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Abstract

Background and objective

To take full advantage of decision support, machine learning, and patient-level prediction

models, it is important that models are not only created, but also deployed in a clinical set-

ting. The KETOS platform demonstrated in this work implements a tool for researchers

allowing them to perform statistical analyses and deploy resulting models in a secure

environment.

Methods

The proposed system uses Docker virtualization to provide researchers with reproducible

data analysis and development environments, accessible via Jupyter Notebook, to perform

statistical analysis and develop, train and deploy models based on standardized input data.

The platform is built in a modular fashion and interfaces with web services using the Health

Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard to access patient

data. In our prototypical implementation we use an OMOP common data model (OMOP-

CDM) database. The architecture supports the entire research lifecycle from creating a data

analysis environment, retrieving data, and training to final deployment in a hospital setting.

Results

We evaluated the platform by establishing and deploying an analysis and end user applica-

tion for hemoglobin reference intervals within the University Hospital Erlangen. To demon-

strate the potential of the system to deploy arbitrary models, we loaded a colorectal cancer
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dataset into an OMOP database and built machine learning models to predict patient out-

comes and made them available via a web service. We demonstrated both the integration

with FHIR as well as an example end user application. Finally, we integrated the platform

with the open source DataSHIELD architecture to allow for distributed privacy preserving

data analysis and training across networks of hospitals.

Conclusion

The KETOS platform takes a novel approach to data analysis, training and deploying deci-

sion support models in a hospital or healthcare setting. It does so in a secure and privacy-

preserving manner, combining the flexibility of Docker virtualization with the advantages of

standardized vocabularies, a widely applied database schema (OMOP-CDM), and a stan-

dardized way to exchange medical data (FHIR).

Introduction

The tremendous increase in computing power and parallelization of processes in the last

decades have led to an increase in clinical decision support models, patient-level predictions

and other machine learning applications. Their widespread utilization also increased the diver-

sity. Computations now can range from simple statistics and reference interval calculations to

complex neural networks. However, less time has been spent on the integration in clinical

environments directly at the point of care. Typically, deployment of such statistical computa-

tions has faced several political, social, economic and organizational challenges [1–3].

A number of attempts have been made to design deployment infrastructures. Soto et al. [4]

developed the EPOCH and ePRISM platforms, allowing researchers to train and deploy risk

adjustments, which are translated directly into web-based decision support and reporting

tools. ePRISM focuses on general regression and does not provide an application programma-

ble interface (API) to integrate with existing electronic health record (EHR) data. Velickovski

et al. [5] developed a clinical decision support system for patients suffering from chronic

obstructive pulmonary disease. It uses a service-oriented architecture for early detection and

diagnosis of this particular disease. More recently, Baldow et al. [6] developed MAGPIE, a plat-

form allowing researchers to develop Unix command line executable computations, which are

embedded into Systems Biology Markup Language (SBML). MAGPIE focuses on the develop-

ment of models, which have to be supplied manually with parameters when executed. Gibson

et al. [7] constructed NiftyNet, a TensorFlow-based platform that allows researchers to develop

and distribute deep learning solutions for medical imaging. Khalilia et al. [8] used a service-

oriented architecture based on OMOP on FHIR [9] to design an infrastructure for training

and deployment of pre-determined specific algorithms. Their use of modern technologies like

FHIR [10], which provides a REST interface and OMOP [11] as a common data standard,

allows them to train algorithms on standardized data. The approach taken by Khalilia et al.

focuses on providing a set of standardized machine learning approaches, which are built auto-

matically using the given input features.

In summary, the architectures above focus on a particular disease or type of algorithm, use

proprietary data formats, or provide customized application programming interfaces (API)

tailored to one specific use case. A general development environment, which integrates well
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with standardized data provisioning, for researchers to implement new algorithms and per-

form a broad spectrum of statistical analysis is still needed.

