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Abstract

Introduction

The earliest changes in the brain due to Alzheimer’s disease are associated with the neural

networks related to memory function. We investigated changes in functional and structural

connectivity among regions that support memory function in prodromal Alzheimer’s disease,

i.e., during the mild cognitive impairment (MCI) stage.

Methods

Twenty-three older healthy controls and 25 adults with MCI underwent multimodal MRI

scanning. Limbic white matter tracts–the fornix, parahippocampal cingulum, retrosplenial

cingulum, subgenual cingulum and uncinate fasciculus–were reconstructed in ExploreDTI

using constrained spherical deconvolution-based tractography. Using a network-of-interest

approach, resting-state functional connectivity time-series correlations among sub-parcella-

tions of the default mode and limbic networks, the hippocampus and the thalamus were cal-

culated in Conn.

Analysis

Controlling for age, education, and gender between group linear regressions of five diffu-

sion-weighted measures and of resting state connectivity measures were performed per

hemisphere. FDR-corrections were performed within each class of measures. Correlations

of within-network Fisher Z-transformed correlation coefficients and the mean diffusivity per

tract were performed. Whole-brain graph theory measures of cluster coefficient and average

path length were inspecting using the resting state data.
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Results & conclusion

MCI-related changes in white matter structure were found in the fornix, left parahippocampal

cingulum, left retrosplenial cingulum and left subgenual cingulum. Functional connectivity

decreases were observed in the MCI group within the DMN-a sub-network, between the hip-

pocampus and sub-areas -a and -c of the DMN, between DMN-c and DMN-a, and, in the

right hemisphere only between DMN-c and both the thalamus and limbic-a. No relationships

between white matter tract ‘integrity’ (mean diffusivity) and within sub-network functional

connectivity were found. Graph theory revealed that changes in the MCI group was mostly

restricted to diminished between-neighbour connections of the hippocampi and of nodes

within DMN-a and DMN-b.

Introduction

Amnestic mild cognitive impairment (MCI) features a reduced ability to recall episodic events

and to form new memories alongside an intact ability to function independently. MCI is a

high risk factor for conversion to dementia, in particular Alzheimer’s disease (AD), with

annual conversion rates of c10-20% [1,2]. AD is thought to evolve slowly and asymptomati-

cally over decades, and current investigations of its earliest stages are mostly focused on MCI.

This study aims to probe the relationship between structural and functional brain changes in

MCI through use of resting state magnetic resonance imaging (rsMRI) and diffusion weighted

imaging (DWI).

The use of in vivo imaging has established that whole-brain cerebral atrophy continues

alongside the progression of AD and that these large-scale effects are reflected in the degenera-

tion of a wide-range of behaviours [3]. Initial volume loss is understood to occur in the medial

temporal lobe, specifically the hippocampus and entorhinal cortex [4,5]. This profile of cortical

atrophy sometimes present in MCI is distinct from normal ageing. However, given the hetero-

geneity of MCI, it may not be sufficiently specific for a diagnosis of AD [6,7].

AD is widely described as a disconnection syndrome, i.e., it is the disconnection between

brain areas that amplifies the cognitive and behavioural decline [8]. For example, it is proposed

that early hypometabolism seen in the posterior cingulate cortex reflects distant damage in the

hippocampal formation more so than local neuropathological processes within the posterior

cingulate cortex [9,10]. Consistent with the disconnection hypothesis, correlations have been

observed in AD between atrophy of white matter tracts related to episodic memory and grey

matter atrophy of the hippocampal formation [11].

Synaptic loss and an accumulation of neurofibrillary tangles that disrupt cellular function

are possible sources of disconnection [12,13]. Other candidate sources are grey matter atrophy

that leads to Wallerian degeneration of white matter, and abnormalities that begin within

white matter [14–16]. This last possibility has been investigated used DWI. This technique

facilitates the examination of the diffusion of water molecules and can reveal between-group

differences in the microstructure of white matter tracts. The causes of such changes can

include myelination, axon density, axon diameter, membrane permeability and voxel architec-

ture. It is not, however, possible to specify the exact change and best practice is to provide a

range of anisotropy measures [17].

Lancaster et al., [18] found that DWI measures of the hippocampal cingulum and uncinate

fasciculus, but not grey matter or white matter of the medial temporal lobe nor DWI measures

Fornix and cingulum degradation and decreases in functional connectivity in prodromal Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0222977 October 3, 2019 2 / 25

neuropsychological scores, are available on open

science framework: https://osf.io/nvaz7/. This

constitutes the minimal underlying data necessary

to replicate this study.

Funding: This research was supported by a grant

from The Meath Foundation that was awarded to A.

L.W.B and S.P.K. A.L.W.B. was funded in part by

the Science Foundation Ireland (grant number 11/

RFP.1/NES/3194, http://www.sfi.ie/funding/

researcher-database/), and (together with P.G.

Mullins and J.P. McNulty) from the European

Regional Development Fund via the Interregional

4A Ireland Wales Programme 2007–2013 http://

www.irelandwales.ie//projects/priority_1_theme_2/

neuroskill. The MRI data were accessed from the

Lonsdale cluster maintained by the Trinity Centre

for High Performance Computing. This cluster was

funded through grants from Science Foundation

Ireland. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0222977
https://osf.io/nvaz7/
http://www.sfi.ie/funding/researcher-database/
http://www.sfi.ie/funding/researcher-database/
http://www.irelandwales.ie//projects/priority_1_theme_2/neuroskill
http://www.irelandwales.ie//projects/priority_1_theme_2/neuroskill
http://www.irelandwales.ie//projects/priority_1_theme_2/neuroskill


of the fornix, predicted a three-year decline in episodic memory in cognitive healthy older peo-

ple with AD risk factors. These findings add to other reports that white matter damage pre-

cedes grey matter atrophy [19–22]. Of note, the white matter tracts most implicated in MCI

