60.0±6.8#

Food intake (g) 18.3±1.3 35.0±4.1� 29.7±2.6�

Glycemia (mg/dL) 83.2±4.2 497.6±19.6� 81.0±19.2#

Urine volume (mL) 22.1±3.4 128.9±8.6� 40.7±7.1#

Urine glucose (mg/dL) 24.7±7.2 337.2±15.8� 148.0±34.6�#

�p< 0.05 vs ND

#P< 0.05 vs D; one-way ANOVA followed by Student Newman Keuls post-test.

https://doi.org/10.1371/journal.pone.0223461.t001
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spectral candidates values to indicate the diabetes monitoring in samples with hyperglycemia,

normoglycemia and under insulin treatment. Pearson’s correlation between these spectral

modes (1452 cm-1 and 836 cm-1) with glycemia showed high correlation. The both salivary

spectral bands presented strong negative correlation with r = -0.801; p< 0.0001 for 1452 cm-1

(Fig 2C) and r = -0.788; p< 0.0001 for 836 cm-1 (Fig 3C).

Fig 1. (A) Representative average ATR-FTIR spectra (3000–400 cm-1) in saliva of Non-Diabetic rats (ND), diabetic rats (D) and diabetic

treated with insulin (D+I). (B) Representative spectral changes compared to ND rats.

https://doi.org/10.1371/journal.pone.0223461.g001
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Considering that sensitivity and specificity are basic characteristics to determine the accu-

racy of diagnostic and monitoring test, ROC curve analysis were used to evaluate the potential

diagnostic of these spectral bands under two conditions of analysis. The first one, we analyzed

the condition of normoglycemic (ND and D+I) with hyperglycemic (D). The cutoff value to

1452 cm-1 band was 0.405, and the corresponding sensitivity and specificity were 100% and

93.3%, respectively. In ROC analysis, the area under the curve (AUC) of this band was 0.988

(Fig 2D). To emphasizes our focus on insulin-treated rats, we also showed ROC curve analysis

comparing only D+I with D. Both sensitivity and specificity of 1452 cm-1 band was 100% with

cutoff of 0.422 (p: 0.0027). Both sensitivity and specificity of 836 cm-1 band to differentiate

normoglycemic (ND and D+I) than hyperglycemic (D) were 100% with cutoff of 0.128 (Fig

3D). As expected, the ROC curve to differentiate insulin-treated diabetic (D+I) than hypergly-

cemic (D) showed similar data (Fig 3E).

Differentiation among the groups by principal component analysis

followed by linear discriminant analysis (PCA-LDA) and Hierarchical

Cluster Analysis (HCA)

Principal component analysis followed by linear discriminant analysis (PCA-LDA) was per-

formed to reduce the dimensionality of the data set, with the preservation of the variance to

evaluate the discrimination between the samples. PCA was performed using 6 principal com-

ponents (PCs), accounting for 95.2% (20/21) of cumulative variance of correct classification

with cross validation. The PCA model considered 95.8% of the data of the spectrum through

the second derivative for analyze. The PC1 to PC6 proportions of the spectra variability in the

covariance matrix were, 39.0%, 32.0%, 11.3%, 8.2%, 3.1% and 2.2%, respectively. After linear

discriminant analysis (LDA) with leave-one-out cross-validation, three groups (ND, D and D

+I) were formed, but only one sample belonging to class D+I was classified for group D (Fig

4). S1–S3 Tables show the mean quadratic distance, discriminant linear function and the sum-

mary of classification of each sample (with quadratic distance of each sample, prediction, vali-

dation and probability), respectively, in saliva of ND, D and D+I rats.

Hierarchical cluster analysis (HCA) was performed to investigate the effects of treatment

with insulin on diabetic to the differentiation of non-diabetic and diabetic samples. HCA was

performed in part of salivary spectrum. The deconvolution analyzes were done in the five spec-

tral regions represented in Fig 5, as A region (2995 cm-1 to 2889 cm−1), B region (1664 cm−1 to

1581 cm−1), C region (1410 cm−1 to 1234 cm−1), D region (1149 cm−1 the 1080 cm−1) and E

region (1018 cm−1 to 955 cm−1) which allowed the differentiation of the non-diabetic, diabetic

and insulin-treated diabetic. As seen from the Fig 5, all non-diabetics and diabetics were sepa-

rate with 100% of discrimination. Only one insulin-treated diabetic was categorized as non-

diabetic. The total accuracy, which is highly important for potential monitoring applications,

was 95.2% (20/21) in HCA analysis.