More recently, the German Medical Informatics Initiative (MI-I) [12] has begun funding

multiple consortia to develop infrastructure for integrating clinical data from patient care with

research data not only within a hospital, but also across hospitals and research institutions

[13–15]. The fundamental component defined within the four funded MI-I consortia to tackle

this challenge are data integration centers (DIC). They shall establish the technical and organi-

zational infrastructure at each participating hospital providing multiple services. These include

data integration, data harmonization, standardized data repositories, consent management,

and ID management. To make use of the wealth of clinical, imaging, and molecular data, some

of the four consortia have defined use cases in which working groups of the consortia will

apply novel machine learning and other statistical approaches to generate patient subgroup

classifications or predictive/prognostic tools for dedicated patient cohorts. The work presented

in this paper was conducted within the MIRACUM consortium, because one of its goals is the

deployment of such new statistical methods directly in clinical settings as an innovative new IT

solution integrated in a hospital’s EHR system.

At the Friedrich-Alexander University Erlangen-Nürnberg (one of the MIRACUM part-

ners) we therefore designed and implemented a generic platform to develop and deploy arbi-

trary computations, aiming to respond to the heterogeneity of statistical analysis. The platform

has been named KETOS after the Greek word for sea monster (as it relies on Docker (whale)

to implement lightweight encapsulated virtual development environments for researchers).

KETOS aims to provide a flexible environment to perform statistical analysis, develop clinical

decision support models based on structured data and make them available in a clinical care

context.

The objective of this paper is to illustrate the design features of KETOS and its implementa-

tion. As we will demonstrate with three example evaluations, the flexibility of the proposed

architecture supports a researchers need to quickly respond to new model building and

deployment demands as the research infrastructure grows, and new algorithms, and statistics

are developed.

Methods

In order to make machine learning and decision support models deployable and patient data

accessible to researchers, the focus should be on providing the same input data format for the

training and the calling process. The environment for this needs to be secure and interopera-

ble. Due to the heterogeneity of the model building environments, it is essential to provide a

framework that allows any researcher to invent their own algorithms and enables them to con-

centrate their efforts on research rather than on technical deployment details.

In order to provide such a research and deployment platform (shown in Fig 1), the follow-

ing requirements need to be satisfied:

• Standardized Patient Data: Standardized input data for development and deployment

• Statistical Modelling/Calculation Environment: A mechanism to create and save models for

later use

• Model Building and Deployment Control Center: A central webservice to manage computa-

tions and data access

• Researcher Admin User Interface: A user interface for our central webservice for

administration

KETOS: Clinical decision support and machine learning as a service
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• Researcher Development Interface: An environment that allows the researcher to develop and

deploy models

• Physician facing App: Applications, which use the webservice to access our models in a

secure manner and to share them with physicians.

The feasibility of this approach has been demonstrated by implementing a prototype using

the architecture illustrated in Fig 2. To provide patient data in a standardized manner we used

the OMOP common data model, which has been chosen by the OHDSI project [16], the Euro-

pean EHDEN project [17], and the MIRACUM consortium [18]. This data source is aug-

mented with the widely used FHIR web service standard for patient data to make data

available to researchers and end-user applications. We developed a model building and deploy-
ment control center web service, and a user interface, which allows researchers to create their

own preconfigured virtual development environments via Docker containers. The researchers

are given access to the development environments (e.g. R, Python) for statistical data analysis,

training and deployment via Jupyter Notebook (interactive cell-based code development in a

web browser) [19]. A data preprocessing service extracts the required data from the OMOP
database via the FHIR webservice and converts it into an analysis-friendly column-based

format.

The architecture we propose in Fig 2 aims to close the gap between clinical research and the

application of decision support and machine learning models, whilst providing a secure

research infrastructure to scientists. It allows statisticians, biometricians and collaborating

computer scientists to develop and train their statistical models on pre-processed, standardized

data and to deploy them via a web service within a hospital’s IT infrastructure. The KETOS

graphical user interface allows researchers to create a new development environment consist-

ing of base tools like R, Python and DataSHIELD. The access to the environments via Jupyter

Notebook allows researchers to individually install additional packages. They can then request

data from a preprocessing service and adjust the pre-processed data further as needed by speci-

fying respective functions inside their Jupyter Notebook. These alterations to the environment

are saved and can be retrieved at a later time. Thus, KETOS supports the management of mul-

tiple modelling environments by multiple users. Once a model is built, a researcher can specify

a calling function, which can be invoked by the physician facing app for seamless integration