(the fornix, the cingulum bundle and the uncinate fasciculus) are those that facilitate commu-

nication and information transfer to and within medial temporal structures [20,23–28]. That

is, white matter damage has been consistently identified in tracts related to regions where ini-

tial grey matter volume loss occurs. Nonetheless, it remains an open question as to whether

grey or white matter atrophy occurs first or if both degenerate from the outset.

rsMRI assesses the brain’s intrinsic functional organisation through measurement of the

blood-oxygen-level dependent signal when participants are at rest / not performing any task

[29]. Functional connectivity refers to a synchrony in that signal between anatomically distinct

regions (measured at rest or during task) that leads to the assumption that those regions are

functionally connected [30]. rsMRI has revealed neural networks based on their functional

connectivity [31], of these the default mode network (DMN) has been revealed to be widely

implicated in MCI (for meta-analysis studies see: [32–34]) and to a lesser extent the limbic net-

work [34]. In MCI functional connectivity between regions within the DMN has been

observed as decreased and as enhanced [35,36], while within limbic network has been reported

as enhanced [34]. Altered within and between-network functional connectivity has been impli-

cated in other networks (e.g., somatomotor, executive control, dorsal attention) particularly as

the disease progresses [37–40]. While functional connectivity enhancements are suggestive of

a compensatory mechanism this is not necessarily the case [36]. Increased functional connec-

tivity between the DMN and the frontoparietal network, for example, has been interpreted as a

reflection of a difficulty in switching between optimal network behaviours [40].

That finding of increased functional connectivity parallels the lack of segregation between

the DMN and frontoparietal networks that have been revealed using a graph theory approach

in AD, and to a lesser extent, MCI patients [41]. Graph theory investigations of the brain look

at the shape of information transfer at a high level, i.e., the network/connectome level. This

focuses on examining how information is segregated within clusters thus facilitating specialisa-

tion (functional regions) and how it is integrated across clusters facilitating cross-modal col-

laboration [42,43]. Published graph theory studies support the idea of AD as a disconnection

syndrome given that alterations in both information integration and segregation have been

found across different neuroimaging modalities (e.g., EEG: [44,45]; structural: [46–48]; DWI:

[49]; rsfMRI: [50,51]).

Previous studies have observed changes in the relationship between structural and func-

tional connectivity in MCI centring on the thalamus [52,53]. This study adds to the literature

by investigating constrained spherical deconvolution DWI measures [54] of MCI-targeted

white matter tracts (fornix, cingulum bundles, and uncinate fasciculus) and temporal correla-

tion connectivity measures of MCI-targeted functional networks (DMN and limbic), and by

examining the relationship between those structural and functional measures. A correlation

between these white matter tracts and functional networks would suggest a (non-directional)

dependence between their degeneration in MCI. Further, we investigated functional connec-

tivity graph theory measures to provide an alternative and higher level perspective on any MCI

related changes.

Methods

Twenty-eight older adults with amnestic MCI participated in the study. One person was

unable to undertake scanning due to undiagnosed claustrophobia, upon data inspection a sec-

ond person was excluded due to discovery of an undiagnosed historical focal thalamic lesion.
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A third person was eliminated due to missing demographic and neuropsychological informa-

tion. Five MCI people declined to complete the entirety of the neuropsychological testing set

(four did not complete the CERAD tests, one did not complete the CERAD or GDS tests)–

however, all were successfully scanned. The final sample included 25 MCI participants.

Twenty-three old healthy controls (HC) were recruited from the greater Dublin area via

newspaper advertisements. The MCI participants were recruited from Dublin memory clinics

in Tallaght University Hospital, St James’ Hospital and St Patrick’s Hospital. All participants

were right-handed and 54–80 years old. Exclusion criteria covered a history of stroke, transient

ischaemic attack, heart attack, head injury, neurological illness, psychiatric illness, substance

addiction or abuse, abnormal hearing or vision (in presence of necessary correction). The

MCI participants were diagnosed by a clinician according to the Petersen criteria [55], i.e.,

absence of functional decline indicative of dementia but presence of abnormal memory scores

relative to age and educational attainment.

The study was conducted in line with the Declaration of Helsinki principles, and it received

ethical approval from the St Patrick’s University Hospital and Tallaght University Hospital

Research Ethics Committees. All participants gave written consent prior to taking part in the

study.

Neuropsychological testing

All participants undertook a health screening questionnaire to assess suitability for scanning.

The Consortium to Establish a Registry for Alzheimer’s Disease assessment (CERAD, [56])

was used to screen the HCs for undiagnosed age-related cognitive impairment [57]. Further,

participants were tested with the mini-mental state examination (MMSE; [58], short-form

Geriatric Depression Scale (GDS; [59]), and a Cognitive Reserve Questionnaire (CogR; [60])

before the MRI scan.

Robust independent t-tests were performed on the demographic and neuropsychological

tests using the Yuen t-test [61] (bootstrapped and 10% trimmed) from the R package WRS2

[62]. The t-tests revealed that the groups did not differ in age, gender, number of years of edu-

cation, cognitive reserve or IQ (all Ps > .05). It was observed that the MCI group performed

less well overall on the CERAD battery than the healthy controls. Bonferroni corrected one-

sided t-tests revealed statistically worse scores for MMSE, word delay, word recognition (yes),

and trail B. For summary details see Tables 1 and 2. Using the CERAD scores standardised
against age, education and gender norms, a statistically lower performance was observed for

MMSE, word delay, trial A and trial B–see Table A in S1 File. The MCI group scored higher

on the depression scale (p = .03). Three people in the MCI group and one in the HC group

exceed the short-form GDS cut-off score of 5 suggesting depression. Depression is thought to

accompany but not precede the development of MCI [63] and to be an additional risk factor in

conversion from MCI to AD [64]. MCI depression score did not correlate with those cognitive

measures that survived correction for multiple comparisons. There were, however, correla-

tions with the standardised measures of fluency (p = .002) and naming (p = .032) that unex-

pectedly indicated increasing cognitive scores with increasing GDS score–see Figs A and B in

S1 File for further details.