Discussion

The development of a novel, rapid, noninvasive tool for the diagnosis, and the most important,

for monitoring diabetes mellitus based on the comprehensive analysis of spectral salivary con-

stituents would be of great use to health clinics. Herein, we have investigated the translational

applicability of ATR-FTIR spectroscopy with the potential monitoring of metabolic control in

Fig 2. Spectral of 1452 cm-1 (A); Band area of 1452 cm-1 (B); Pearson correlation between glycemia and band area of 1452 cm-1 (C); ROC curve analyses

of 1452 to normoglycemic and hyperglycemic (D); ROC curve analyses of 1452 to diabetic and diabetic treated with insulin (E). Non-diabetic rats (ND),

diabetic rats (D) and diabetic treated with insulin (D+I).

https://doi.org/10.1371/journal.pone.0223461.g002
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diabetes. ATR-FTIR detected six potential spectral bands, and, from these, two bands were

showed a strong correlation with glycemia and high sensibility and specificity to differentiate

hyperglycemic than normoglycemic conditions indicating potential monitoring applicability

for diabetes. The discriminatory power of these two salivary ATR-FTIR bands area are candi-

dates for monitoring diabetes under insulin therapy.

As expected in the diabetic state, plasma glucose, urine volume, and urine glucose concen-

tration are increased in non-treated diabetic rats compared to non-diabetic rats [24]. In addi-

tion, insulin treatment decreased glycemia, urine volume, and urine glucose. These findings

are consistent with other studies [25–28]. It is known that salivary composition changes in dia-

betes mellitus [29–31]. Also, diabetes mellitus frequently decreases salivary flow, alters the

expression of salivary proteins, and increases glucose levels in saliva [29, 31, 32]. From these

parameters, it is possible to use salivary components to reflect the presence and severity of

hyperglycemia [33]. The saliva of diabetics with poor metabolic control shows an increase in

salivary glucose concentration [34]. The correlation of glycemia with glucose concentration in

saliva is still not well established, so currently it is not used to verify the degree of metabolic

control and diagnosis in diabetes mellitus [35–37]. ATR-FTIR spectroscopy has been used as

an alternative discriminatory method to others chronic diseases, due to its major advantages of

being label-free and non-destructive, rapid, high-throughput, not requiring sample prepara-

tion, and cost-effective analytical method for providing details of the chemical composition

and molecular structures [38, 39].

The spectral analysis method to dried saliva described in the present study may be used in

rodent and human models. Spectral parameters, such as shifts in band positions and changes in

spectral modes intensity, can be used to obtain valuable information about sample composition,

which may have diagnostic and monitoring the potential for many diseases [20]. To get relevant

information about the concentration of the salivary molecules, integrated band area analysis

was performed in the saliva spectra since, according to the Beer-Lambert law, absorption band

intensity/band area is proportional to the concentration of the sample [39, 40]. Therefore, dif-

ferences in the band area for asymmetric CH3 bending modes of the methyl groups of protein

(1452 cm-1) and C2 endo/anti-B-form helix conformation (836 cm-1) differ in salivary constitu-

ents among the groups. Bencharit, Baxter [40] showed the differences in the composition of sali-

vary proteins associated with metabolic control in diabetes on a proteomic analysis, and similar

quantitative differences were found in the present study analyzed with spectroscopy ATR-FTIR.

Type 2 diabetes mellitus induced changes in the lipid and protein components on the erythro-

cyte membrane and causing structural changes by FTIR spectroscopy in the protein secondary

structure with a shift in the beta-sheet and beta-turn structures [41].

These two salivary spectral modes showed a high and significant correlation with metabolic

control. Clinically, the most interesting comparisons are the correlation between these salivary

spectral band areas and glycemia. Together, these salivary spectral bands showed a 100% sensi-

tivity and 100% specificity in ROC analysis. ROC curve analysis is widely considered to be the

most objective and statistically valid method for biomarker performance evaluation [42].

Regarding the potential for translation to the clinic, our results suggest that two salivary band

areas, 1452 cm-1 and 836 cm-1, can be considered noninvasive spectral biomarkers of monitor-

ing diabetes treated with insulin. Different drug treatments and several levels of glycemia

should ideally be possible to differentiate; therefore more studies need to be investigated.

