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Abstract

Exploration and exploitation are contradictory in differential evolution (DE) algorithm. In

order to balance the search behavior between exploitation and exploration better, a novel

self-adaptive dual-strategy differential evolution algorithm (SaDSDE) is proposed. Firstly, a

dual-strategy mutation operator is presented based on the “DE/best/2” mutation operator

with better global exploration ability and “DE/rand/2” mutation operator with stronger local

exploitation ability. Secondly, the scaling factor self-adaption strategy is proposed in an indi-

vidual-dependent and fitness-dependent way without extra parameters. Thirdly, the explora-

tion ability control factor is introduced to adjust the global exploration ability dynamically in

the evolution process. In order to verify and analyze the performance of SaDSDE, we com-

pare SaDSDE with 7 state-of-art DE variants and 3 non-DE based algorithms by using 30

Benchmark test functions of 30-dimensions and 100-dimensions, respectively. The experi-

ments results demonstrate that SaDSDE could improve global optimization performance

remarkably. Moreover, the performance superiority of SaDSDE becomes more significant

with the increase of the problems’ dimension.

Introduction

DE is a stochastic optimization method based on population for real-parameter optimization

problems, which is proposed by Storn and Price [1]. As a kind of heuristic global search evolu-

tion algorithm, differential evolution (DE) has an evolution mechanism similar to the other

evolution algorithms, all of which are mutated, crossed and selected. Unlike that the other evo-

lution algorithms (EAs) use the defined probability distribution function, the DE selects indi-

viduals from the current population to do differential operations and multiplies by scaling

factor. It currently is a very attractive evolutionary algorithm for optimization in continuous

search spaces, mainly for its simplicity, a small number of parameters to tune and notable per-

formance. At present, DE is widely used in the research and engineering fields, such as classifi-

cation [2], neural network training [3–4], data clustering [5], solar energy [6].

Exploration and exploitation are contradictory for most EAs [7]. To further improve the

exploitation and exploration capability of DE algorithm, a novel self-adaptive dual-strategy
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differential evolution algorithm (SaDSDE) is proposed. In summary, the main contributions

of this paper are as follows. (1) A dual-strategy mutation operator is proposed. In the proposed

mutation operator, the exploitation and exploration capability of mutation operator are simul-

taneously considered. (2) The scaling factor self-adaption strategy is proposed in an individ-

ual-dependent and fitness-dependent way. (3) A dynamic adjustment strategy of exploration

ability control factor is introduced to adjust the exploration ability of DE in different stages of

evolution process. (4) The performance of SaDSDE is verified by comparing it with 7 existing

state-of-art DE variants and 3 non-DE algorithms on 30 benchmark functions. The experi-

mental results demonstrate the effectiveness of the proposed SaDSDE. The performance sensi-

tivities to population size, crossover probability and the impacts of the proposed algorithmic

components are also investigated.

The rest of this paper is organized as follows. Section 2 briefly introduces the original

DE algorithm and reviews the related works on the DE variants. In Section 3, the

proposed SaDSDE algorithm is presented in detail. The experiment comparisons and

analysis with 7 state-of-art algorithms and 3 non-DE algorithms are given in Section 4.

Finally, Section 5 draws the conclusions of this work, and future work is also described in

this section.

Related work

2.1 Original differential evolution algorithm

DE is based on population evolution. Generally, DE is composed of four components: initiali-

zation, mutation, crossover and selection. After initialization, DE enters a loop of mutation,

crossover and selection. The details of main components are introduced as follows. Without

loss of generality, this paper considers minimization problems. For D-dimensional minimum

optimization problems:

min f ðx1; x2 . . . ; xDÞ

s:t xmin
j � xi;j � xmax

j ; j ¼ 1; 2; . . . :;D

(

ð1Þ

where i = {1, 2, � � �, Np}, Np is the population size, xmin
j and xmax

j are respectively the lower

bound and upper bound of xj.
2.1.1 Mutation. It is mainly to generate mutation vector by scaling the difference of differ-

ent individuals. There are many mutation operators proposed by Storn and Price [8, 9] and a

widely used mutation strategy is listed as follows:

Vt
i ¼ Xt

r1 þ F � ðXt
r2 � Xt

r3Þ ð2Þ

where t indicates the generation, the indexes r1 ~ r3 are distinct integers randomly chosen

from the set {1, 2, � � �, Np}\{i}, Vt
i is the mutation vector of the ith target vector Xt

i . The scaling

factor F controls the amplification of the difference vector and is closely related to convergence

speed. The small scaling factor determines the exploitation ability. On the contrary, the large

scaling factor determines the exploration ability. It is note that the optimization performance

of DE mainly depends on the choice of mutation strategies and the setting of control

parameters.

