
RESEARCH ARTICLE

Research on multi-agent genetic algorithm

based on tabu search for the job shop

scheduling problem

Chong PengID
1*, Guanglin Wu1, T. Warren Liao2, Hedong Wang1

1 School of Mechanical Engineering and Automation, Beihang University, Beijing, China, 2 Department of

Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, United States of

America

* pch@buaa.edu.cn

Abstract

The solution to the job shop scheduling problem (JSSP) is of great significance for improving

resource utilization and production efficiency of enterprises. In this paper, in view of its non-

deterministic polynomial properties, a multi-agent genetic algorithm based on tabu search

(MAGATS) is proposed to solve JSSPs under makespan constraints. Firstly, a multi-agent

genetic algorithm (MAGA) is proposed. During the process, a multi-agent grid environment

is constructed based on characteristics of multi-agent systems and genetic algorithm (GA),

and a corresponding neighbor interaction operator, a mutation operator based on neighbor-

hood structure and a self-learning operator are designed. Then, combining tabu search

algorithm with a MAGA, the algorithm MAGATS are presented. Finally, 43 benchmark

instances are tested with the new algorithm. Compared with four other algorithms, the opti-

mization performance of it is analyzed based on obtained test results. Effectiveness of the

new algorithm is verified by analysis results.

1 Introduction

Under current rapid development of social economy, whether an enterprise can quickly

respond to market demands with limited resources under the premise of ensuring high effi-

ciency, high quality, high output and low cost largely determines the development and destiny

of it. In a production process of products, an effective solution of the JSSP is an extremely

important link in achieving the above goals. Job shop scheduling means optimization of prod-

uct manufacturing time or manufacturing cost is satisfied as far as possible by reasonably

arranging processing order of each job to be processed on each machine based on existing

machine resources and job raw materials under the condition of satisfying realistic constraints

(product delivery date, product production process route and available resources).

The importance of JSSPs attracts many scholars to conduct research in this field. Garey and

Sethi proved that JSSPs had non-deterministic polynomial (NP) characteristics [1]. For this

feature, methods for solving JSSPs can be divided into two categories: exact methods and

approximation methods. Exact methods include mathematical programming method, branch

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Peng C, Wu G, Liao TW, Wang H (2019)

Research on multi-agent genetic algorithm based

on tabu search for the job shop scheduling

problem. PLoS ONE 14(9): e0223182. https://doi.

org/10.1371/journal.pone.0223182

Editor: Feng Chen, Tongii University, CHINA

Received: August 2, 2019

Accepted: September 16, 2019

Published: September 27, 2019

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0223182

Copyright: © 2019 Peng et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The research was supported by National

Natural Science Foundation of China (Grant No.

51875029) and was supported by the National

http://orcid.org/0000-0003-4219-3827
https://doi.org/10.1371/journal.pone.0223182
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0223182&domain=pdf&date_stamp=2019-09-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0223182&domain=pdf&date_stamp=2019-09-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0223182&domain=pdf&date_stamp=2019-09-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0223182&domain=pdf&date_stamp=2019-09-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0223182&domain=pdf&date_stamp=2019-09-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0223182&domain=pdf&date_stamp=2019-09-27
https://doi.org/10.1371/journal.pone.0223182
https://doi.org/10.1371/journal.pone.0223182
https://doi.org/10.1371/journal.pone.0223182
http://creativecommons.org/licenses/by/4.0/

and bound method, and so on [2,3]. However, exact methods mentioned above are only appli-

cable to small-scale JSSPs. As complexity of JSSPs increases, applicability of exact methods

decreases continuously. Approximation methods include priority dispatching rules, shifting

bottleneck procedure, meta-heuristic algorithms, and the like. At present, meta-heuristic algo-

rithms such as GA, ant colony algorithm (ACO), particle swarm optimization algorithm

(PSO), simulated annealing algorithm (SA), neural network, tabu search (TS) and artificial bee

colony algorithm (ABC) have been widely used in various field and have shown good perfor-

mance [4–6].

GA was presented by Holland [7] and was extensively applied to solving scheduling prob-

lems. Its excellent searching performance is favored by many researchers in this field. How-

ever, application of GA in dealing with complex JSSPs is limited due to its premature and local

convergence. In response to these shortcomings, researchers proposed a number of improve-

ment measures, such as two-stage genetic algorithm, island model genetic algorithm, hybrid

genetic algorithm , and so on. Xu and Li [8] proposed immune genetic algorithm by combin-

ing immune theory with GA, which improved the global search performance of GA. Kurdi [9]

proposed a new island model genetic algorithm(NIMGA), which contains a new naturally

inspired evolution model and a new naturally inspired migration selection mechanism, to

improve effectiveness of classical island model genetic algorithm. The new algorithm

improved diversification of the search and delayed premature of GA. Chang and Liu [10] pro-

posed a hybrid genetic algorithm by using the Taguchi method to optimize the parameters of a

GA. Robustness and good optimization performance of the new algorithm were verified after

applying to solve some distributed and flexible job-shop scheduling problems. Moreover,

multi-agent systems have gained more and more applications in production scheduling due to

their flexibility and adaptability to open and dynamic real-world environments and synergy

mechanism between multiple agents. Liu et al. [11] designed a multi-agent-based solution sys-

tem and successfully solved the complex 7000 queen problem. Chen et al. [12] proposed a

hybrid flow shop rescheduling algorithm for perishable manufacturing systems. Products with

different deadlines, values, due dates and stochastically failed operational units in the system

were simulated by agents. The product agents can search the optimal scheduling path with the

new algorithm.

A MAGATS is proposed for solving JSSPs in this paper. To improve global search ability of

the algorithm and maintain diversity of the population, on the basis of establishing a multi-

agent grid environment based on GA, this paper designs a neighbor interaction operator, a

mutation operator based on neighborhood structure and a self-learning operator. The algo-

rithm combines high efficiency and simple operation of GA, synergy mechanism of a multi-

agent system and global search ability of TS, which can make up for premature and local con-

vergence of GA to some extent and improve search efficiencies and optimization ability of the

algorithm. Then, JSSPs can be solved more efficiently and accurately. Resource utilization of

enterprises can be promoted. Market demands can be faster respond to, which is of great sig-

nificance to development of enterprises and a country.