Fig 3. Spectral of 836 cm-1 (A); Band area of 836 cm-1 (B); Pearson correlation between glycemia and band area of 836 cm-1 (C); ROC curve analyses of

836 to normoglycemic and hyperglycemic (D); ROC curve analyses of 836 to diabetic and diabetic treated with insulin (E). Non-diabetic rats (ND),

diabetic rats (D) and diabetic treated with insulin (D+I).

https://doi.org/10.1371/journal.pone.0223461.g003
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Fig 4. PCA-LDA analyses. Non-diabetic rats (ND), diabetic rats (D) and diabetic treated with insulin (D+I).

https://doi.org/10.1371/journal.pone.0223461.g004
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These results indicate that these spectral modes can be used as a diagnostic and monitoring

platform for diabetes mellitus; once interestingly, insulin treatment was also able to revert the

salivary spectra observed in the hyperglycemic state. Therefore, insulin treatment is not a

potential confounding factor that may influence salivary vibrational mode in comparison with

glycemia. Some studies have indicated specific salivary biomarkers for diabetes, such as glu-

cose, alpha-amylase, immunoglobulins, myeloperoxidases [9, 30, 43, 44] with similar potential,

but not with a focus on disease monitoring and/or with the use of IR spectroscopy. As

expected, the commercialization of saliva glucose biosensors has not been used for diabetes

management, and new strategies need to be developed to measure salivary components that

reflects glycemia. Besides, it is essential bearing in mind that C2 conformation of sugars at 836

cm-1 do not indicate a presence of glucose, the aldehyde structure for glucose into a cyclic

hemiacetal (glucopyranose) occur in C4-C5 bond brings [45] at 1375 cm-1 [46].

Multivariate analysis as PCA-LDA and HCA can be used to discriminate samples based on

their spectrum. In FTIR analysis, the diagnostic accuracy for diabetes detection using saliva

was 100.0% for the training set and 88.2% for the test (validation) set using linear discriminant

analysis (LDA) calculations [22]. However, in the present study, both PCA-LDA and HCA

obtained 95.2% of accuracy using saliva to discriminate normoglycemic, diabetic, and insulin-

treatment diabetic models. It is essential to emphasize that our protocol used ultra-low values

of saliva (2 μl) under airflow dried during only 2 minutes and the other study [22] used 50 μl

(25 times higher) under dried during ~30 min at 25 Torr on 13 mm BaF windows. The analysis

using univariate analysis was performed only in the present study. Besides, the Pearson’s corre-

lation between 1452 cm-1 and 836 cm-1 vibrational modes with glycemia described in present

study showed higher correlation values (r = 0.801 and r = -0.788) comparing with another

study ([22]; r = 0.49) using a SCN band, a classical indicator of tobacco smoking (a condition

present in ~60% healthy and diabetic subjects).

Cluster analyses confirm its potential to discriminate ND, D, and D+I groups with high

accuracy. The success rate for ND e D was 100%, and for D+I was 85.7%. Altogether, the data

performed an accuracy of 95.23%. The inclusion of one sample of D+I animals in the non-dia-

betic control group is expected, considering that insulin is a gold-standard treatment of diabe-

tes. We believe that this infrared analysis opens perspectives to use saliva to monitor the

metabolic control with molecules different than glucose. It is unequivocal that glucose is the

Fig 5. HCA analyses. Non-diabetic rats (ND), diabetic rats (D) and diabetic treated with insulin (D+I).

https://doi.org/10.1371/journal.pone.0223461.g005
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main molecule to analyses metabolic control in the blood; however, the demonstration of glu-

cose transporters in the luminal membrane of ductal cells in salivary glands [28] highlight the

need to evaluate other biomarkers in saliva.

Although we have shown that ATR-FTIR technology is useful for the identification of possi-

ble biomarkers for monitoring diabetes mellitus in the saliva of rats, this is a first exploratory

study using ATR-FTIR technology for this purpose. Therefore, further studies are needed to val-

idate the suggested spectral biomarkers in humans and to determine the applicability of this

technique for the monitoring of diabetes mellitus in human saliva. As other molecular tech-

niques, the ATR-FTIR can detect functional groups present in several components, which leads

to the analysis focus in the intensity of each vibrational mode or multivariate analysis over the

detection of a specific type of protein/sugar. It is essential to emphasize that ATR-FTIR have

been used for biofluids analysis, allowing same-day detection and grading of a range of diseases

in humans [21, 47–51]. Also, one limitation of this study is the inclusion of rats in higher levels

of glycemia, which was not intentional but could be explained by the effect of streptozotocin on

beta cells. Although requiring further confirmation to provide that our platform is suitable to

detect glycemic fluctuation (minutes/hour), the present data indicate that our novel noninvasive

approach to diabetes monitoring has the potential to provide discrimination of short-time insu-

lin treatment. Supposing that a similar vibrational mode can discriminate against other condi-

tions than hyperglycemia, we can assume that multivariate chemometric analysis is suitable to

discriminate between different diseases. The prospect of identifying spectral biomarkers in

saliva open new perspectives for monitoring the severity of diabetes, and compliance with insu-

lin treatment modalities. Considering the similarity of metabolic mechanism between the dia-

betic hyperglycemic animal’s models and diabetic patients, we believe that this salivary

ATR-FTIR-based diagnostics could be tested in large samples patients to rapidly and inexpen-

sively monitoring diabetes using saliva samples and even open the possibility for point-of-care

assays by portable attenuated total reflectance infrared spectroscopic approaches.