2.1.2 Crossover. By crossover operation on the mutation vector Vt
i and the ith target

vector Xt
i , the trial vector is generated. The diversity of the population can be increased by

crossover operation. There are mainly three classic crossover operators: binomial crossover,

exponential crossover and rotationally invariant arithmetic crossover operators. The following
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binomial crossover operator is the most commonly used.

Ut
i;j ¼

Vt
i;j if randj � CR or j ¼ jrand

Xt
i;j otherwise

(

ð3Þ

where randj is a uniformly distributed random variable within (0, 1). jrand is randomly chosen

from the set {1, 2,� � �, D}, which can prevents a direct copy from Xt
i to Ut

i . The crossover proba-

bility CR is a user-defined crossover factor restricted to (0, 1], which controls the diversity of

the population and is closely connected with exploration power.

2.1.3 Selection. After crossover, the objective function value of the trial vector can be

obtained according to the optimization problem. The newly generated trial vectors are evalu-

ated and compared with the target vectors. A greedy strategy is adopted to perform the selec-

tion operation in DE. The superior of the target vector Xt
i and trial vector Ut

i will survive in the

next generation. In mathematics, one has

Xtþ1

i ¼
Ut

i f ðUt
i Þ � f ðXt

i Þ

Xt
i others

(

ð4Þ

2.2 Literature review. The performance of DE is mainly influenced by mutation mode,

control parameters (i.e. population size (Np), scaling factor (F) and crossover probability (CR))

and crossover mode. Inappropriate configurations of mutation strategies and control parame-

ters can cause stagnation or premature convergence. Therefore, many scholars have proposed

a series of improved DE algorithms [10–46].

To avoid manually tuning parameters, researchers have developed some techniques to auto-

matically set the parameter values. Ryoji and Alex [10] used a historical memory of successful

control parameters to guide the selection of future control parameters and proposed a parame-

ter adaptation technique for DE (SHADE). Rcr-JADE [11] was an improved version of JADE

[12] which employs successful parameters to repair crossover rate. To enhance the perfor-

mance of L-SHADE algorithm, Awad and Ali et al. [13] proposed LSHADE-EpSin by using an

adaptive approach based on sinusoidal formulas to adapt the scaling factor. In addition, some

scholars have proposed adaptive strategies for the population size. Zhu et al. [14] proposed an

adaptive population tuning scheme. In SapsDE [15], a self-adaptive population resizing mech-

anism was employed to adjust the population size. Chen and Zhao [16] et al. proposed popula-

tion adaptive differential evolution (PADE). Award and Ali [17] et al. presented ensemble

sinusoidal differential evolution with niching-based population reduction (called EsDEr-NR).

A large number of studies have carried out on improving mutation strategies. A part of

studies focused on single-mutation mode. In JADE [12], an optional external archive is com-

bined with a mutation strategy DE/current-to-pbest/1 that utilizes historical information to

direct population searching. Wang et al. [18] proposed a self-adaptive differential evolution

algorithm with improved mutation mode (IMMSADE) by improving “DE/rand/1”. Cai et al.

[19] designed a neighborhood-dependent directional mutation operator and presented a

neighborhood-adaptive DE (NaDE). A novel “DE/current-to-SP-best-ring/1” mutation opera-

tion is introduced in decentralizing and coevolving differential evolution (DCDE), proposed

by Tang [20]. A novel and effective adaptation scheme is used to update the crossover rate in

adaptive guided differential evolution algorithm (AGDE) [21]. He and Zhou [22] presented a

novel DE variant with covariance matrix self-adaptation (DECMSA). In EFADE [23], a new

triangular mutation operator is introduced. Cai et al. [24] presented an adaptive social learning

(ASL) strategy to extract the neighborhood relationship information. The best search strategies
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and parameters of an EA are generally different in solving different optimization problems.