(deployment process). This allows the researchers to process any data in the same way regard-

less of whether they are creating, training or executing the model. The development of reliable

decision support models requires the input data to be of high quality and to have the same

structure across the training and deployment process. Opposed to this, hospital data is typi-

cally heterogeneous [20]. KETOS aims to respond to this challenge by using a FHIR server and

relying on a preprocessing service, that prepares FHIR [10] resources for analysis. The prepro-

cessing service is therefore independent of the underlying data schemas. In our example

Fig 1. Abstract research and deployment platform.

https://doi.org/10.1371/journal.pone.0223010.g001
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implementation, we use the GT-FHIR service [9] in combination with the OMOP-CDM [11],

which was designed to facilitate research (see Fig 2, Data-Service). OMOP, the source database,

uses standardized vocabularies, such as the Systematized Nomenclature of Medicine (SNOMED

[21]) and Logical Observation Identifiers Names and Codes (LOINC [22]). As a result, all

Fig 2. KETOS architecture.

https://doi.org/10.1371/journal.pone.0223010.g002

Fig 3. KETOS GUI Dashboard.

https://doi.org/10.1371/journal.pone.0223010.g003
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computations are based on standardized data, which can be understood and identified clearly

by researchers and clinicians alike.

The HL7 FHIR standard, which KETOS connects to via the GT-FHIR service, has recently

been developed to address shortcomings of the previously developed HL7 clinical care docu-

ment standard. It aims to improve interoperability, and its lightweight nature and direct use of

common data formats, like JSON and XML, let it easily integrate with lightweight webservices.

This underlines FHIR’s suitability for web based platforms, such as KETOS, and will allow

models built to easily integrate with web and mobile application. Saripalle concludes that the

FHIR standard can close the interoperability gap between the many different healthcare enti-

ties [23].

Example use cases and data

To demonstrate the application of the proposed architecture, we applied our prototype to

three example models, see results section of this paper. For our first example we generated a

synthetic dataset and for our third example we used a publicly available dataset. For our second

example we performed our analysis on an anonymized dataset of 300 colorectal cancer patients

from the University Hospital Erlangen. This investigation was conducted according to the

principles expressed in the Declaration of Helsinki, and the study was approved by the local

ethics committee (Ethik-Kommission der Friedrich-Alexander-Universität Erlangen-Nürn-

berg, - 3914).

KETOS training and deployment process

The process consists of four main steps, as reflected in the GUI (see Fig 3):

1. Create a development environment (GUI: Environments, Models)

2. Define and retrieve data (GUI: Cohort Selection, Features, Feature-Sets, Data Requests)

3. Adjust data further and train models (GUI: Jupyter Notebook [access via link from

Environments)])

4. Deploy and make the computation available via web service (GUI: Models, Environment

Jupyter Notebook)

Step 1 –Create a development environment

Researchers select a new Docker image via the GUI and initiates a new development environ-

ment. We currently provide three base image options: TensorFlow, R and DataSHIELD. Each

image contains a base Ubuntu/Alpine Linux operating system, as well as a preinstalled Jupyter

Notebook. It is augmented with a web service for the communication with the model (see Fig

4). The rest of the environment can be configured directly by installing packages via Jupyter

Notebook. Once set up, a new model can be initialized, which adds a new folder and an exam-

ple implementation ipynb (Jupyter Notebook) file.

Step 2 –Request data

In the second step, the researchers define a group of patients in the cohort selection process,

which is currently supported by the OHDSI ATLAS tool [24]. Features, i.e. patient data vari-

ables of interest to the researcher, are then defined in the KETOS GUI. They are combined to

form a feature set which can be used to request the data for the patients. A data request is sent

KETOS: Clinical decision support and machine learning as a service
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via the preprocessing service, which generates a so-called prepared dataset by converting the

FHIR resources into an analysis-friendly CSV format. The requested data can then be loaded

directly into the environment. Alternatively, researchers have the option to upload their own

data via the Jupyter Notebook.

Step 3 –Process data and train model

Once requested, data can be analyzed and modified in the Jupyter Notebook. One example is

the reduction of possible outcome values by grouping them together as implemented in [25].

The platform supports researchers in saving and loading their work within the respective envi-

ronment, the file system of which is mapped to the KETOS host for persistence. This allows

KETOS to save and load any model without the platform knowing how storage and retrieval is

implemented inside the respective development environment. It further enables the researcher

to use KETOS for research and computation only, while not requiring data to leave the respec-

tive institutional boundaries, as the whole training process will take place on the KETOS

server.