In conclusion, we showed that ATR-FTIR spectroscopy in the saliva could differentiate dia-

betic from non-diabetic and insulin-treated diabetic rats. Our data suggest specific fingerprint

regions (highlighted two salivary spectral modes 1452 cm-1 and 836 cm-1) capable of discrimi-

nating between hyperglycemic and normoglycemic conditions (insulin-treated or not) in uni-

variate analysis. A very high discriminatory accuracy of 95.2% was also obtained for classifying

infrared spectra of saliva between diabetic, non-diabetic, and insulin-treated rats by the

PCA-LDA and HCA multivariate models. In summary, these salivary results indicate that

ATR-FTIR spectroscopy coupled with univariate or multivariate chemometric analysis has the

potential to provide a novel noninvasive approach to diabetes monitoring assisting medical

decision making to avoid under-treatment or over-treatment with insulin.

Methods

Animals

This study was carried out in accordance with recommendations in the Guide for the Care

and Use of Laboratory Animals of the Brazilian Society of Laboratory Animals Science

(SBCAL). All experimental procedures for the handling, use and euthanasia were approved by

the Ethics Committee for Animal Research of the Federal University of Uberlandia (UFU)

(License #CEUA-UFU No. 013/2016) according to Ethical Principles adopted by the Brazilian

College of Animal Experimentation (COBEA). All effort was taken to minimize the number of

animals used and their discomfort.

Male Wistar rats (~250g) were obtained from Center for Bioterism and Experimentation at

the Federal University of Uberlandia. The animals were maintained under standard conditions
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(22 ± 1˚C, 60% ± 5% humidity and 12-hour light/dark cycles, light on at 7 AM) and were

allowed with free access to standard diet and water at the Institute of Biomedical Sciences

rodent housing facility.

Induction of diabetes and insulin treatment

Diabetes was induced in overnight-fasted animals by an intraperitoneal injection (60 mg/kg) of

streptozotocin (STZ) (Sigma-Aldrich, St. Louis, MO. USA) dissolved in 0.1 M citrate buffer (pH

4.5). Animals with hyperglycemia (>250 mg/dl) were chosen as diabetics. Non-diabetic animals

received injection of NaCl 0.9% in similar volume. Twenty one days later after induction of dia-

betes, diabetic rats were submitted to a 7-day treatment with vehicle (ND and D) or with 6U of

insulin [NPH insulin, Biohulin N; Biobrás, MG, Brazil] (D+I) per day (2U at 8:30 a.m. and 4U

at 5:30 p.m.) subcutaneously [26]. Thus, animals were divided in Non-Diabetic (ND, n = 8),

Diabetic (D, n = 6) and diabetic treated with 6U insulin (D+I, n = 7). Glucose levels in over-

night-fasted were obtained from the tail vein and measured using reactive strips (Accu-Chek

Performa, Roche Diagnostic Systems, Basel, Switzerland) by a glucometer (Accu-Chek Per-

forma, Roche Diagnostic Systems, Basel, Switzerland) in the moment of samples collection.

In the last day of treatment, the animals were kept in metabolic cages and water intake,

food intake, urine volume were measured. Urine was collected over 24 h and the glucose con-

centration in the urine was evaluated using an enzymatic Kit (Labtest Diagnostica SA, Brazil).

Besides that, variation of gain/loss body weight (Δ body weight) compared parameters in STZ

or vehicle induction with parameters after insulin or vehicle treatment.

Saliva collection

After 7-days of treatment, the animals were anaesthetized by an intraperitoneal injection with

ketamine (100 mg/kg) and xylazine (20 mg/kg). Stimulated saliva was collected with parasym-

pathetic stimulation through pilocarpine injection (2 mg/kg, i.p.). Stimulated saliva was col-

lected in pre weighed flasks for 10 min from the oral cavity [28]. The collected saliva was

stored at -80˚C for further processing and analysis. The animals were euthanized with exces-

sive anesthetic dose, after samples collection.