Therefore, in order to improve the performance of an EA like DE, researchers make efforts to

realize an ensemble of multiple strategies and parameters [25–33]. Qin et al. [25] proposed a

self-adaptive DE algorithm (SaDE), both trial vector generation strategies and their associated

control parameter values were gradually self-adapted. Wang et al. [26] introduced a Composite

Differential Evolution algorithm (CoDE), which used three trial vector generation strategies

and three control parameter settings. Mallipeddi et al. [27] employed an ensemble of mutation

strategies and control parameters with the DE (EPSDE). Elsayed et al. [28] used multiple

search operators in conjunction with multiple constraint handing techniques. Wu and Malli-

peddi et al. [29] proposed a multi-population ensemble DE (MPEDE). YEH et al. [30] mixed

Gauss mutation and the “DE/best/1” operator. Cui et al. [31] proposed an adaptive multiple-

elites-guided composite differential evolution algorithm with a shift mechanism (AME-

CoDEs). Wu et al. [32] focused on the high-level ensemble of different DE variants and pro-

posed a new algorithm named EDEV. Lin and Ma et al. [33] proposed an adaptive immune-

inspired multi-objective algorithm (AIMA).

In addition to the modification of mutation and control parameters optimization, enhance-

ments in crossover operators have also been investigated, such as covariance matrix learning

operator [34], hybrid linkage crossover [35], a crossover operator utilizing eigenvectors of

covariance matrix of individual solutions [36], superior-inferior crossover scheme [37], an

adaptive hybrid crossover operator(AHX) [38], optional blending crossover scheme [39] and a

multiple exponential recombination that inherits all the main advantages of existing crossover

operators [40].

Through the synergistic mechanism, a hybrid algorithm could take advantage of various

merits within different algorithms, and then yields more favorable performance than a single

algorithm. Some preliminary research manifest that hybrid optimizers are effective and com-

petent for global optimization. Li et al. [41] proposed a new hybrid algorithm, called as differ-

ential evolution algorithm (DE) / artificial bee colony (ABC) algorithm. Vaisakh et al. [42]

came up with a hybrid approach involving differential evolution (DE) and bacterial foraging

optimization algorithm (BFOA). Ponsich and Coello [43] hybridized DE with Tabu Search

(TS). Gu et al. [44] mixed binary differential evolution (BDE) and Tabu search (TS) to propose

the memetic algorithm. Le et al. [45] merged differential evolution and harmony search. Nena-

vath and Jatoth [46] hybridized sine cosine algorithm with differential evolution.

SaDSDE algorithm

3.1 Dual-strategy mutation operator

In the original mutation strategies [8, 9], “DE/best/1” and “DE/best/2” conduct mutation on

the best individual with better local exploitation ability and fast convergence speed, but they

are easy to suffer premature convergence. “DE/rand/1” and “DE/rand/2” do mutation based

on random individuals with stronger global exploration ability, but they are lack of the guid-

ance of the optimal individual, so the convergence speed is slow. “DE/current-to-best/1”

performs mutation based on the parent individual and the optimal individual with high con-

vergence precision, but it is easy to fall into local optimum. Above mutation strategies are

either too greedy or too stochastic. Therefore, in order to balance the exploitation and explora-

tion better, a novel dual-strategy mutation operator is proposed based on “DE/best/2” and

“DE/rand/2”, which is shown in Eqs (5)–(7).