Step 4 –Deploy model

In the final step of the KETOS process researchers can deploy their computation and make it

available as a web service endpoint by labelling it in compliance with the Jupyter Notebook

(model.ipynb) file provided in the first step. Once deployed, a call to the central KETOS web

service (Model building and Deployment Control Center) endpoint will call the prediction func-

tion of the environment Docker API. The prediction function will then execute all respectively

labeled cells of the Jupyter Notebook and return the output as the prediction result.

Restricting data access and ensuring patient privacy

With the GDPR [26] taking effect across Europe, preserving a patient’s privacy, while still

being able to analyze data, is becoming ever more challenging. KETOS takes an important step

forward as it can be completely embedded into a hospital’s IT infrastructure without

compromising data privacy. By using modern authentication methods and HTTPS, access to

KETOS can be controlled and restricted to registered researchers within the hospital. Further-

more, new data requests can only be generated by an administrator, e.g. the head of a scientific

work group. Data requests of a work group can then be reviewed to ensure that the generated

Fig 4. Composition development environment docker image.

https://doi.org/10.1371/journal.pone.0223010.g004
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data is kept in a standardized format and within the hospital’s IT infrastructure, and that it

complies with all the privacy regulations. This allows the respective KETOS host to monitor

the data usage more closely within each hospital. Further, data requests as prepared datasets

make it easy to archive the data and monitor its use.

Results

We implemented and deployed the above described system at the University Hospital

Erlangen and implemented and evaluated 3 models to demonstrate its use in a clinical setting.

Additionally, we shared the examples with adjusted data sets publicly to demonstrate the

potential of our platform.

Example model 1 –hemoglobin reference intervals

We developed a clinical decision support prototype for individual patients’ laboratory test

results. The interpretation of numerical laboratory test results requires comparison to refer-

ence intervals, i.e. comparison to the 2.5th and 97.5th percentiles of a comparable group of

healthy controls. Reference intervals, established using data mining of laboratory information

systems, can offer practical, ethical, financial and medical advantages compared to conven-

tional reference interval creation approaches in which healthy persons are recruited for blood

sampling [27]. Here, we used KETOS and the Reference Limit Estimator developed by the Ger-
man Society for Clinical Chemistry and Laboratory Medicine (DGKL) [28] to establish age- and

gender-specific hemoglobin reference limits from local hospital data, and deployed them

within Erlangen University Hospital. The deployed prototype features a web based password-

protected hemoglobin percentile calculator (only accessible from within the hospital network),

which compares the patient data inserted in the app with the local reference intervals provided

to the app via the KETOS-built reference calculations, and allows physicians to compare their

patients’ test results with a matching age and gender group (see Fig 5). This is a prototype and

a fully featured version would include reference intervals for other laboratory analytes. We

were able to integrate and deploy the algorithm provided by [28] within hours in a secure hos-

pital environment. A demonstration version of this web application prototype (https://ketos.

ai/hb/home) and the deployed model can be accessed via the KETOS website (https://ketos.ai/

environments - example_1_hb_ref_intervals). The example data was synthetically created to

resemble a similar distribution to patients at the Erlangen University Hospital, without guar-

antees of clinical correctness. In contrast to example 2 below, the example data was uploaded

with the Jupyter Notebook for a one-time reference calculation. Once calculated the reference

intervals were then deployed using the calling function of the model. The calculation of the

patient percentile compared to a reference interval then takes place in the front-end applica-

tion. This further demonstrates the versatility of the platform acting as a model delivery system

only, as in this case data is entered in a physician facing app and is not gathered from a patient

database.

Example model 2 –predicting colorectal cancer outcomes

To demonstrate the potential of our platform to easily integrate new predictions with arbitrary

datasets, we used a dataset of 300 colorectal cancer patients from the University Hospital

Erlangen and transformed it to an OMOP-CDM representation (see Fig 2 –Data-Service). Of

these patients, 150 (50%) suffered from rectal carcinomas and 150 (50%) from colon carcino-

mas. The age ranged from 20 to 97 years, with an average age of 68 years. Of all patients, 100

(33%) had experienced a relapse, and 76 patients (25%) died. The mapped dataset included the

following feature groups identified as relevant in one of our previous works [25]: gene
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expression (n = 59 genes) and cancer type (n = 1: colon/rectum). We mapped the Gene

Expression data as measurements in the OMOP-CDM and created a custom vocabulary for

the data based on the Human Genome Organization (HUGO) Nomenclature [29]. For the

publicly available dataset the real gene names where replaced with indices 1–59 and the other

features were mapped to a self-created “KETOS Example” vocabulary. Then we established an

environment for R and two example machine learning models, similar to the ones from our

previous work [25], to predict outcomes in colorectal cancer patients.