MRI Data acquisition

All data was acquired on a 3.0 Tesla Philips Achieva MR system (Best, The Netherlands) with

an eight channel head coil. A high-resolution 3D T1-weighted anatomical image was acquired:

Echo time (TE) = 3.9 ms, repetition time (TR) = 8.4 mm, field of view (FOV) = 230 mm, slice

thickness = 0.9 mm, voxel size = 0.9 m x 0.9 mm x 0.9 mm, total scan time was 5 min 46 s. For
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the DWI acquisition whole-brain high angular resolution diffusion imaging (HARDI) data

was acquired using a parallel sensitivity encoding (SENSE) approach [65] with a reduction fac-

tor of two. It was acquired using single-shot spin echo-planar imaging (EPI): TE = 81 ms,

TR = 14,556 ms, FOV = 224 mm, matrix 112 x 112, voxel size = 2 mm x 2 mm x 2 mm, and 65

slices with 2 mm thickness and no gaps, total scan duration was 18 min 6 s. Diffusion gradients

were applied in 61 isotropically distributed orientations with b = 2000 s/mm2, four images

with b = 0 s/mm2 were also acquired.

Data acquisition for the rsMRI lasted 7 min. A T2�-weighted echo-planar imaging sequence

with TE = 27 ms and TR = 2000 ms was used to acquire the blood oxygenation dependent

(BOLD) signal. Two hundred and ten volumes of data were acquired, voxel size = 3.5 mm x

3.5 mm x 3.85 mm with a 0.35 mm gap between slices. Thirty-nine slices, covering the entire

brain, were imaged per volume. Slices were acquired in an interleaved sequence from an infe-

rior to superior direction. During this scan, participants were instructed to fixate on a red

cross-hair in the centre of a screen behind the MRI scanner, it was visible via a mirror.

Pre-processing and data extraction. T1-w: T1-w images were oriented to standard posi-

tion (FSL; [66]), labelling was verified and images were visually assessed for quality and inci-

dental findings. FSL-ANAT segmentation method was used to extract tissue volumes (grey

matter, white matter and cerebrospinal fluid) in order to estimate intra-cranial volume.

DWI: The Philips diffusion-weighted images were converted to Nifti files using dcm2niix

[67]. They were then pre-processed using ExploreDWI version 4.8.4 [68]. This included

Table 1. Demographic details.

Profile HC MCI Statistic P-value�

Gender (M/F %) 65/35 44/56 X2 = 2.17 0.141

Age 69 ± 2.66 68 ± 6.28 Yt = -0.7369 0.441

Education 14 ± 3.85 12.6 ± 2.75 Yt = -1.2592 0.1995

IQ 118 ± 7.87 114 ± 6.72 Yt = -1.6943 0.107

Raw mean + SD

� p-value: 2-sided, uncorrected

https://doi.org/10.1371/journal.pone.0222977.t001

Table 2. Neuropsychological tests.

Measure HC MCI Statistic (Yt) P-value�

GDS 1.04 ± 1.72 2.25 ± 2.07 2.53 0.030

Cognitive Reserve 17.2 ± 4.99 15.68 ± 4.86 -0.9464 0.347

CERAD:

MMSE 28.9 ± 0.949 26.7 ± 2.34 -3.5309 0.001

Fluency 17.7 ± 3.55 15.3 ± 4.87 -1.9598 0.056

Naming 14.7 ± 0.559 12.9 ± 2.25 -2.9748 0.016

Word Delay 8.6 ± 1.27 4.21 ± 2.39 -6.5326 0.000

Word Recognition Y 9.9 ± 0.209 8.65 ± 1.53 -3.6551 0.0095

Word Recognition N 10 ± 0 9.60 ± 0.821 -1.51 0.134

Praxis 10.5 ± 0.846 10.1 ± 0.898 -1.5223 0.100

Trail A 35.9 ± 7.68 48.9 ± 17.7 2.4595 0.025

Trail B 74.5 ± 21.0 139 ± 58.4 4.9546 0.0005

Raw score mean + SD

� p-value: 2-sided, uncorrected.

https://doi.org/10.1371/journal.pone.0222977.t002
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converting the Philips bval and bvec files to a bmatrix (txt) file. B0 fieldmaps of the bmatrix

and Nifti files were brought to the beginning of the images as appropriate. The Nifti files were

made ExploreDWI compatible, gradients were permuted and flipped as required and the files

converted to matlab image files. Corrections for subject motion, eddy current and EPI were

made in one step using the Robust approach (Rekindle linear), during which the images were

registered to their respective ExploreDWI-compatible T1-w files, using the methods described

elsewhere [69,70].

Whole-brain tractography was run on the corrected files using a constrained spherical

deconvolution method [71], a deterministic approach. This method can account for complex

white matter orientation such as crossing fibres [72] and has previously detected changes in

MCI and AD [54]. Using every voxel as a seed point, and in increments of 1 mm, the principal

diffusion orientation at each point was estimated. Tracking moved along the direction that

subtended the smallest angle to the current trajectory. A trajectory was followed until the

scaled height of the fibre orientation density function peak dropped below 0.1, or the direction

of the pathway changed through an angle of no more than 30˚.

Following whole-brain tractography, the different tracts were extracted by manually draw-

ing several regions of interest (ROIs) defined according to published methods for the fornix

[73,74], the subgenual and retrosplenial branches of the cingulum [75], the parahippocampal

branch of the cingulum [76], and the uncinate fasciculus [73]. See Fig 1 for further details on

the placement of the ROIs.

Using an atlas-based tractography approach the ROIs were located on three template indi-

viduals and then applied to participants pre-matched to each template-individual. Each tem-

plate individual was chosen to represent those with small, medium or large ventricles,

identified as such based on visual inspection, and classification, of the entire group of partici-

pants. The atlas-based tractography approach spatially transforms the ROIs, manually drawn

on the templates, to the other subjects’ native space. This ensures consistency in the identifica-

tion of the tracts. The use of three templates did not always overcome inter-subject variability

issues, as was evident in missing or slight tracts or tracts with excessive spurious streamlines.