Vt
i 1
¼ Xt

b þ Ft
i � ðX

t
r1 � Xt

r2Þ þ Ft
i � ðX

t
r3 � Xt

r4Þ ð5Þ

Self-adaptive dual-strategy differential evolution algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0222706 October 3, 2019 4 / 25

https://doi.org/10.1371/journal.pone.0222706


Vt
i 2
¼ Xt

r1 þ Ft
i � ðX

t
r2 � Xt

r3Þ þ Ft
i � ðX

t
r4 � Xt

r5Þ ð6Þ

Vt
i ¼ oi 1 � V

t
i 1
þ l � oi 2 � V

t
i 2

ð7Þ

where Xt
b is the best solution at the current generation t. r1 6¼ r2 6¼ r3 6¼ r4 6¼ r5 are randomly

chosen from the set {1, � � �, Np}\{i}, Ft
i is the scaling factor of the ith individual. ωi_1 and ωi_2

are the weights of two mutation operators, which take the value of either 0 or 1. If randi () <

0.5, ωi_1 = 1, ωi_2 = 0; otherwise, ωi_1 = 0, ωi_2 = 1. Two weights satisfy ωi_1 + ωi_2 = 1. In the

above mutation scheme, only one of the two strategies is used for each vector depending on a

uniformly distributed random value within the range (0, 1). λ is the exploration ability control

factor and adjusts the exploration ability of mutation operator.

3.2 The scaling factor self-adaption strategy

The solution quality and the fitness are closely related. For the solution quality, the fitness is

the larger the better. Therefore, the scaling factor is tuned according to the fitness in a self-

adaptive and individual-dependent way, as is described in Eq (8).

Ft
i ¼ ðf

t
max � f ðXt

i ÞÞ=ðf
t
max � f tminÞ ð8Þ

Where f ðXt
i Þ is the fitness of the individual Xt

i , f
t
max is the maximum fitness at the current gener-

ation, and f tmin is the minimum fitness. In particular, when f tmax is equal to f tmin, Ft
i is set to a uni-

formly distributed random variable within (0, 1) to increase disturbance. Superior individuals

tend to be assigned with smaller parameter values so as to exploit their neighborhoods in

which better solutions, while inferior individuals tend to be assigned with larger parameter val-

ues so as to explore further areas in the solution space.

3.3 The dynamic adjustment strategy of the exploration ability control

factor λ
A key problem in many evolutionary algorithms is premature convergence, especially in the

later stage of evolution. However, promoting strong global exploration ability at all stages of an

evolutionary process might even be counterproductive in a phase where high exploitation is

needed. In general, most algorithms perform more effectively with a high convergence rate in

the earlier stage of the searching process relative to the later stage, especially for multimodal

functions. At the later stage, the algorithms are easily trapped in local optimal solutions due to

poor population diversity. Therefore, the dynamic adjustment strategy of the exploration abil-

ity control factor is introduced according to the evolution property, which is shown in Eq (9).

l ¼ 1 � cosððt=TÞ2Þ ð9Þ

Taking 1000 generations as an example, the dynamic adjustment curve of the exploration

ability control factor is shown in the Fig 1. During evolution, the population diversity is better

and λ is assigned a smaller value at the earlier stage. In response to the decreased diversity of

the population at the later stage of evolution, λ is assigned a larger value to increase the propor-

tions of the explorative mutation operator.

Based on all the components described above, the pseudo-code of the complete procedure

of SaDSDE is outlined in Algorithm 1. Comparing to the basic DEs, the time complexity of

proposed SaDSDE is still O(T � Np
� D) without extra time complexity. Herein, T, Np and D

are respectively the maximum generation number, the population size and the dimension of

problem.

Self-adaptive dual-strategy differential evolution algorithm
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Algorithm 1. Pseudo-Code for the SaDSDE
Begin
#01 t = 0;
#02 Randomly initialize an initial population

Xð0Þ ¼ fXð0Þi;j j8i; i ¼ 1; . . . ;Np; 8j; j ¼ 1; . . . ;Dg, Xð0Þi;j 2 ½xmin
j ; xmax

j �, T = 1000, CR = 0.9;
#03 For t = 1 to T Do
#04 Calculate the exploration ability control factor λ = 1 − cos((t/

T)2);
#05 Evaluate f ðXt

i j8i; i ¼ 1; � � � ;NpÞ and find Xt
b;

#06 For each individual Xt
i in current population Do

#07 If f tmax 6¼ f tmin Then
#08 Update Ft

i ¼ ðf
t
max � f ðXt

iÞÞ=ðf
t
max � f tminÞ;