In order to demonstrate how different machine learning outcomes could be predicted, we

created one model to predict survival time (in month after diagnosis) and another to predict a

relapse event (Yes/No). To build these models we used the dataset described above, which

included all 59 genes (gene names changed) and cancer type to predict survival time and

relapse (see supplement example_2_relapse.zip and example_2_survival.zip). The respective

Jupyter Notebooks can be accessed online via our demo server (https://ketos.ai/environments

- example_2_ColRecCancer). To further demonstrate the versatility of the KETOS approach

the first model was generated using the mlr R library [30] and the second built using the caret
library [31] (see supplementary information example2_survival.zip and example2_relapse.zip).

Both follow the same pattern for building and deployment. First, the data is read from within

the modelling environment using the preprocessing service to access the data and adjusted

accordingly. The dataset is then randomly split 80/20 into training and testing datasets. Sec-

ond, multiple algorithms are then trained for the predictive outcome using standard functions

of the respective packages. The prediction results are evaluated using specific performance

metrics. Finally, the most successful model is chosen and called in the predict function. In our

process we found that our models could be ported to the KETOS environment with no need

for additional adjustments. The biggest challenge for the performance was the FHIR prepro-

cessing, as the multiple rest calls and merging of the JSON FHIR resources into a standardized

Fig 5. Hemoglobin reference interval application.

https://doi.org/10.1371/journal.pone.0223010.g005
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table type format took the largest amount of time from any call, as evidenced by the time taken

to prepare the analysis dataset for the 300 patients with 65 columns taking several minutes.

Despite the slow performance of the data generation via FHIR and the preprocessing of larger

datasets, similar to Khalilia et al. we measured prediction response times for a single patient of

a few seconds on the commodity hardware (i7 2,6GHz, 16GB Ram) we used. Further, as we

synthetically increased the number of features from 100 to 1000 features the execution time

grew linearly with the number of features (from 11 to 91 seconds).

Example model 3 –DataSHIELD: Towards privacy preserving distributed

data analysis

In previous work we have established a DataSHIELD analysis network with multiple German

university hospitals of the MIRACUM consortium and combined them to one privacy pre-

serving analysis network [32]. DataSHIELD allows for privacy-preserving distributed analysis

by only allowing aggregated statistics to leave the boundaries of an institution. For our third

exemplary evaluation we integrated KETOS into such an extended DataSHIELD-based dis-

tributed analysis network, by setting up a KETOS environment as the analysis client of the net-

work (Fig 6). This permits the training of decision support models on a federated network

with a focus on preserving patient privacy using DataSHIELD and then deploying them locally

in a hospital network secured by firewalls, HTTPS and password protection. In detail the com-

putation and deployment process is as follows: First, researchers request data to be loaded into

the DataSHIELD network. This would currently still be supported by a manual loading process

into the DataSHIELD environments own database (Fig 6 –DataSHIELD). Researchers then

initiate a DataSHIELD environment inside KETOS, load the appropriate packages and con-

nect to the DataSHIELD environment from within the Jupyter Notebook of the new KETOS

environment. Subsequently, the analysis can then be performed using the DataSHIELD R

libraries to connect to other DataSHIELD installations within a consortium via the Queue-Poll

Connector. Following analysis a model can be created inside the KETOS environment. Finally,

researchers specify a predict function inside the Jupyter Notebook, which loads the saved

model, gathers the data using a data request, previously specified in the KETOS model via the

GUI, and returns the response. If an authorized application (Fig 6 App) then sends a request

via KETOS, the system will gather the patient data from its FHIR server, execute the previously

specified prediction function and return the response. To provide an example version to the

general public, we have deployed a general linear model (GLM), by connecting the publicly

available KETOS instance to our publicly available DataSHIELD data warehouse instance. The

resulting GLM was then deployed for individual patient data using the coefficients provided

and supplied with data using the FHIR preprocessing service of the KETOS instance. To create

this example we have split the Breast Cancer dataset from the R mlbench package [33], which

is based on the Wisconsin Breast Cancer Dataset [34], into a training and test dataset and

uploaded the training dataset to our DataSHIELD warehouse. We then mapped and uploaded

the test dataset to our OMOP database and deployed the model using the KETOS infrastruc-

ture. The example version is available here (https://ketos.ai/environments -

example_3_DataSHIELD).