In such cases (17% for fornix, 8% for cingulum bundles, 44% for uncinate fasciculus) the ROIs

were manually drawn and adjustments were made as necessary. In all cases tidying of the tracts

was achieved by the application of one or several NOT gates.

Resting State fMRI: The rsMRI data were processed using the Conn v18a toolbox [77] run

in SPM v8 [78]. A default MNI152-space data pre-processing template was applied consisting

of: functional realignment and unwarping, slice-timing correction, structural segmentation

and normalisation, functional normalisation, outlier detection, and smoothing. Segmentation

and normalisation steps were supported by the acquired structural T1-w images. Structural

target resolution was set at 1 mm isotropic, functional target resolution was set at 2 mm isotro-

pic. Smoothing was done using a 4 mm full-width-at-half-maximum Gaussian kernel.

Using Conn default settings, potential confounding effects removed from the BOLD signal

using linear regression were: white matter and cerebrospinal fluid time series (5 regressors

each, CompCor approach, [77], scrubbing (invalid scans: M = 6.71, SD = 12.3, range 0–54, no

difference between groups, Yt = 1.09, p = .309 ), realignment (6 motion parameters and 6 first-

order temporal derivatives) and the effect of rest. Band-pass filtering (0.01–0.08 Hz) and linear

detrending were included in this denoising step.

The BOLD signal time series was extracted from sub-cortical regions and cortical networks

known to be implicated in early Alzheimer’s Disease [79]. The hippocampus and thalamus

were identified using the FSL Harvard-Oxford Atlas (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

Atlases). Using the 2mm 400 region cortical atlas [80] two limbic (a and b) and three default

mode sub-networks (a, b, and c) per hemisphere were identified. These atlas parcellations

Fornix and cingulum degradation and decreases in functional connectivity in prodromal Alzheimer’s disease
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were computed from functional connectivity patterns. The sources of the functional connec-

tivity signals within each sub-network are detailed in Fig 2. Centroid co-ordinates for the par-

cels are presented in S1 File Table L. All atlases and the pre-processed resting state images

were in MNI152 space. A weighted sum time series method was used to extract the BOLD

time series signals for each ROI. Connectivity measures were calculated using a haemody-

namic response function weighted general linear model for bivariate correlations, set at a

default 0.25 threshold. Using the Conn toolbox this step outputs Fisher Z-transformed correla-

tion coefficients per ROI-to-ROI pairing for each participant.

To estimate global measures of graph theory the above steps for functional connectivity cor-

relations were also followed, but this time the signal was extracted from the whole brain. All

sub-cortical and cerebellar segmentations were defined using the FSL Harvard-Oxford Atlas

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), and all cortical ROIs were extracted from the

Schaefer et al., [80] 400 ROI atlas. Measures of cluster coefficient and average path length were

inspected at a cost (sparsity) level of 0.15.

Analyses

Due to the general concern regarding small sample sizes meeting the assumptions of the gen-

eral linear model, a robust approach was undertaken [81]. The R package robustbase [82] was

used to perform robust multiple linear regressions. Its lmrob function fits a model based on an

M-estimator using iteratively reweighted least squares estimation [83]. Linear regressions of

diffusion-weighted measures and resting-state connectivity measures conditional upon group

were performed per hemisphere. All tests controlled for age, education and gender. The rela-

tionship between depression and cognitive function is complicated and some depressive

Fig 1. Region of interest placement for each white matter tract. Within ExploreDTI the blue lines indicate a ‘seed/or’ gate, the green line an ‘and’ gate, red lines

indicate ‘not’ gates. Tracts are shown for the left hemisphere in a template subject. A) fornix, B) parahippocampal cingulum, C) retrosplenial cingulum, D) subgenual

cingulum, and E) uncinate fasciculus.

https://doi.org/10.1371/journal.pone.0222977.g001
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elderly will not convert to dementia [84]. However, we chose not to include depression as a

control covariate given that its presence may reflect dementia pathology [85]. That is, control-

ling for depression would run the risk of removing relevant explanatory variance. Further, in

this group it would both reduce sample size as one participant declined to complete the GDS

and risk over-fitting the model. In any case, in this cohort depression did not correlate with

worsening measures of cognition (see Fig B in S1 File). FDR-corrections were performed

within each class of measures. With the exception of the graph theory analysis, the relevant

measures were extracted from their respective processing package and analysed within R ver-

sion 3.5.0 [86]. Additional R packages used were dpylr [87], ggplot2 [88], stringr [89].

The diffusion metrics extracted for analysis were fractional anisotropy (FA), mean diffusiv-

ity (MD), axial diffusivity (Da) and radial diffusivity (Dr) and tract volume. Lower values of

FA, and higher values of MD, Da and Dr, were predicted in the MCI compared to the HC

group [90]. Tract volume was divided by total intracranial volume in native space prior to sta-

tistical testing (metric = mm3). Tract volume was predicted to be lower in the MCI group. P-

values were adjusted to take into account the directional hypotheses.

Fisher Z-transformed bivariate correlation coefficients of BOLD signal time series were

averaged/calculated within the chosen networks, between the networks, and between the net-

works and the subcortical ROIs, per hemisphere. No directional predictions were made given

that both decreased and increased connectivity have previously been observed within AD sam-

ples [46]. (Within hemisphere only analyses were conducted, across hemisphere connectivity

was not inspected due to sample size).