#09 Else
#10 Set Ft

i ¼ randð0; 1Þ to increase disturbance;
#11 End
#12 Generate a random real number rti ¼ randð0; 1Þ;
#13 If rti < 0:5 Then
#14 ωi_1 = 1 and ωi_2 = 0;
#15 Else
#16 ωi_1 = 0 and ωi_2 = 1;
#17 End
#18 Generate r1 6¼ r2 6¼ r3 6¼ r4 6¼ r5 from the set {1,� � �, Np}\{i}

randomly;
#19 Vt

i 1
¼ Xt

b þ Ft
i � ðXt

r1 � Xt
r2Þ þ Ft

i � ðXt
r3 � Xt

r4Þ;
#20 Vt

i 2
¼ Xt

r1 þ Ft
i � ðX

t
r2 � Xt

r3Þ þ Ft
i � ðX

t
r4 � Xt

r5Þ;
#21 For j = 1 to D Do
#22 Generate jrand = randint(1, D);
#23 If j = jrand or rand(0,1) < CR Then
#24 Ut

i;j ¼ oi 1 � Vt
i 1;j þ l � oi 2 � Vt

i 2;j;

#25 Else
#26 Ut

i;j ¼ Xt
i;j;

#27 End If
#28 End For
#29 If f ðUt

i Þ � f ðXt
iÞ Then

#30 Xtþ1
i ¼ Ut

i;
#31 Else
#32 Xtþ1

i ¼ Xt
i;

#33 End If
#34 End For

Fig 1. The dynamic adjustment curve of λ.

https://doi.org/10.1371/journal.pone.0222706.g001
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#35 t = t + 1
#36 End While
End

Experiments analysis

4.1 Experiments setup

In our experiments, 30 benchmark test functions from references [47–49] are used to test the

performance of SaDSDE, which are listed in Table 1. f1—f11 are unimodal functions, f12-f30 are

multimodal functions.

4.2 Time complexity

The time complexity is calculated as described in [47]. The codes are implemented in Matlab

2015a and run on a PC with an Intel (R) Core (TM) i5-6500 CPU (3.20GHz) and 8GB RAM.

The algorithm complexity is listed in Table 2. In Table 2, T0 denotes the running time of the

following program:

for i ¼ 1 : 1000000

x ¼ ðdoubleÞ5:55;

x ¼ xþ x; x ¼ x:=2; x ¼ x � x; x ¼ sqrtðxÞ; x ¼ lnðxÞ; x ¼ expðxÞ; y ¼ x=x;

end

T1 is the computing time just for Function 3 (Elliptic function) for 200,000 evaluations at a

certain dimension D. T2 is the complete computing time for the algorithm with 200,000 evalu-

ations of D dimensional Elliptic Function. T2 is evaluated five times, and T̂ 2 is used to denote

the mean T2. At last, the complexity of the algorithm is reflected by: T0, T1, T̂ 2, ðT̂ 2 � T1Þ=T0.

4.3 Sensitivity analysis to control parameters

4.3.1 Sensitivity analysis to population size. The effect of population size in SaDSDE is

investigated by testing 30-dimensional problems. Np is set to 50, 75, 100, 125, 150, 175, 200,

225 and 250. For each test function with a different population size, the maximum generation

number is still set to 1000. From the statistical Friedman test [50] results in Fig 2, the perfor-

mance of SaDSDE decreases with reducing population size, because a larger population size

has high exploration ability.

Although SaDSDE with Np = 250 is best in Fig 2, there is no obvious performance difference

in Table 3. Therefore, we can say that SaDSDE is not sensitive to the population size.

4.3.2 Sensitivity analysis to crossover probability. The impact of the crossover probabil-

ity CR on the performance of proposed algorithm is also analyzed. The candidate values of CR
are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively. We perform Friedman test and Wil-

coxon’s rank-sum test [50] among the optimization result on different CR values, respectively.

The test results are shown in Fig 3 and Table 4, respectively. From Fig 3, we can observe that

the performance of SaDSDE is best at CR = 0.9.