The remaining of this paper is organized as follows. The model of the JSSP and the process

of achieving a MAGA are illustrated in Section 2. Section 3 introduces the establishment of

MAGATS. In Section 4, 11 benchmark instances are selected to verify optimization perfor-

mance of MAGATS compared with GA and MAGA. 43 benchmark instances are used to test

optimization performance of the new algorithm. Based on test results and comparison with

other algorithms, optimization performance of MAGATS is studied. The conclusion is made

in Section 5.

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 2 / 19

Science and Technology Major Project “High-

Grade CNC Machine Tools and Basic

Manufacturing Equipments” (Grant No.

2016ZX04004006) to CP.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0223182

2 The achievement of MAGA

This section firstly introduces the model of the JSSP to be solved. Then combining multi-agent

synergy theories and GA, a MAGA is proposed.

2.1 Model of the JSSP

A JSSP is usually defined as follows.

n jobs are machined on m machines, respectively denoted as sets J = {Ji|i = 1, 2, . . ., n}, M =

{Mi|i = 1, 2, . . ., m}, where Ji is a job code, Mi is a machine code. Each job has a specific process.

Orders that jobs use machines are assigned. The processing time required for each operation

of each job on the corresponding machine is also given. The specific content of scheduling is

to determine processing sequences of jobs on each machine and the starting time of each job,

which makes makespan (recorded as Cmax) shortest. Besides that,

(1) Sequences of different jobs on a same machine have no constraints;

(2) Once a job is started on a machine, it is completed until its process is completed. Each

machine can only process one job at the same time, and it is assumed that no machine failed;

(3) All jobs arrive at the same time and only flow through each machine once.

It is assumed that the total number of operations for all jobs is Q, G = {1, 2, . . ., Q} is named

as an operation set; Ji represents the job subordinate to operation i; Machines required for pro-

cessing operation i are marked as Mi; The starting time of operation i is denoted by Si; Time

needed for processing operation i is recorded as Pi; The sequence of two adjacent operations of

a job is represented by!. Take i!j for example, operations i, j belong to one job, that is, Ji = Jj
and operation i is before operation j. So, the model of the JSSP can be described as follows.

minfmax Si þ Pig ð1Þ

s:t: : Si � 0; 8i 2 G

Sj � Si þ Pi; i! j; 8i; j 2 G

ðSj � Si þ PiÞ _ ðSi � Sj þ PjÞ8i; j 2 G; i 6¼ j;Mi ¼ Mj

ð2Þ

In Eq (2), the second constraint represents an operation sequence constraint, that is, the

start time of any one operation of a job must be later than the completion time of its previous

operation. The third constraint represents a resource constraint of machines, that is, each

machine can only process one job at the same time.

2.2 Construction of MAGA

By simulating the "survival of the fittest" rule in nature, classic GA calculates fitness values of

all chromosomes in each evolution process at first, and then preferentially selects individuals

with high fitness in a certain way, and weeds out ones with low fitness with a high probability.

But in nature, things often evolve locally and then expands globally, which is like co-evolution

of multi-agents in a multi-agent system. A multi-agent system is a distributed system com-

posed of multiple agents. Each agent can be either hardware or software. It can sense and

respond to local environment and communicate with neighbor agents to complete complex

tasks. In a multi-agent system, co-evolution of multi-agents in a local environment can better

reflect processes of evolution in nature. Therefore, GA is firstly improved to some extent by

combining GA with multi-agent synergy theories.

2.2.1 Multi-agent grid environment based on GA. GA is a random search algorithm

formed by simulating evolution processes of biology. The optimization process is realized by

three basic operators: selection-reproduction, crossover and mutation. As shown in Fig 1, GA

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 3 / 19

https://doi.org/10.1371/journal.pone.0223182

consists of five basic elements: encoding and decoding, design of initialing population, fitness

evaluation function design, design of genetic operations such as selection-reproduction, cross-

over, mutation, and setting of genetic parameters.

Based on GA, a multi-agent grid environment was built. In this environment, each chromo-

some in GA is treated as an independent agent. Firstly, a neighbor interaction operator was

designed to realize the optimization function of multi-agent systems. Secondly, to maintain

diversity of population, a mutation operator based on neighborhood structure and a self-learn-

ing operator were designed and introduced. The optimization algorithm based on the multi-

agent grid environment is called a MAGA. The overall flow chart is shown in Fig 2.

Compared Fig 1 with Fig 2, the process of MAGA is basically the same as that of GA. Simi-

lar to GA, MAGA has the same process of encoding and decoding each agent in the grid

environment.

2.2.1.1 Encoding and decoding of GA. Encoding is a gene representation of solutions of

JSSPs. It is the primary problem faced by GA for optimization of JSSPs, which plays a key role

in improving optimization effectiveness of the algorithm. Encoding methods of GA currently

used for JSSPs can be summarized into two categories: direct encoding and indirect encoding.

Direct encoding methods include operation-based encoding, job-based encoding, job pairs-

based encoding, completion time-based encoding, random key-based encoding, while indirect

encoding methods usually include precedence table-based encoding, priority rules-based

encoding, disjunctive graph-based encoding and machine-based encoding [13–16]. Combined

with advantages and disadvantages of various encoding methods, the operation-based encod-

ing is more prominent than other encoding methods, and it is the most widely used method to

solve JSSPs. Adopting operation-based encoding, Arbitrary arrangement of jobs can be

expressed as feasible scheduling. The corresponding decoding scheme is simple and easy to

operate. Moreover, feasible scheduling can always be obtained after replacing chromosomes.