Fig 2. The three parcellations of the DMN and two parcellations of the limbic networks as delineated by the Schaefer et al., 2018 atlas [80]. DMN-a: 1–2) inferior

parietal lobule 1&2, 3–5) dorsal prefrontal cortex 1–3, 6–12) posterior cingulate cortex 1–7, 13–18) medial prefrontal cortex 1–6. DMN-b: 1–6) temporal cortex 1–6, 7–8)

inferior parietal lobule 1&2, 9–14) dorsal prefrontal cortex 1–6, 15–16) left prefrontal cortex 1&2, 17–21) ventral prefrontal cortex 1–5. DMN-C: 1) inferior parietal

lobule 1, 2–4) retrosplenial cortex 1–3, 5–7) parahippocampal cortex 1–3. Limbic a: 1–5) orbitofrontal cortex 1–5. Limbic-b: 1–7) temporal pole 1–7.

https://doi.org/10.1371/journal.pone.0222977.g002
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Within group and per hemisphere, robust percentage bend correlations of the within-net-

work Fisher Z-transformed bivariate correlation coefficients and the normalised MD values of

each tract were performed using the using the WRS2 package [62]. These inspected associa-

tions were not limited to known structural connectivity (e.g. fornix and DMN-c) based on two

assumptions. First, human structural connectivity is not yet so precisely delineated that exclu-

sive connections are assured (e.g., the uncinate fasciculus likely facilitates connections with

various networks such as limbic-a, limbic-b networks, DMN-a, and DMN-c). Second, taking

an agnostic approach allowed possible secondary, or downstream, effects of tract degeneration

to be considered [91,92]. However, in order to constrain the number of analyses, these correla-

tions were focused on the MD metric, as it is understood to be the diffusion measure most sen-

sitive to AD changes [24,93]. Associations of tract MD with between-network functional

connectivity (over 200 possible correlations) were not inspected in order to constrain the

analysis.

Between-group rsMRI graph theory measures of cluster coefficient and average path length

were inspected in order to provide a global overview of functional connectivity brain changes.

Cluster coefficient is a local measure that examines the number of nearest neighbours of a

node as a proportion of the maximum possible number of connections. From the connectome

perspective it measures segregation—the efficiency of information transfer at a local scale.

Path length is a global measure of integration; it quantifies the overall routing efficiency of a

network by examining the average minimum number of connections that link any two nodes

of a network [42]. These analyses were conducted within the Conn toolbox. Cost (sparsity)

was set at 0.15, no directional prediction was made. The tests controlled for age, education and

gender and FDR-corrections were applied to follow-up tests.

Results

DWI

All diffusion measures of the fornix showed evidence of degeneration in the MCI group: MD,

Da and Dr were comparatively increased in the left (MD: t = 4.21, pcor = .0006, Da: t = 5.32,

pcor = .00005, Dr: t = 3.74, pcor = .002) and the right fornix (MD: t = 5.06, pcor< .0001, Da:

t = 5.59, pcor = .00005, Dr: t = 4.65, pcor = .0002), and FA was comparatively decreased in the

left (t = -2.78, pcor = .019) and right (t = -2.42, pcor = .035) fornices. In the MCI compared to

the HC group, MD and Da were significantly increased in the left parahippocampal cingulum

(MD: t = 2.72, pcor = .019, Da: t = 3.02, pcor = .012), and MD and Dr were significantly

increased in the left retrosplenial cingulum (MD: t = 3.08, pcor = .011, Dr: t = 2.43, pcor = .035)

and in the left subgenual cingulum (MD: t = 3.08, pcor = .011, Dr: t = 2.77, pcor = .019).

All other measures were in the expected direction (i.e., comparatively decreased FA and

tract volume and increased MD, RD and AD in the MCI group) but either did not survive cor-

rections for multiple comparisons or were not significant at the uncorrected level. There were

two exceptions to this, Da values were the same for each group in the left uncinate fasciculus

and were comparatively decreased in the right uncinate fasciculus in the MCI group. Details of

the MD values are presented in Table 3, Figs 3 and 4 display the DWI metrics for the fornix

and parahippocamapl cingulum, see S1 File for other diffusion measure descriptives (Tables

B-F) and graphs (Figs C-E).

rsMRI

In MCI compared to HC, statistically smaller within-network connectivity was found in the

DMN-a in the left (t = -3.38, pcor = .010) and right (t = -3.75, pcor = .005) hemispheres. See

Table 4.
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In MCI compared to HC, statistically smaller between-network connectivity was found

between DMN-a and DMN-c, between DMN-a and the hippocampus, and between DMN-c

and the hippocampus in both the left hemisphere (respectively: t = -4.63, pcor = .002; t = -4.21,

pcor = .003; t = -3.99, pcor = .003) and the right hemisphere (respectively: t = -3.81, pcor = .005;

t = -3.31, pcor = .011; t = -3.52, pcor = .008). In the right hemisphere only in MCI compared to

HC, statistically smaller between-network connectivity was found between DMN-c and

the thalamus (t = -3.02, pcor = .021) and between DMN-c and the limbic-a network (t = -4.01,

pcor = .003). See Table 5, and Figs 5 and 6, for results mentioned here and Table G in S1 File for

the complete set.

DWI and rsMRI

Robust correlations between the normalised MD of each of the five tracts and each of the five

within-network Fisher Z-transformed correlations were conducted per hemisphere and group

(total of 5x5x2 correlations). At the uncorrected level two associations were significant–

between the right parahippocampal cingulum and Limbic-a in the MCI group (r = -0.525, p =

.007), and between the left retrosplenial cingulum and Limbic-a in the healthy controls (r =

-0.524, p = .010)–but neither survived corrections for multiple comparisons. Given these

results, no between-group comparisons were carried out. See Figs F-J in S1 File for full details.

Graph theory

Graph theory analyses, at sparsity level of 0.15, revealed a significant between-group difference

in the cluster coefficient measure. This was higher in the HC (M = 0.492, SD = 0.027) com-

pared to the MCI (M = 0.474, SD = 0.033) group (b = .02, t = -2.53, puncor = .015). This differ-

ence was driven by 18 ROIs—8 in DMN-a (5 RH, 3 LH), 5 in DMN-b (2 RH, 3LH), both

hippocampi, two ROIs in the LH somatomotor network and one in the RH salient ventral

attention network–all of which survived FDR-correction. See Fig 7 and Table 6 for details. The

difference in average path length between the two groups did not reach statistical significance

(b = .03, t = -1.94, puncor = .059; HC: M = 2.08, SD = 0.049; MCI: M = 2.06, SD = 0.06).