From Table 4, it can be observed that SaDSDE is not sensitive to CR except for CR = {0.1,

0.2, 0.3} at the 0.1 significance level. Based on the trade-off of the convergence precision and

convergence rate, we think that CR = 0.9 is a more appropriate value. Therefore, we set

CR = 0.9 in the following series of experiments unless noted otherwise.
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Table 1. Benchmark test functions.

Name Function Domain

Sphere f1ðxÞ ¼
XD

i¼1
x2

i
[–100,100]D

Schwefel 1.2 f2ðxÞ ¼
XD

i¼1
ð
Xi

j¼1
xjÞ

2 [–100,100]D

Elliptic f3ðxÞ ¼
XD

i¼1
ð106Þ

i� 1
N� 1x2

i
[–100,100]D

Schwefel 2.22 f4ðxÞ ¼
XD

i¼1
jxij þ

YD

i¼1
jxij [–10,10]D

Schwefel 2.21 f5(x) = max{|xi|, 1� i� D} [–100,100]D

SumSquares f6ðxÞ ¼
XD

i¼1
ix2

i
[–1,1]D

Tablet f7ðxÞ ¼ 106x2
1
þ
XD

i¼2
x2

i
[–100,100]D

Zakharov f8ðxÞ ¼
XD

i¼1
x2

i þ ð
XD

i¼1
0:5ixiÞ

2
þ ð
XD

i¼1
0:5ixiÞ

4 [–5,10]D

Bent Cigar f9ðxÞ ¼ x2
1
þ 106

XD

i¼2
x2

i
[–100,100]D

Step f10ðxÞ ¼
XD

i¼1
ðjxi þ 0:5jÞ

2 [–100,100]D

Noise Quartic f11ðxÞ ¼
XD

i¼1
ix4

i þ rand½0; 1Þ [-1.28,1.28]D

Rastrigin f12ðxÞ ¼
XD

i¼1
ðx2

t � 10cosð2pxiÞ þ 10Þ [-5.12,5.12]D

Griewank f13ðxÞ ¼
XD

i¼1
x2

i =4000 �
YD

i¼1
cosðxi=

ffiffi
i
p
Þ þ 1 [–600,600]D

Scaffer’s F6
f14ðxÞ ¼

XD

i¼1
ð0:5þ

sin2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
i þ x2

iþ1

p
Þ � 0:5

ð1þ 0:001ðx2
i þ x2

iþ1
ÞÞ

2
ÞxDþ1 ¼ x1

[-0.5,0.5]D

Salomon f15ðxÞ ¼ 1 � cosð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

i¼1
x2

i

q

Þ þ 0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

i¼1
x2

i

q
[–100,100]D

Ackley f16ðxÞ ¼ 20þ e � 20expð� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

i¼1
x2

i =D
q

Þ � expð
XD

i¼1
cosð2pxiÞ=DÞ

[–32,32]D

Rosenbrock f17 ¼
XD� 1

i¼1
ð100ðx2

i � xiþ1Þ
2
þ ðxi � 1Þ

2
Þ [–100,100]D

Scaffer2 f18ðxÞ ¼
XD

i¼1
ðx2

t þ x2

iþ1
Þ

0:25

ðsinð50ðx2
t þ x2

iþ1
Þ

0:1
Þ þ 1Þ

[–100,100]D

Modified Schwefel f19ðxÞ ¼ 418:9829 � D �
XD

i¼1
gðziÞ; zi ¼ xi þ 4:20968746227503eþ 002

gðziÞ ¼

zi sinðjzij
1=2
Þ if jzij < 500

ð500 � modðzi; 500ÞÞsinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j500 � modðjzij; 500Þj

p
Þ �
ðzi � 500Þ

2

1000D
if zi > 500

ðmodðzi; 500Þ � 500Þsinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmodðjzij; 500Þ � 500j

p
Þ �
ðzi � 500Þ

2

1000D
if zi < � 500

8
>>>>>>>><

>>>>>>>>:

[–100,100]D

HappyCat f20ðxÞ ¼ j
XD

i¼1
x2

i � Dj1=4
þ ð0:5

XD

i¼1
x2

i þ
XD

i¼1
xiÞ=Dþ 0:5 [–100,100]D

HGBat f21ðxÞ ¼ jð
XD

i¼1
x2

i Þ
2
� ð
XD

i¼1
xiÞ

2
j
1=2
þ ð0:5

XD

i¼1
x2

i þ
XD

i¼1
xiÞ=Dþ 0:5 [–100,100]D

Weierstrass f22ðxÞ ¼
XD

i¼1
ð
Xkmax

k¼0
½ak cosð2pbkðxi þ 0:5ÞÞ�Þ � D

Xkmax

k¼0
½ak cosð2pbk � 0:5Þ�; a ¼ 0:5; b ¼ 3; kmax ¼ 20 [–100,100]D

Katsuura
f23ðxÞ ¼ 10

D2

YD

i¼1

ð1þ i
X32

j¼1

j2jxi � roundð2jxiÞj
2j Þ

10

D1:2 �
10

D2

[–5,5]D

E_ScafferF6 f24(x) = f14(x1,x2) + � � � + f14(xD−1, xD) + f14(xD, x1) [–3,1]D

Griewank+Rosenbrock f25(x) = f13(f17(x1,x2)) + � � � f13(f17(xD−1, xD)) + f13(f17(xD, x1)) [-5.12,5.12]D

NCRastrigin
f26 ¼

XD

i¼1
½y2

i � 10cosð2pyi þ 10Þ�; yi ¼
xi; jxij < 0:5

roundð2xiÞ=2; jxij � 0:5

(
[–10,10]D

Apline f27 ¼
XD

i¼1
jxi sin xi þ 0:1xij [–100,100]D

Bohachevsky_2 f28 ¼
XD� 1

i¼1
½x2

i þ 2x2

iþ1
� 0:3cosð3pxiÞcosð3pxiþ1Þ þ 0:3� [–100,100]D

Levy and Montalvo 1 f29ðxÞ ¼ p

D ð10sin2ðpy1Þ þ
XD� 1

i¼1
ðyi � 1Þ

2
ð1þ 10sin2ðpyiþ1ÞÞ þ ðyD � 1Þ

2
Þ; y ¼ 1þ 1

4
ðxi þ 1Þ [–10, 10]D

Levy and Montalvo 2 f30ðxÞ ¼ 0:1ð10sin2ð3px1Þ þ
XD� 1

i¼1
ðxi � 1Þ

2
ð1þ sin2ð3pxiþ1Þ þ ðxD � 1Þ

2
ð1þ sin2ð2pxDÞÞÞ [–5, 5]D

https://doi.org/10.1371/journal.pone.0222706.t001
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4.4 Parameter settings and involved algorithms

For rigorous performance verification, SaDSDE is compared with the following 7 well-estab-

lished DE variants (i.e., Rcr-JADE [11], EsDEr-NR [17], IMMSADE [18], AGDE [21], EFADE

[23], MPEDE [29] and EDEV [32]) and 3 non-DE algorithms (i.e., social learning particle

swarm optimization (SL-PSO) [51], grey wolf optimization (GWO) [52] and whale optimiza-

tion algorithm (WOA) [53]). Most parameters of compared algorithms are kept the same as

used in their original literatures, which are shown in Table 5.

The common parameters are set as follows. The max number of iterations is set to

T = 1000, the population size is set to Np = 100, and the times of all experiment runs is set

to 30.

Fig 2. Friedman test results at D = 30 over 30 independent runs.

https://doi.org/10.1371/journal.pone.0222706.g002

Table 3. The results of Wilcoxon’s rank-sum test over 30 independent runs.

Comparisons R+ R- p-value α = 0.05 α = 0.1

SaDSDE with Np = 250 versus SaDSDE with Np = 50 21 0 9.17E-01 No No

SaDSDE with Np = 250 versus SaDSDE with Np = 75 16 5 9.32E-01 No No

SaDSDE with Np = 250 versus SaDSDE with Np = 100 21 0 9.62E-01 No No

SaDSDE with Np = 250 versus SaDSDE with Np = 125 15 6 9.62E-01 No No

SaDSDE with Np = 250 versus SaDSDE with Np = 150 18 3 9.77E-01 No No

SaDSDE with Np = 250 versus SaDSDE with Np = 175 15 6 9.77E-01 No No

SaDSDE with Np = 250 versus SaDSDE with Np = 200 21 0 9.62E-01 No No

SaDSDE with Np = 250 versus SaDSDE with Np = 225 10 11 9.92E-01 No No

Sign “No” indicates that the performance of SaDSDE with Np = 250 is similar to its competitor.

https://doi.org/10.1371/journal.pone.0222706.t003

Table 2. Time complexity (time in seconds).