Fig 1. Flow chart of GA.

https://doi.org/10.1371/journal.pone.0223182.g001

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 4 / 19

https://doi.org/10.1371/journal.pone.0223182.g001
https://doi.org/10.1371/journal.pone.0223182

Although this method only has a half-Lamarkian characteristic (Lamarkian characteristic

refers to the ability of inheriting good information from parent chromosomes), performance

of the algorithm can be enhanced by improving design of genetic operations, thereby improv-

ing its genetic characteristics. In summary, the operation-based encoding method is used to

encode JSSPs. In this method, each chromosome is represented by a gene sequence. Each gene

sequence contains n×m (n jobs, m machines) genes representing operations, which is an

arrangement of all operations.

Existing decoding methods include semi-active decoding and active decoding. Active

decoding can make decoded operations more concentrated, which can improve search effi-

ciencies of an algorithm [17]. Therefore, an insertion strategy is adopted to decode chromo-

somes. Every operation in a sequence is sequentially arranged on a corresponding machine.

When constraints are satisfied, every operation is started as early as possible. Finally, an active

chromosome of the JSSP, that is, an active scheduling solution, is obtained. To illustrate the

decoding process, data given in Table 1 are taken as an example. Processing time "4-5-11-3" in

the second row of Table 1 indicates processing time required for operations of job J1 on the

machines M4, M3, M1, M2, respectively.

The process of decoding a chromosome is shown in Fig 3. For example, an operation

sequence [1 3 1 4 2 3 2 4 3 3 4 1 4 1 2 2] generated based on data of Table 1 is actively decoded.

Table 1. 4×4 JSSP.

Job Machine Processing time

J1 M4-M3-M1-M2 4-5-11-3

J2 M3-M2-M1-M4 5-2-5-1

J3 M3-M4-M2-M1 2-5-9-3

J4 M2-M3-M4-M1 6-2-4-5

https://doi.org/10.1371/journal.pone.0223182.t001

Fig 2. Flow chart of MAGA.

https://doi.org/10.1371/journal.pone.0223182.g002

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 5 / 19

https://doi.org/10.1371/journal.pone.0223182.t001
https://doi.org/10.1371/journal.pone.0223182.g002
https://doi.org/10.1371/journal.pone.0223182

When the 3rd operation of job J1 is to be arranged, that is, when the 3rd “1” of the operation

sequence is taken, the corresponding machine M1 has been arranged job J3, it could be inserted

in front of job J3. Similarly, the 4th operation O44 of job J4 could also be inserted in front of job

J3, and finally Cmax could be decoded to be 34. The active scheduling solution obtained by

actively decoding the chromosome is shown in Fig 4 where Oij represents the jth operation of

job Ji. After active decoding the example chromosome, an active scheduling solution with

more concentrated operations [1 3 4 1 3 2 1 2 4 3 4 4 3 1 2 2] is obtained.

2.2.1.2 Neighbor environment and action criteria of chromosome agents. MAGA uses

encoding and decoding methods in GA to initial population and evaluate fitness of chromo-

some agents in the grid environment. To utilize multiple agents for collaborative optimization,

three issues should be identified first.

Fig 3. Active decoding of JSSP.

https://doi.org/10.1371/journal.pone.0223182.g003

Fig 4. Active scheduling solution.

https://doi.org/10.1371/journal.pone.0223182.g004

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 6 / 19

https://doi.org/10.1371/journal.pone.0223182.g003
https://doi.org/10.1371/journal.pone.0223182.g004
https://doi.org/10.1371/journal.pone.0223182

(1) Action intention definition of all agents. When using multiple agents for collaborative

optimization, each agent represents a feasible solution of the JSSP. Therefore, its action inten-

tion is defined: under the premise of satisfying constraint conditions, encoding sequences are

adjusted to the optimal solution in combination with its own environment.

(2) Neighbor environment definition of chromosome agents. Regard each chromosome as

a separate agent, and then fix them in a Lsize×Lsize grid environment (as shown in Fig 5), thus

forming a neighbor environment for each chromosome agent. It should be noted that the

number of neighbors per chromosome is not fixed. It can be 4, 8 or more, or it can be dynamic.

Since the main purpose of this paper is to combine a multi-agent grid environment with GA to

study its optimization effectiveness, the number of neighbors is set to 4. It is defined as follows.

Suppose Aij represents a chromosome agent with coordinates (i, j) in the grid environment,

then a neighbor set Nij of it can be defined:

Nij ¼ fAi0 j;Aij0 ;Ai0 0 j;Aij00 g

i0 ¼

(i � 1:i 6¼ 1

Lsize; i ¼ 1
; i00 ¼

(iþ 1; i 6¼ Lsize

1; i ¼ Lsize

j0 ¼

(j � 1:j 6¼ 1

Lsize; j ¼ 1
; j00 ¼

(jþ 1; j 6¼ Lsize

j; j ¼ Lsize

ð3Þ

where Lsize represents the dimension of the grid environment. Four neighbors corresponding

to each agent can be found according to Eq (3). For example, neighbors coordinates of agent

A22 are (1, 2), (2, 1), (2, 3) and (3, 2). Neighbors coordinates of agent A11 are (Lsize, 1), (1, Lsize),
(2, 1) and (1, 2).

Fig 5. Multi-agent gird environment.

https://doi.org/10.1371/journal.pone.0223182.g005

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 7 / 19

https://doi.org/10.1371/journal.pone.0223182.g005
https://doi.org/10.1371/journal.pone.0223182

(3) Action criteria of chromosome agents. Each agent interacts with only four neighbors

according to its own environment, and improves its own fitness by competing and cooperating

with the best neighbors around.