Given the challenges of defining a-priori an appropriate network cost level [94], and follow-

ing feedback, we additionally inspected the graph theory measures at sparsity levels of .10, .20

and .25. There were significant differences between the two groups in the cluster coefficient

measure for sparsity levels of 0.10, 0.20 and 0.25 (uncorrected for multiple comparisons across

Table 3. MD values per structure per hemisphere.

Structure Hemi HC MCI Estimate t-statistic p-value �

Fornix LH 0.00120 ± 0.00008 0.00132 ± 0.00014 0.000139 4.210 0.000064

RH 0.00118 ± 0.00008 0.00127 ± 0.00008 0.000100 5.056 .0000042

Para-hippocampal cingulum LH 0.00072 ± 0.00003 0.00075 ± 0.00005 0.0000187 2.721 0.00467

RH 0.00072 ± 0.00003 0.00074 ± 0.00005 0.0000104 1.007 0.15950

Retrosplenial cingulum LH 0.00067 ± 0.00002 0.00069 ± 0.00002 0.0000213 3.084 0.00178

RH 0.00067 ± 0.00002 0.00068 ± 0.00003 0.0000148 2.052 0.02315

Subgenual cingulum LH 0.00069 ± 0.00002 0.00070 ± 0.00002 0.00001516 3.078 0.00181

RH 0.00069 ± 0.00002 0.00069 ± 0.00002 0.00000946 1.706 0.04765

Uncinate fasciculus LH 0.00070 ± 0.00002 0.00071 ± 0.00004 0.00000444 0.806 0.21225

RH 0.00072 ± 0.00002 0.00072 ± 0.00003 0.00000254 0.336 0.36900

Hemi = hemisphere, LH = left hemisphere, RH = right hemisphere

�p-values are uncorrected, 1-sided

https://doi.org/10.1371/journal.pone.0222977.t003
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levels). As per cost level 0.15, the cluster coefficient measures were higher in the HC compared

to the MCI group. At level 0.10 the difference was driven by 16 ROIs (12 from the DMN and

hippocampus– 10 of which drive the group differences at sparsity level 0.15). At level 0.20 no

Fig 3. Mean DWI measures of the fornix.

https://doi.org/10.1371/journal.pone.0222977.g003
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individual ROI survived correction for multiple comparisons. At level 0.25 the difference was

driven exclusively by LH temporal area 3 of the DMN_b (it was also a driver of differences at

levels 0.10 and 0.15). Full details are provided in S1 File. There was a significant difference in

Fig 4. Mean DWI measures of the parahippocampal cingulum.

https://doi.org/10.1371/journal.pone.0222977.g004
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the average path length between the groups at sparsity level of 0.10. As per sparsity level 0.15,

this average path length difference was not present at levels 0.20 and 0.25. Further details are

provided in S1 File.

Discussion

This study employed multimodal imaging to investigate relationships between brain regions

known to be impaired early in AD. The microstructures of five relevant white matter tracts

were analysed using DWI measures. rsMRI was used to investigate functional connectivity

across implicated parcellated networks and sub-cortical regions. Relationships between these

respective measures of tract ‘health’ and connectivity ‘health’ were assessed. Finally, to provide

a high-level overview, global measures of graph theory were extracted from rsMRI correlations

of the entire brain.

MCI-related disturbances in white matter structure were found in the fornix, in the left

parahippocampal cingulum, the left retrosplenial cingulum and the left subgenual cingulum.

Table 4. Within network functional connectivity.

Measure HC MCI Estimate t-statistic P-value�

Within LH:

DMN-a 0.506 ± 0.078 0.416 ± 0.133 -0.100 -3.379 0.00156

DMN-b 0.352 ± 0.105 0.291 ± 0.062 -0.058 -2.552 0.01435

DMN-c 0.511 ± 0.129 0.421 ± 0.118 -0.085 -2.535 0.0150

Limbic-a 0.413 ± 0.126 0.404 ± 0.178 -0.002 -0.044 0.965

Limbic-b 0.251 ± 0.098 0.265 ± 0.079 -0.009 -0.315 0.754

Within RH:

DMN-a 0.485 ± 0.109 0.381 ± 0.122 -0.119 -3.751 0.000522

DMN-b 0.302 ± 0.105 0.275 ± 0.096 -0.033 -1.194 0.239

DMN-c�� 0.462 ± 0.132 0.368 ± 0.108 -0.093 -2.568 0.0135

Limbic-a 0.349 ± 0.142 0.353 ± 0.122 0.006 0.147 0.884

Limbic-b 0.225 ± 0.074 0.257 ± 0.088 0.018 0.679 0.501

� p-values are uncorrected 2-sided

�� No covariates were included due to non-convergence of model

https://doi.org/10.1371/journal.pone.0222977.t004

Table 5. Highlights of between network functional connectivity.

Measure HC MCI Estimate t-statistic P-value�

LH

DMN -a & -c 0.352 ± 0.075 0.251 ± 0.111 -0.108 -4.63 0.0000336

DMN-a & Hippocampus 0.238 ± 0.117 0.114 ± 0.125 -0.149 -4.21 0.000127

DMN-c & Hippocampus 0.409 ± 0.096 0.262 ± 0.138 -0.157 -3.99 0.000254

RH

DMN -a & -c 0.328 ± 0.089 0.217 ± 0.092 -0.116 -3.81 0.000438

DMN-a & Hippocampus 0.208 ± 0.123 0.104 ± 0.156 -0.128 -3.31 0.00192

DMN-c & Hippocampus 0.326 ± 0.124 0.186 ± 0.137 -0.157 -3.52 0.00102

DMN-c & Thalamus�� 0.147 ± 0.091 0.039 ± 0.144 -0.109 -3.02 0.00408

DMN-c & Limbic-a 0.133 ± 0.085 0.080 ± 0.069 -0.082 -4.01 0.00024

�p-values are uncorrected 2-sided

�� No covariates were included due to non-convergence of model

https://doi.org/10.1371/journal.pone.0222977.t005
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No such changes were found in the uncinate fasciculus. Functional connectivity decreases

were observed in the MCI group within the DMN, but not the limbic, sub-networks. Func-

tional connectivity was decreased in the MCI group, between the hippocampus and sub-areas

a and c of the DMN, between DMN-c and DMN-a, and, in the right hemisphere only, between