Discussion

We presented KETOS, a platform providing secure access to health research data and allowing

researchers to train and deploy statistical models within a clinical research environment.

The platform allows researchers to use tools already part of the data-scientists workflow

(Jupyter Notebook, Python and R) to develop custom statistical computations without
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restrictions. It improves on potential drawbacks of the Khalilia et al. [8] and ePRISM

approaches [4], which do not allow researchers to develop their own algorithms, perform

research only, and adjust input data freely. KETOS can be tailored to meet specific require-

ments and does not confine the building and optimization process. This results in a quicker

response to new research. While Velickovski et al. [5] focused on chronic obstructive pulmo-

nary disease, KETOS supports arbitrary computations, ranging from prospective and concur-

rent to retrospective research. Finally, the platform allows researchers to rely on standardized

data, which makes models with larger amounts of input parameters possible, as the data can be

collected automatically. This would not be supported by for example the MAGPIE [6] plat-

form, where our colorectal cancer example with 65 features would not be feasible, as a clinician

would need to input all variables to call a prediction function. Further, it can be used as a

method to supply restricted data access to researchers while at the same time making use of a

large pool of data without compromising patient privacy.

We have demonstrated the different aspects described above with three example analyses.

In the first example, we demonstrated the deployment of an algorithm and the resulting model

provided by a third party. This example also showed the integration with a physician facing

web application. In our second example, we demonstrated how different commonly used

machine learning R packages (mlr and caret) could be used to create an individual machine

learning pipeline to analyze gene expression data combined with other patient data. One

advantage of this approach was, that some of the adjustments made, e.g. dropping certain col-

umns (like patient ID) from the dataset or loading the necessary libraries could be repeated in

the prediction call function. This meant that adjustments needed for training and prediction

could easily be integrated into the KETOS process. The flexibility of the infrastructure also

allowed us to have different responses for the different prediction outcomes. In the third exam-

ple we integrated KETOS seamlessly with a larger existing privacy preserving data analysis

tool. This was implemented using the R DataSHIELD library, allowing one to combine cross-

hospital analysis on aggregated data with secure local deployment using patient level data.

Overall it can be concluded that different types of algorithms and models integrate well with

the KETOS architecture and that the flexibility of Jupyter Notebook allows researchers to

implement their own machine learning or model building pipelines, which can differ consider-

ably from the examples given here.

The platform can also be used to facilitate the workflow of data provisioning, data analysis,

and multicenter research, as any KETOS computation will run in any KETOS instance with

the same data standardization (i.e. SNOMED CT, LOINC, self-created vocabulary). The pro-

posed platform can therefore play an integral part of bringing analysis to the data as, for exam-

ple, envisioned by the MIRACUM consortium. It does this by building on the proposed

infrastructure of the DICs being established across Germany by the MI-I. While our example

database is currently an OMOP schema, KETOS actually connects to FHIR, which makes it

independent of the underlying database. While the FHIR format is relatively new and has seen

Fig 6. KETOS and DataSHIELD—privacy preserving distributed data analysis and model deployment.