2.2.2 Design of neighbor interaction operators. In general, design of a crossover opera-

tor should be able to inherit good features of parent chromosomes on the basis of ensuring

generation of feasible solutions, so that the algorithm evolves toward the optimal solution. For

JSSPs, if the scheduling solution obtained by processing two adjacent jobs (Ji, Jk) on a machine

is better, then inheritance of this processing order (Ji, Jk) to offspring can still retain this advan-

tage. Many scholars have proposed many crossover operators. The more successful ones are

Linear Order Crossover (LOX), Precedence Operation Crossover (POX), Precedence Preser-

vation Crossover (PPX), etc [18–20]. The POX operator proposed by Zhang et al. can better

inherit superior features of parent chromosomes compared with other crossover operators

[21]. Its specific implementation is shown in Fig 6.

Specific steps of POX are as follows.

(1) A job set is randomly divided into two non-empty subsets JS1, JS2, as shown in Fig 6,

JS1 = {1, 3}, JS2 = {2, 4};

(2) Genes belonging to JS1 in parent1 are directly copied to child1, and genes belonging to

JS1 in parent2 are directly copied into child2.Positions of the genes are retained;

(3) The remaining genes in parent2 are copied into child1, and the remaining genes in par-

ent1 are copied into child2. Orders of the genes are preserved.

Individuals involved in the crossover in GA are from random pairing, but individuals par-

ticipating in neighbor interaction only exist in the local environment of each agent. The design

criteria for a neighbor interaction operator are as follows.

(1) If a current agent’s fitness value is higher than its four neighbor agents, it will be retained

as a winner, and its encoding sequence remains unchanged;

(2) If a current agent’s fitness value is lower than the fitness value of the optimal neighbor

agent, it will be replaced by the optimal neighbor. The replacement process adopts a POX

operator. Unlike traditional crossover operations, each interaction only generates one off-

spring, that is, only child1 is retained.

There are two strategies for the replacement mechanism.

(1) Take the optimal neighbor agent as parent1 and the current agent is regarded as par-

ent2. Obtain an optimal offspring through λ POX operations;

(2) Take the current agent as parent1 and the optimal neighbor agent is regarded as par-

ent2. Obtain an optimal offspring through λ POX operations.

Strategy (1) is accepted at probability Po, the other one is adopted at probability 1-Po. The

first strategy focuses more on concentration of optimization and is beneficial to speed up an

algorithm’s convergence rate. The second strategy focuses more on dispersion of optimization.

Fig 6. Principles of POX.

https://doi.org/10.1371/journal.pone.0223182.g006

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 8 / 19

https://doi.org/10.1371/journal.pone.0223182.g006
https://doi.org/10.1371/journal.pone.0223182

2.2.3 Design of mutation operators based on neighborhood structure. Mutation opera-

tors are designed to give agents a small disturbance to ensure the diversity of population. After

solving the JSSP through the neighbor interaction operator, if the optimal agent obtained has

high fitness, how to further improve its fitness decides whether an algorithm can find a better

solution. Mutation operations commonly used in existing researches include exchange muta-

tion, insertion mutation, reverse mutation, replacement mutation, and the like. There are two

shortcomings in these mutation operations. Firstly, directions of mutation have a large blind-

ness, and it is difficult to direct an algorithm to the global optimal solution. Secondly, these

mutation operations have a greedy nature to some extent, which is easy to direct an algorithm

to local optimum. A neighborhood structure is a mechanism that applies a small perturbation

to a given solution to obtain another solution. Therefore, a new mutation operator named

mutation operator based on neighborhood structure is presented.

2.2.3.1 The neighborhood structure of the JSSP. In the field of combinatorial optimiza-

tion, studying the neighborhood structure of a problem is one of the most important ways to

optimize solutions of the problem. Van Laarhoven et al. [22] proposed N1 neighborhood

structure. New solutions were generated by randomly exchanging two adjacent operations on

a critical path. It is proved that the optimal solution can be found through a limited number of

interchange operations under N1 neighborhood structure. To further promote an algorithm’s

quality and efficiency, many researchers subsequently proposed N4, N5, N6 neighborhood

structures [23–25]. Matsuo et al. found that only when the job immediate predecessor opera-

tion (JIPO) of operation u or the job immediate successor operation (JISO) of operation v was

contained in a critical path including operations u and v (assuming operation u is processed

before operation v), exchanging key operations u and v made it possible to reduce makespan

of a given solution [26]. Based on this theory, N7 neighborhood structure was proposed by

Zhang et al. [27]. This new neighborhood structure can explore a wider solution space on the

basis of ensuring generation of feasible solutions, so that higher quality feasible solutions can

be obtained. Before introducing N7 neighborhood structure, some concepts need to be

explained.

Definition 2.1 In the JSSP, each key operation u has two immediate predecessor operations

and two immediate successor operations, which includes: a JIPO and a JISO. The previous and

next operation of operation u that belong to the same job as operation u are represented by

Jpre[u] and Jsuc[u] respectively. A machine immediate predecessor operation (MIPO) and a

machine immediate successor operation (MISO). The previous and next operation of opera-

tion u that belong to the same machine as operation u are represented by Mpre[u] and Msuc[u]

respectively.

Definition 2.2 A critical path is the longest path from the starting point 0 to the ending

point 17 in a directed graph as shown in Fig 7. The path length is makespan of a scheduling

solution. Fig 7 is a disjunctive graph model which took 4×4 JSSP in Table 1 as an example and

used the introduction of a disjunctive graph in [14] as a basis.

Definition 2.3 Each operation on a critical path is called a key operation. As shown in Fig 8,

according to the active scheduling solution in Fig 4, select a certain direction for bidirectional

arcs in the disjunctive graph model, thereby forming a directed graph representation of 4x4

JSSP. At the same time, adjacent key operations group of a largest sequence processed on the

same machine is called a block, such as [O34, O23] is a block.

Based on definitions 2.1 to 2.3, under the premise that operation x and y are both on the

same critical path, N7 neighborhood structure can be defined as follows.

(1) When y is a block tail operation and its JISO is in the critical path, operation x can be

moved after operation y, and vice versa. As shown in Fig 9.

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 9 / 19

https://doi.org/10.1371/journal.pone.0223182

(2) When x is a block head operation and its JIPO is in the critical path, operation y can be

moved before operation x, and vice versa. As shown in Fig 10.