DMN-c and both the thalamus and limbic-a. No relationships between white matter tract

‘health’ (MD metric) and within sub-network functional connectivity were detected. The

observed region-of-interest functional connectivity disturbances were broadly reflected in the

whole-brain cluster coefficient measure of graph theory. It revealed that impact of the putative

AD-related pathology in the MCI group was observed in, and mostly restricted to, between-

neighbour connections of the hippocampi and of nodes within DMN-a and DMN-b.

White matter tractography studies of MCI and early stage AD have found that absolute

measures of diffusivity (MD, Dr, Da) are more sensitive detectors of pathology compared to

ratio measures such as FA, which reflect changes in the shape of the diffusion ellipsoid

[24,25,93,95,96]. This pattern of diffusion metrics is reflected in the present results, with only

absolute diffusivity measures reaching (uncorrected and corrected) statistical significance in

the cingulum branches.

Damage in the left hippocampal cingulum is the most consistent finding across different

types of DWI analysis and stage of MCI [24]. In the present study white matter changes in the

cingulum reached corrected statistical significance in the left hemisphere only. Lateralised

tract damage has been previously reported, e.g., increased MD in the right posterior cingulate

fasciculus in MCI [97]; increased MD in the left cingulum bundle in MCI [98]; decreased FA

in left parahippocampal cingulum in MCI [99], increased FA in the left anterior temporal lobe

in AD [100], decreased Dr in left uncinate fasciculus in AD [101]. Nonetheless, bilaterally the

Fig 5. The red lines with beta values indicate where between region functional connectivity was higher in HC compared to MCI in the left hemisphere.

https://doi.org/10.1371/journal.pone.0222977.g005
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overall white matter changes found in the current paper were in the expected direction

[102,103]. This directional effect is true also of the uncinate fasciculus, although, unlike pub-

lished studies [97,104] we did not find a statistically significant MCI-related change.

The rsMRI results reveal that the strength of within-sub-network functional connectivity is

reduced in the DMN (in DMN-a only at corrected p-value) but not in the limbic networks in

the MCI group. DMN-c (retrosplenial cortex, parahippocampal cortex and inferior parietal

nodes) and the hippocampus were implicated in the observed decreases in between-network

connection strength in the MCI group. This reflects the findings that the medial temporal lobe

is the originating grey matter site of damage in AD [4,5]. No evidence of increased connectiv-

ity (putatively compensatory or reflective of switching difficulty) was found as has been

reported elsewhere [40].

In the current sample global white and grey matter atrophy are present in the MCI group–

(see Table K and Fig K in S1 File). However, while both the white matter and the connectivity

strength analyses reveal insults to the system, no relationship between the different types of

damage was apparent. White matter and grey matter damage in AD may or may not occur

independently [19,105]. [106] observed white matter network alterations in preclinical AD

that preceded cortical atrophy and hypoglucose metabolism. The retrogenesis hypothesis has

been suggested as a putative mechanism for that order of attack [107,108]. However, white

matter damage may also be secondary to grey matter damage via Wallerian degeneration [14–

16]. The lack of relationship between structural insult and functional dysconnectivity seen

here may be indicative of independent and non-interacting degenerative processes during

MCI (in this sample) or it may be related to limitations of our chosen analysis.

Fig 6. The red lines with beta values indicate where between-region functional connectivity was higher in HC compared to MCI in the right hemisphere.

https://doi.org/10.1371/journal.pone.0222977.g006
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Specifically, it may be that the functional parcellations used are too coarse (e.g., the DMN-a

is composed of 18 functionally connected regions) to probe structural and functional relation-

ships. It is also possible that combinations of damage to different tracts, rather than individual

tract damage as examined here, are related to within-network dysconnectivity, especially at the

early stages of degeneration [109–111]. We did not examine such multivariate relationships

due to sample sizes constraints. In addition, it is possible that damage in non-examined white

matter tracts, including superficial and short range association fibres, may influence functional

connectivity within the DMN in MCI [112,113]. It is also possible that, notwithstanding the

Fig 7. Points represent regions where the cluster coefficient was significantly larger in HC compared to MCI, at sparsity level of 0.15. Both

hemispheres are presented on the same view. 1) RH DMN-a PFCm_1; 2) RH DMN-a PFCd_2; 3) LH DMN-a PCC_2; 4) LH DMN-b Temp 3; 5) LH DMN-

b PFCd_5; 6) RH hippocampus; 7) LH DMN-a PFCm_1; 8) LH DMN-a PFCd_3; 9) RH DMN-a PFCm_4; 10) RH DMN-b AntTemp_1; 11) LH DMN-b

PFCd_1; 12) RH DMN-b PFCd_4; 13) RH DMN-a PCC_1; 14) RH DMN-a PFCm_3; 15) LH SomMot_a 16; 16) LH hippocampus; 17) RH SalVentAttn_a

ParMed_7; 18) LH SomMot_a 12. PFC = prefrontal cortex; d = dorsal; m = medial; Temp = temporal; Ant = anterior; SomMot = somatomotor;

SalVentAttn = salient ventral attentional.

https://doi.org/10.1371/journal.pone.0222977.g007
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simple statistical approach we used, the sample size is simply too small (see limitations sec-

tion). Separately, or in combination, these factors may have constrained our ability to detect a

relationship between structural and functional damage in MCI.