Chemical profile in stimulated saliva by ATR-FTIR spectroscopy

Salivary spectra were recorded in 3000 cm-1 to 400 cm-1 region using ATR-FTIR spectropho-

tometer Vertex 70 (Bruker Optics, Reinstetten, Germany) using a micro-attenuated total

reflectance (ATR) component. The crystal material in ATR unit was a diamond disc as inter-

nal-reflection element. The salivary pellicle penetration depth ranges between 0.1 and 2 μm

and depends on the wavelength, incidence angle of the beam and the refractive index of ATR-

crystal material. In the ATR-crystal the infrared beam is reflected at the interface toward the

sample. Saliva was directly dried using airflow on ATR-crystal for 2 min before salivary spectra

recorded. The air spectra was used as a background in ATR-FTIR analysis. Sample spectra and

background was taken with 4 cm-1 of resolution and 32 scans were performed for salivary anal-

ysis [52, 53].

Spectra data evaluation procedures

The spectra data obtained were processed using Opus 6.5 software (Bruker Optics, Reinstetten,

Germany). Measurements were performed in mid-infrared region (3000–400 cm-1) with spec-

tral resolution of 4 cm-1 and 32 scans per spectrum. Samples were pressed into ATR diamond

crystal with standardized pressure. For the generation of mean spectra and band areas, the
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spectra were normalized by vector and baseline corrected to avoid errors during the sample

preparations and spectra analysis. To evaluate the mean values for the peak positions, band

area of the spectra was considered belonging to each animal of the groups. The band positions

were measured using the frequency corresponding to the center of weight of each band. Band

areas were calculated from normalized and baseline corrected spectra using OPUS software.

Sensitivity and specificity values were calculated based on the external test set as follows:

The specificity or true negative rate is defined as the percentage of rats who are correctly

identified as being normoglycemic Non-Diabetic (ND) or normoglycemic D+I:

Specificity ¼
TN

TN þ FP

The quantity 1-specificity is the false positive rate and is the percentage of rats that are

incorrectly identified as diabetic (D).

The sensitivity or true positive rate is defined as the percentage of rats who are correctly

identified as diabetic (D):

Sensitivity ¼
TP

TP þ FN

where TP stands for true positives; TN for true negatives; FP for false positives; and FN for

false negatives [54].

Principal component analysis followed by linear discriminant analysis

(PCA-LDA) and Hierarchical Cluster Analysis (HCA)

The principal components analysis (PCA) was used as one step before Linear Discriminant

Analysis (LDA) to avoid multicollinearity (Jolliffe & Cadima et al., 2016)] performed by Mini-

tab1 Program. In order to calculate the principal components, the data was normalized and

then matrix of spectra was centered, which was the mean spectrum was subtracted from every

spectrum in the matrix. This procedure removes the redundancy of the average in the dataset

interpretation. The principal components (PC) were calculated using a full range of the FT-IR

spectra (ND, D and D+I) between 3700 and 500 cm-1, and a covariance matrix, where the

original variables are reduced to the most important descriptive components. The original

number of PC is always equal the number of variables and in this study, the first six principal

components (PC1-PC6) were used to calculate the LDA that corresponds to 95,8% of the

cumulative proportion of the spectrum variability. The LDA with leave-one-out cross valida-

tion [55] was done according to the pathological reports.

Infrared spectra of saliva samples were also analyzed by OPUS software (version 4.2) using

HCA. In the first step, the vector normalization was performed calculating the average absor-

bance (y axis) value of the selected spectra regions and subtracted this value from the spec-

trum, which technically centered around 0. After this procedure OPUS calculates the sum of

squares of all y value, and the respective spectrum is divided by the root this sum. The Scaling

to 1st Range method determined the minimum and maximum value of spectral distances for

the first spectral range. The dendrogram was performed by Ward’s clustering algorithm in the

defined spectral regions determines the growth of heterogeneity H, merging all homogeneous

spectra into a group using OPUS User manual.

Statistical analysis

The data of the band area were analyzed using the one-way analysis of variance (ANOVA), fol-

lowed by Tukey Multiple Comparison as a post-hoc test. The correlation between values of
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blood glucose concentration and salivary band areas of the spectra were analyzed by the Pear-

son correlation test. For all spectral band candidates, we constructed the Receiver Operating

Characteristic (ROC) curve and computed the area under the curve (AUC) value, sensitivity

and specificity by numerical integration of the ROC curve. The Kolmogorov-Smirnov test was

applied to test the normality of the variables. All these analyses were performed using the soft-

ware GraphPad Prism (GraphPad Prism version 7.00 for Windows, GraphPad Software, San

Diego, CA, USA). Only values of p< 0.05 were considered significant and the results were

expressed as mean ± S.D.
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