Figs 9 and 10 are key operation blocks in two critical paths including operation x and opera-

tion y. u1, uk and ". . ." in the rectangular frame indicate intermediate operations in the block.

2.2.3.2 Key operations search based on operation-based encoding. Based on operation-

based encoding, the first step in generating a neighborhood solution is to search for key opera-

tions. Searching for key operations can be done by a machine Gantt chart obtained after active

decoding. Starting from the last completed operation, operations whose completion time

immediately follows the start time of the current operation are marked as key operations. If

MIPO and JIPO of an operation are encountered at the same time, the JIPO is selected as a key

operation.

Take the active scheduling solution [1 3 4 1 3 2 1 2 4 3 4 4 3 1 2 2] obtained before for exam-

ple, its key operation blocks are shown in Fig 11.

2.2.3.3 Mutation mechanism based on neighborhood solutions. According to discussions

of two parts above, after obtaining key operation blocks of an agent encoding sequence, a

mutation operator based on neighborhood structure is implemented as follows.

(1) Record all operation pairs that can be exchanged according to the definition of N7

neighborhood structure.

(2) Randomly select an exchangeable operation pair at probability Pm to perform mutation

operation.

Fig 7. A disjunctive graph model of 4×4 JSSP.

https://doi.org/10.1371/journal.pone.0223182.g007

Fig 8. An acyclic directed graph and a critical path of 4×4 JSSP.

https://doi.org/10.1371/journal.pone.0223182.g008

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 10 / 19

https://doi.org/10.1371/journal.pone.0223182.g007
https://doi.org/10.1371/journal.pone.0223182.g008
https://doi.org/10.1371/journal.pone.0223182

2.2.4 Design of self-learning operators. Each agent can gradually improve its fitness

value through interaction operations with neighbors and mutation operations based on neigh-

borhood structure. Similarly, take the optimal agents in each generation to construct a small

grid environment with a size of sLsize×sLsize. Perform Sgen neighbor interactions and mutation

operations based on neighborhood structure to obtain a new optimal agent. The flow chart is

shown in Fig 12.

3 The achievement of MAGATS

The algorithm framework of MAGA is based on that of GA. Therefore, it is inevitable to fall

into local optimal solutions when solving JSSPs. Currently, a hybrid intelligent algorithm

through combining a swarm intelligence algorithm with a local search algorithm is a more

Fig 9. JISO of a block tail operation is in the critical path.

https://doi.org/10.1371/journal.pone.0223182.g009

Fig 10. JIPO of a block head operation is in the critical path.

https://doi.org/10.1371/journal.pone.0223182.g010

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 11 / 19

https://doi.org/10.1371/journal.pone.0223182.g009
https://doi.org/10.1371/journal.pone.0223182.g010
https://doi.org/10.1371/journal.pone.0223182

advanced algorithm for solving JSSPs [19]. Compared with only adopting swarm intelligence

algorithms, its optimization effects have been significantly improved. Currently, local search

algorithms are mainly represented by TS and SA. Since SA avoids local optimization by accept-

ing inferior solutions with a certain probability, it may return to the previous solution in the

process of searching for the optimal solution, which leads to the algorithm to oscillate around

a local optimal solution, thus wasting a lot of computing time. For this, on the basis of MAGA,

a MAGATS is proposed by introducing TS to enhance the global search ability. The flow chart

of MAGATS is shown in Fig 13.

Specific steps of MAGATS are summarized as follows.

(1) After conducting a MAGA , the best agent is set as the current solution and the optimal

solution.

Fig 11. Key operation blocks.

https://doi.org/10.1371/journal.pone.0223182.g011

Fig 12. Flow chart of mutation operator.

https://doi.org/10.1371/journal.pone.0223182.g012

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 12 / 19

https://doi.org/10.1371/journal.pone.0223182.g011
https://doi.org/10.1371/journal.pone.0223182.g012
https://doi.org/10.1371/journal.pone.0223182

(2) Obtain a set of candidate solutions to be selected according to neighborhood structure

of current solutions (N7 neighborhood structure is adopted). Verify tabu of each candidate

solution.

(3) Determine whether tabu solutions satisfy the aspiration criterion: if fitness of a tabu solu-

tion is higher than previous accepted solutions, then the solution will be released and will be set

as the current solution and the optimal solution. If it does not, a solution with the highest fitness

selected from the non-tabu solution set will be the current solution. Update the tabu table.

(4) Repeat steps (2), (3) until satisfying termination criteria. The termination criteria are to

reach the maximum number of iterations or find the best known solution (BKS). Set the maxi-

mum number of iterations to 300.

(5) If the BKS is found, the algorithm is stopped. Otherwise, repeat steps (1)—(4) until the

BKS is found or CTS�H.

Key parameter settings of TS in MAGATS include selection of tabu objects and length set-

ting of a tabu table.

(1) Selection of tabu objects. In section 2.2.3, neighborhood structures of JSSPs and judge-

ment of key operations and exchangeable operation pairs were discussed. Therefore, operation

pairs were marked as tabu objects. For example, a candidate solution is generated through

exchanging operations O12 and O32 which are both processed on M1. Then, exchange of this

operation pair is added to the tabu table.

(2) Length setting of a tabu table. A tabu table can be regarded as a special queue with first-

in, first-out characteristics. When a new tabu object is added, set its tabu length Llist. In other

words, once entering in the tabu table, the tabu object can be dequeued until Llist iterations of

Fig 13. Flow chart of MAGATS.

https://doi.org/10.1371/journal.pone.0223182.g013

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 13 / 19

https://doi.org/10.1371/journal.pone.0223182.g013
https://doi.org/10.1371/journal.pone.0223182

TS (provided that aspiration criterion is not met). If tabu length of the tabu table is too small, it

is easy to fall into local optimum. On the contrary, if tabu length is too large, too many con-

straints will be generated. An effective approach for JSSPs is to introduce a dynamic tabu table,

which sets the tabu length Llist to be randomly selected in [Lmin, Lmax]. After several tests, set-

ting Lmin = [10+n/m] and Lmax = [1.8Lmin] is better.