https://doi.org/10.1371/journal.pone.0223010.g006

KETOS: Clinical decision support and machine learning as a service

PLOS ONE | https://doi.org/10.1371/journal.pone.0223010 October 3, 2019 11 / 16

https://doi.org/10.1371/journal.pone.0223010.g006
https://doi.org/10.1371/journal.pone.0223010


several changes over the last years, the release of version 4.0.0 (R4) has seen the definition of

the first normative resource descriptions [35]. This indicates that the standard is now becom-

ing more stable. Three large technology companies: Google, Microsoft and Apple have

adopted or incorporated FHIR into their software [36–38]. The Office of the National Coordi-

nator for Health Information Technology (ONC) just published data at the end of last year

supporting that FHIR is already widely spread across the United States health system and stat-

ing: “About 82 percent of hospitals and 64 percent of clinicians use these developers’ certified

products” [39]. In the MIRACUM consortium FHIR will allow us to establish a central data

storage from which to fill other research databases like OMOP and i2b2 and improve interop-

erability between different consortia across the MI-I initiative, as FHIR has been agreed on as

the format for inter consortia data exchange [40]. KETOS enables researchers to create statisti-

cal models, while preserving patient privacy and adhering to data security regulations, as well

as deploy them securely in a clinical setting supporting translational research.

This is the basis for development in one hospital and applying additional training or

deployment in another. We have shown that our platform integrates easily with existing dis-

tributed privacy preserving data analysis solutions like DataSHIELD [41]. To our knowledge,

the herewith described framework is the first of its kind in Germany that allows researchers to

train across multiple hospitals in a privacy-preserving manner, without the patient data having

to leave the hospitals and then deploy the resulting decision supporting models within a hospi-

tal network to which only authorized physicians have access.

Limitations

Sharing across KETOS instances is only possible insofar as the different instances use the same

underlying data schema. However, the current use of OMOP by a large German university

hospital consortium [42], as well as the definition of structured FHIR profiles by the MI-I [40]

provide a good starting point. The reliance on a standardized format means that any predic-

tion is dependent on an extract transform load (ETL) process, which is heavily influenced by

the amount of input data and may take up to days for the data to be processed, thus currently

limiting the execution process to non-real-time data. This is something that could be overcome

by improving the ETL performance or creating a duplicate smaller subset of all data for real

time predictions, which can be analyzed on a more regular basis. The preprocessing of the

FHIR resources, as shown in example two is the main bottleneck for performance and should

be improved in future research to make working with even larger datasets feasible. Further, as

KETOS does not restrict the model building process inside the Jupyter Notebook, the perfor-

mance of each model will depend strongly on the libraries used by the respective researchers.

More specialized datatypes, such as imaging data, would require more complex preprocessing

pipelines, like NiftyNet. The platform places no restrictions on the JSON data schema returned

as the output. This, while making the platform versatile, also means that researchers cannot

expect a predefined structure. Thus, a close collaboration between the person calling the

deployed model and the researcher is needed during the development process to clarify the

output format. This process can be facilitated in the future by providing more meta informa-

tion and structured response types.

Future directions

We aim to extend the KETOS preprocessing service and feature selection process via FHIR (to

support e.g. time series data). KETOS provides a user management and access control; how-

ever, we are currently also working on connecting the system to a self-hosted SMART app plat-

form [43] and integrating the end user applications with existing clinical information systems.
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The integration with existing privacy preserving tools, like DataSHIELD, would allow KETOS

to become part of a larger research infrastructure, which only permits registered researchers

inside the MIRACUM-established DICs to use requested data. The building and deployment

capabilities of KETOS should then be tested further. We are planning to recreate and extend

the hemoglobin reference interval use case using DataSHIELD once the data is available har-

monized across different institutions. The use of FHIR also supports the analysis of data across

consortia in the MI-I and allows us to improve the preprocessing service of KETOS in this pur-

suit. Further, development should focus on scaling the system and providing a high-perfor-

mance cluster. In the future we would like to make more statistical models available in

healthcare routine in a FHIR compatible way. In this pursuit new concepts will have to be

developed to write model generated data (e.g. predictions and classifications) back to FHIR, as,

for example, the FHIR risk assessment resource does not lend itself well to writing back non-

risk related predictions or classifications.

Conclusion

The KETOS platform provides a novel approach to data analysis, training, and deployment of

decision support models in the healthcare sector by combining the advantages of standardized

vocabulary (SNOMED, LOINC, self-created vocabulary), a structured database (OMOP-

CDM), and a standardized way to deliver medical data (FHIR) with the flexibility of Docker

virtualization in one single framework. It implements the basis for distributed, highly scalable

data analysis with a major focus on patient privacy as the sensitive data does not have to leave

the premises. In this work we presented a prototype, which demonstrates that decision support

models can be built in a standardized way and deployed in a secure way, while allowing for

maximum flexibility in the research process.
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