The whole-brain graph theory measures revealed that the areas of difference between the

two groups were centred on DMN nodes and the hippocampus. The analysis of the cluster

coefficient (how well specialist information is segregated) showed that across both hemi-

spheres there were fewer connections-between-nearest-neighbours of select DMN-a and

DMN-b nodes and of the hippocampus in the MCI group, at cost levels of 0.10 and 0.15. This

metric, related to the resilience of local networks, suggests that these areas in the MCI group

are relatively more exposed to insult [114,115]. The presence of the hippocampus and DMN-a

in the results from both analyses (functional connectivity strength and graph theory) may indi-

cate that it has both lost connections and that its remaining connections are also weaker.

Limitations

The heterogeneity of the MCI sample is a limiting factor in the interpretation of each analysis

approach. The most common cause of MCI is AD-rleated pathology, however, other causes

such as Lewy body disease and vascular insults in isolation or in combination are also common

[6,7]. Further, not all cases of MCI go on to express further decline [116]. This heterogeneity,

likely present in the current sample, introduces variation in the data that may hide or accentu-

ate AD-related degeneration. Future studies incorporating protein-based diagnostic criteria

will eventually minimise this confound. The current sample size is small and the power to

detect a medium effect size (Cohen’s d = 0.05) is approximately 52% in directionally predicted

tests and 40% in two-sided tests (calculated using the pwr package for R [117]).

Table 6. Graph theory cluster coefficient, sparsity level of 0.15.

Measure HC MCI Estimate t-statistic P-value�

LH

DMN-a PCC 2 0.569 ± 0.045 0.510 ± 0.067 0.07 -4.17 0.000146

DMN-b Temp 3 0.564 ± 0.054 0.481 ± 0.096 0.09 -3.98 0.000262

DMN-b PFCd 5 0.540 ± 0.087 0.454 ± 0.089 0.10 -3.79 0.000458

DMN-a PFCm 1 0.536 ± 0.065 0.471 ± 0.066 0.07 -3.65 0.000713

DMN-a PFCd 3 0.525 ± 0.073 0.469 ± 0.071 0.07 -3.53 0.001002

DMN-b PFCd 1 0.543 ± 0.065 0.471 ± 0.075 0.08 -3.49 0.001117

SomMoTA 16 0.546 ± 0.089 0.458 ± 0.104 0.10 -3.42 0.001383

Hippocampus 0.501 ± 0.094 0.429 ± 0.081 0.09 -3.35 0.001687

SomMoTA 12 0.544 ± 0.089 0.466 ± 0.089 0.09 -3.29 0.002004

RH

DMN-a PFCm 1 0.532 ± 0.062 0.451 ± 0.071 0.09 -4.77 0.000022

DMN-a PFCd 2 0.559 ± 0.061 0.466 ± 0.080 0.10 -4.46 0.000058

Hippocampus 0.514 ± 0.123 0.421 ± 0.093 0.11 -3.78 0.000472

DMN-a PFCm 4 0.542 ± 0.062 0.477 ± 0.071 0.07 -3.52 0.001023

DMN-b Ant Temp 1 0.541 ± 0.063 0.467 ± 0.096 0.09 -3.51 0.001052

DMN-b PFCd 4 0.558 ± 0.066 0.488 ± 0.101 0.09 -3.46 0.001215

DMN-a PCC 1 0.573 ± 0.057 0.512 ± 0.069 0.07 -3.46 0.001222

DMN-a PFCm 3 0.507 ± 0.086 0.452 ± 0.075 0.08 -3.43 0.001335

SalVentAttn A ParMed7 0.497 ± 0.067 0.437 ± 0.057 0.06 -3.34 0.001735

� p-values are uncorrected 2-sided

https://doi.org/10.1371/journal.pone.0222977.t006
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The rsMRI ROI approach is heavily dependent on the spatial accuracy of the boundaries of

the chosen templates to reflect the functional organisation of the brain [118]. The difficulty in

achieving perfect registration to such templates, particularly in the case of neurodegeneration,

should be taken into consideration when interpreting results. Additionally, a region-of-interest

approach, by definition, excludes brain regions from assessment and thus over-simplifies find-

ings–in this case the differences between MCI and HC groups [34]. Also relating to the rsMRI

data, bivariate correlations between regions were examined, this approach runs the risk of

detecting spurious (or accentuating) connections between two areas if both those areas are

connected to a common third area [118]. The group contrast of the current analysis may both

help (by cancelling out common indirect connections) and hinder (by exposing spurious/indi-

rect connections through contrast) this problem.

Constraints regarding the interpretation of graph theory analysis include those mentioned

above for rsMRI (excluding the region of interest approach) and are extended by its binarisa-

tion process [119]. In order to achieve a high-level overview, it meant that in this instance,

only a restricted range of cost % of connections based on correlation strength were included in

the analysis. With this reductive approach valuable information is lost and the risk of a skewed

understanding of clinically important brain connectivity differences is increased [118]. It

should also be noted that a widespread difference in underlying functional connectivity

between patient and control groups may introduce potential artifactual differences in network

topology metrics [120].

Finally, a limitation of the DWI approach employed is the subjectivity introduced by the

manual identification of ROIs and any cleaning of spurious tracts. To minimise this subjectiv-

ity we used published guides for the placement of tract delineators and the atlas-based

approach whereby the ROI definition was applied across the entire group. We also facilitated

natural variability by creating three atlases (small, medium, large) according to a subjective

assessment of ventricle size. Despite these precautions we cannot eliminate this limitation,

however, we can be confident that the results are directionally consistent with existing

literature.

Conclusion

We found white matter damage to the fornix and sub-divisions of left cingulum bundle,

reduced connectivity strength within DMN-a, and reduced connectivity between the hippo-

campus and DMN-c, the hippocampus and DMN-a, and reduced information segregation

(cluster coefficient) within the DMN and hippocampus in a group of MCI participants. How-

ever, we found no relationship between white matter disturbance and functional connectivity

strength. This may be a reflection of independent degeneration processes in white and grey

matter, particularly during early stage AD. Alternatively, the lack of relationship between the

functional and structural measures may be related to study design and analytical factors.
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