4 Results and analysis

The proposed algorithm MAGATS is implemented by Visual C++. The program running

environment is a PC with a core i5 processor, 2.5GHz main frequency, and 8G memory. To

test optimization performance of the algorithm, 43 instances are selected from the OR-library,

which included FT06, FT10,FT20 contributed by Fisher and Thompson and LA01~LA40 con-

tributed by Lawrence [28,29]. These instances are often used to test optimization performance

of a new algorithm. Two comparative analysis are completed based on these instances.

4.1 Comparison of MAGATS with GA and MAGA

Parameters of GA, MAGA and MAGATS are set as follows.

GA: Size of initial population = 256, probability of crossover Pc = 0.8, the number of cross-

over λ = 50, probability of mutation Pm = 0.1, the maximum number of iterations I = 300.

MAGA: Lsize = 16,sLsize = 3,probability of neighbor interaction Pc = 0.8, probability of replace-

ment mechanism Po = 0.5,the number of crossover λ = 50, probability of mutation Pm = 0.1,

the number of self-learning Sgen = 50, the maximum number of iterations I = 300; TS: the max-

imum number of cycles H = 300.The remaining of relevant parameters refers to section 3. 11

instances of different sizes are selected to verify the improvement of MAGATS compared with

GA and MAGA. The results are shown in Table 2. Cbest is the best solution every algorithm can

find in 20 runs. Caver and σ are the mean and standard deviation of all 20 solutions acquired by

GA,MAGA and MAGATS.

As shown in Table 2 and Fig 14, compared with GA and MAGA. MAGATS finds the most

BKSs and behaves better optimization performance and better stability.

4.2 Comparison between MAGATS and other algorithms

In this comparative analysis, all 43 instances are run 20 times respectively, and the obtained

test results with MAGATS are compared with other four algorithms: NIMGA, aLSGA, WW,

Table 2. Comparison of MAGATS with GA and MAGA.

Instances Size BKS GA MAGA MAGATS

Cbest Caver σ Cbest Caver σ Cbest Caver σ
FT06 6×6 55 55 55 0 55 55 0 55 55 0

FT10 10×10 930 930 949.7 15.05 930 939 7.42 930 930 0

FT20 20×5 1165 1174 1193.55 13.67 1165 1173.40 4.76 1165 1165 0

LA01 10×5 666 666 666 0 666 666 0 666 666 0

LA06 15×5 926 926 926 0 926 926 0 926 926 0

LA11 20×5 1222 1222 1222 0 1222 1222 0 1222 1222 0

LA16 10×10 945 946 952.95 9.87 946 949 4.15 945 945.90 0.3

LA24 15×10 935 947 969.60 12.56 943 958.35 9.10 935 943.25 3.16

LA29 20×10 1152 1243 1267.05 16.93 1193 1214.4 11.28 1164 1174.15 8.05

LA35 30×10 1888 1888 1888 0 1888 1888 0 1888 1888 0

LA36 15×15 1268 1296 1326.55 12.75 1292 1299.27 6.33 1281 1288.70 4.87

https://doi.org/10.1371/journal.pone.0223182.t002

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 14 / 19

https://doi.org/10.1371/journal.pone.0223182.t002
https://doi.org/10.1371/journal.pone.0223182

TSSB [9,30–32], as shown in Table 3. Table 3 lists instance name, instance size (number of

jobs × number of machines), the best known solution (BKS), the optimal solution (OS)

obtained by MAGATS, RD (relative deviation between the optimal solution obtained by

MAGATS and BKS) and the optimal solution obtained by other algorithms. RD can be calcu-

lated by Eq (4).

RD ¼ ðOS� BKSÞ=BKS� 100% ð4Þ

Based on the obtained RDs for each instance, ARD used to evaluate the optimization per-

formance of each algorithm can be calculated by Eq (5).

ARD ¼
XN

i¼1

RD=N ð5Þ

where N is the number of instances tested by each algorithm. Contents of Table 4 include the

number of instances solved/the number of instances tested (NIS/NIT), ARD of other algo-

rithms(OA) and MAGATS and improvement. The column named improvement means the

reduction of ARD obtained by MAGATS compared with OA. In other words, the more effi-

cient algorithm can be identified.

Based on Tables 3 and 4, the new algorithm is analyzed.

(1) The proposed algorithm MAGATS finds 38 optimal solutions of 43 instances. To small

instances FT06, FT10, FT20 and LA01~LA15, all five algorithms can find almost all the best

known solutions. But to relatively large instances LA16~LA40 (25 instances), 20 best known

solutions (80%) is found by MAGATS, which has better optimization performance than

NIMGA(48%), aLSGA(45%), WW(64%) and TSSB (72%).

(2) Compared with other algorithms, ARD of MAGATS is the smallest. It indicates that the

optimal solutions obtained by MAGATS is closest to the best known solutions or the mini-

mum makespan. It is further shown that the new algorithm has better optimization perfor-

mance. Compared with other algorithms, obtained solutions are of higher quality.

In order to visualize scheduling results of the JSSP optimized by MAGATS, an example

LA39 is selected to display its optimal scheduling in a machine Gantt chart, as shown in Fig 15.

Since Oij is easy to cause ambiguity, (Ji,j) is used to represent the jth operation of Ji.

Fig 14. Mean and standard deviation of GA, MAGA and MAGATS.

https://doi.org/10.1371/journal.pone.0223182.g014

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 15 / 19

https://doi.org/10.1371/journal.pone.0223182.g014
https://doi.org/10.1371/journal.pone.0223182

5 Conclusion

Aiming at NP characteristics of JSSPs and minimizing makespan, a MAGATS is proposed in

this paper. The new algorithm is applied to test 43 benchmark instances. Compared with four

Table 3. Comparison of optimization results of 43 instances.

Instances Size BKS MAGATS RD(%) NIMGA aLSGA WW TSSB

FT06 6×6 55 55 0 55 55 55 55

FT10 10×10 930 930 0 930 930 930 930

FT20 20×5 1165 1165 0 1173 1165 1165 1165

LA01 10×5 666 666 0 666 666 666 666

LA02 10×5 655 655 0 655 655 655 655

LA03 10×5 597 597 0 597 606 597 597

LA04 10×5 590 590 0 590 593 590 590

LA05 10×5 593 593 0 593 593 593 593

LA06 15×5 926 926 0 926 926 926 926

LA07 15×5 890 890 0 890 890 890 890

LA08 15×5 863 863 0 863 863 863 863

LA09 15×5 951 951 0 951 951 951 951

LA10 15×5 958 958 0 958 958 958 958

LA11 20×5 1222 1222 0 1222 1222 1222 1222

LA12 20×5 1039 1039 0 1039 1039 1039 1039

LA13 20×5 1150 1150 0 1150 1150 1150 1150

LA14 20×5 1292 1292 0 1292 1292 1292 1292

LA15 20×5 1207 1207 0 1207 1207 1207 1207

LA16 10×10 945 945 0 945 946 945 945

LA17 10×10 784 784 0 784 784 784 784

LA18 10×10 848 848 0 848 848 848 848

LA19 10×10 842 842 0 842 852 842 842

LA20 10×10 902 907 0.55 907 907 907 902

LA21 15×10 1046 1046 0 1058 1068 1046 1046

LA22 15×10 927 927 0 937 956 935 927

LA23 15×10 1032 1032 0 1032 1032 1032 1032

LA24 15×10 935 935 0 947 966 937 938

LA25 15×10 977 977 0 989 1002 977 979

LA26 20×10 1218 1218 0 1218 1223 1218 1218

LA27 20×10 1235 1235 0 1269 1281 1236 1235

LA28 20×10 1216 1216 0 1247 1245 1216 1216

LA29 20×10 1152 1164 1.04 1241 1230 1160 1168

LA30 20×10 1355 1355 0 1355 1355 1355 1355

LA31 30×10 1784 1784 0 1784 1784 1784 1784

LA32 30×10 1850 1850 0 1850 1850 1850 1850

LA33 30×10 1719 1719 0 1719 1719 1719 1719

LA34 30×10 1721 1721 0 1721 1721 1721 1721

LA35 30×10 1888 1888 0 1888 1888 1888 1888

LA36 15×15 1268 1281 1.03 1293 - 1279 1268

LA37 15×15 1397 1397 0 1432 - 1407 1411

LA38 15×15 1196 1198 0.17 1222 - 1196 1201

LA39 15×15 1233 1233 0.00 1251 - 1242 1240

LA40 15×15 1222 1228 0.49 1246 - 1229 1233

https://doi.org/10.1371/journal.pone.0223182.t003

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 16 / 19

https://doi.org/10.1371/journal.pone.0223182.t003
https://doi.org/10.1371/journal.pone.0223182

other algorithms, optimization performance of it is analyzed based on the obtained test results.

Analysis results show that the proposed algorithm MAGATS has high optimization perfor-

mance and practical value in the field of JSSPs.

Highlights of this paper can be concluded into the following 3 aspects.

(1) A neighbor interaction operator based on a POX operator is designed. Under the algo-

rithm framework of MAGA, each agent can only interact with neighbors. A replacement

mechanism is adopted to retain good chromosomes. The algorithm’s global search perfor-

mance is enhanced to some extent, thus achieving optimization function of the algorithm.

(2) A mutation operator based on neighborhood structure and a self-learning operator are

designed. By introducing N7 neighborhood structure into the design of mutation operators, a

wider solution space can be explored, thereby obtaining a higher quality feasible scheduling.

Centralized search ability of MAGATS can be further enhanced by the self-learning operator.

(3) A MAGATS is proposed. Combined with excellent global search performance of TS,

MAGA is integrated with TS to further enhance optimization performance of the algorithm,

avoiding premature and falling into local optimal.

Table 4. Improvement of MAGATS compared with OA.

Algorithm NIS/NIT ARD Improvement

OA(%) MAGATS(%)

NIMGA 29/43 0.68 0.08 0.60

aLSGA 25/38 0.74 0.04 0.70

WW 34/43 0.12 0.08 0.04

TSSB 36/43 0.11 0.08 0.03

https://doi.org/10.1371/journal.pone.0223182.t004

Fig 15. Machine Gantt chart of instance LA39.

https://doi.org/10.1371/journal.pone.0223182.g015

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 17 / 19

https://doi.org/10.1371/journal.pone.0223182.t004
https://doi.org/10.1371/journal.pone.0223182.g015
https://doi.org/10.1371/journal.pone.0223182

The proposed algorithm MAGATS is only used to solve JSSPs with a goal of minimizing

makespan. Influences of neighbor environment of chromosome agents on optimization per-

formance of the algorithm need further research. In the future research work, feasibility of this

algorithm in multi-objective job shop scheduling and flexible job shop scheduling will also be

studied.

Supporting information

S1 File. Meta-data of 43 instances.

(DOCX)

Acknowledgments

I would like to express my sincere gratitude to my teammates, Wenguang Zuo, Caiyu Zhen

and Miao Chen. During the writing and revision of the paper, they provided great help for me.

Author Contributions

Conceptualization: Chong Peng.

Data curation: Guanglin Wu.

Methodology: Guanglin Wu.

Software: Guanglin Wu.

Supervision: Chong Peng.

Validation: Guanglin Wu.

Writing – original draft: Guanglin Wu.

Writing – review & editing: Guanglin Wu, T. Warren Liao, Hedong Wang.

References
1. Garey MR, Johnson DS, Sethi R. The Complexity of Flowshop and Jobshop Scheduling. Math Oper

Res. 1976; 1(2):117–129.

2. Manne A. On the Job Shop Scheduling Problem. Cowles Foundation, Yale University, Cowles Founda-

tion Discussion Papers. 1959; 8.

3. Balas E. Machine Sequencing Via Disjunctive Graphs: An Implicit Enumeration Algorithm. Oper Res.

1969; 17(6):941–957.

4. Calis B, Bulkan S. A research survey: review of AI solution strategies of job shop scheduling problem. J

Intell Manuf. 2015; 26(5):961–973.

5. Chen D. Research on Traffic Flow Prediction in the Big Data Environment Based on the Improved RBF

Neural Network. IEEE T Ind Inform. 2017; 13(4):2000–2008.

6. Liu Y, Liu Z, Jia R. Deep PF: A deep learning based architecture for metro passenger flow prediction.

Transport Res C-Emer. 2019; 101:18–34.

7. Holland J. Adoption in Natural and Artificial System. The University of Michigan Press, Ann Arbor.

1975.

8. Xu XD, Li CX. Research on immune genetic algorithm for solving the job-shop scheduling problem. Int J

Adv Manuf Technol. 2007; 34(7–8):783–789.

9. Kurdi M. An effective new island model genetic algorithm for job shop scheduling problem. Comput

Oper Res. 2016; 67(C):132–142.

10. Chang HC, Liu TK. Optimisation of distributed manufacturing flexible job shop scheduling by using

hybrid genetic algorithms. J Intell Manuf. 2015; 28(8):1–14.

11. Liu J, Jing H, Tang YY. Multi-agent oriented constraint satisfaction. Artif Intell. 2002; 136(1):101–44.

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 18 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0223182.s001
https://doi.org/10.1371/journal.pone.0223182

12. Chen W, Li J, Ma W. Hybrid flow shop rescheduling algorithm for perishable products subject to a due

date with random invalidity to the operational unit. Int J Adv Manuf Technol. 2017; 93(1):225–239.

13. Tsujimura Y. A tutorial survey of job-shop scheduling problems using genetic algorithms—I. representa-

tion. Comput Ind Eng. 1996; 30(4):983–997.

14. Knopp S, Dauzère-Pérès S, Yugma C. A batch-oblivious approach for Complex Job-Shop scheduling

problems. Eur J Oper Res. 2017; 263(1):50–61.

15. Bean JC. Genetic Algorithms and Random Keys for Sequencing and Optimization. Orsa J Comput.

2017; 6:154–160.

16. Zambrano Rey G, Bekrar A, Trentesaux D, Zhou B-H. Solving the flexible job-shop just-in-time schedul-

ing problem with quadratic earliness and tardiness costs. Int J Adv Manuf Technol. 2015; 81(9):1871–

1891.

17. Kuhpfahl J, Bierwirth C. A Study on Local Search Neighborhoods for the Job Shop Scheduling Problem

with Total Weighted Tardiness Objective. Comput Oper Res. 2015; 66:44–57.

18. Engin O, Güçlü A. A new hybrid ant colony optimization algorithm for solving the no-wait flow shop

scheduling problems. Appl Soft Comput. 2018; 72:166–176.

19. Gao L, Li X, Wen X, Lu C, Wen F. A hybrid algorithm based on a new neighborhood structure evaluation

method for job shop scheduling problem. Comput Ind Eng. 2015; 88:417–429.

20. Selsa V, Vanhouckeabc M. A hybrid single and dual population search procedure for the job shop

scheduling problem. Eur J Oper Res. 2011; 215(3):512–523.

21. Zhang C, Rao Y, Li P. An effective hybrid genetic algorithm for the job shop scheduling problem. Int J

Adv Manuf Technol. 2008; 39(9–10):965–974.

22. Laarhoven PJMV, Aarts EHL, Lenstra JK. Job shop scheduling by simulated annealing. Oper Res.

1992; 40(1):113–125.

23. Dell’Amico M, Trubian M. Applying tabu search to the job-shop scheduling problem. Ann Oper Res.

1993; 41(3):231–252.

24. Nowicki E, Smutnicki C. A Fast Taboo Search Algorithm for the Job Shop Problem. Manag Sci. 1996;

42(6):797–813.

25. Balas E, Vazacopoulos A. Guided Local Search with Shifting Bottleneck for Job Shop Scheduling.

Manag Sci. 1998; 44:262–275.

26. Matsuo H, Suh C, Sullivan R. A Controlled Search Simulated Annealing Method for the General Job-

Shop Scheduling Problem. 1988.

27. Zhang CY, Li PG, Guan ZL, Rao YQ. A tabu search algorithm with a new neighborhood structure for the

job shop scheduling problem. Comput Oper Res. 2007; 34(11):3229–3242.

28. Fisher H., & Thompson G. L. Probabilistic Learning Combinations of Local Job-Shop Scheduling Rules.

Industrial Scheduling. Englewood Cliffs, New Jersey: Prentice-Hall. 1963:225–251.

29. Lawrence S. Supplement to Resource Constrained Project Scheduling: An Experimental Investigation

of Heuristic Scheduling Techniques. Graduate School of Industrial Administration, Carnegie-Mellon

University. 1984; 4(7):4411–4417.

30. Asadzadeh L. A local search genetic algorithm for the job shop scheduling problem with intelligent

agents. Comput Ind Eng. 2015; 85(C):376–383.

31. Lin C, Zhang Q, Fei T, Ni K, Yang C. A novel search algorithm based on waterweeds reproduction prin-

ciple for job shop scheduling problem. Int J Adv Manuf Technol. 2016; 84(1–4):405–424.

32. Pezzella F, Merelli E. A tabu search method guided by shifting bottleneck for the job shop scheduling

problem. Eur J Oper Res. 2000; 120(2):297–310.

Multi-agent genetic algorithm based on tabu search for job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0223182 September 27, 2019 19 / 19

https://doi.org/10.1371/journal.pone.0223182