Dimensions T0 T1 T̂ 2 ðT̂ 2 � T1Þ=T0

D = 30 0.1160 0.1030 3.6340 30.4394

D = 100 0.1170 3.6175 30.1767

https://doi.org/10.1371/journal.pone.0222706.t002
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4.5 Experimental comparisons

4.5.1 Numerical analysis. The optimization performance of DE is evaluated in terms of

the Mean and Standard Deviation (STD) of the function solutions, and the best and the second

Fig 3. The result of Friedman test with 30 variables over 30 independent runs.

https://doi.org/10.1371/journal.pone.0222706.g003

Table 4. The results of Wilcoxon’s rank-sum test over 30 independent runs.

Comparisons R+ R- p-value α = 0.05 α = 0.1

SaDSDE with CR = 0.9 versus SaDSDE with CR = 0.1 110 80 6.68E-02 No Yes

SaDSDE with CR = 0.9 versus SaDSDE with CR = 0.2 109 81 6.68E-02 No Yes

SaDSDE with CR = 0.9 versus SaDSDE with CR = 0.3 123 67 7.94E-02 No Yes

SaDSDE with CR = 0.9 versus SaDSDE with CR = 0.4 108 63 1.11E-01 No No

SaDSDE with CR = 0.9 versus SaDSDE with CR = 0.5 30 36 5.83E-01 No No

SaDSDE with CR = 0.9 versus SaDSDE with CR = 0.6 21 45 6.06E-01 No No

SaDSDE with CR = 0.9 versus SaDSDE with CR = 0.7 22 33 7.39E-01 No No

SaDSDE with CR = 0.9 versus SaDSDE with CR = 0.8 29 7 7.22E-01 No No

R+ is the sum of ranks in which the first algorithm outperformed the second, and R- is the sum of ranks for the

opposite. The R+ is bigger, the first algorithm is better. “Yes” indicates that the performance of the SaDSDE with

CR = 0.9 is better than its competitor significantly, “No” indicates that there is no significant performance

discrepancy.

https://doi.org/10.1371/journal.pone.0222706.t004

Table 5. Parameter settings.

Algorithm Parameters

Rcr-JADE μF = μCR = 0.5, c = 0.1, p = 0.5, F = randn(μF, 0.1), CR = randn(μCR, 0.1)

EsDEr-NR μF = μCR = freq = 0.5, GLS = 250, Npmax = 18 � D, Npmin = 4

IMMSADE Τ = 0.7, λ�[0.7, 1.0], F�[0.1, 0.8], CR�[0.3, 1.0]

AGDE CR1 �[0.05, 0.15], CR2 �[0.9, 1.0], F �[0.1, 1.0], p = 0.1

EFADE ε = 0.01, CR1 �[0.05, 0.15], CR2 �[0.9, 1.0]

MPEDE c = 0.1, p = 0.4, λ1 = λ2 = λ3

EDEV λ1 = λ2 = λ3 = 0.1, λ4 = 0.7, ng = 20

SL-PSO α = 0.5, β = 0.01

GWO a ¼ 2 � 2

T

� �
; A ¼ 2 � a � randðÞ � a;C ¼ 2 � randðÞ

WOA p ¼ randðÞ; a ¼ 2 � t � 2

T

� �
; A ¼ 2 � a � randðÞ � a;C ¼ 2 � randðÞ

https://doi.org/10.1371/journal.pone.0222706.t005
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best results are respectively marked in bold and italic. In order to show the performance

clearly, the number of the best and second best results are summarize graphically. In addition,

4 non-parametric statistical tests [50] are used to compare the performances among all the

algorithms, including Wilcoxon signed-rank test, Friedman test, Kruskal_Wallis test and Wil-

coxon rank-sum test. Friedman test and Kruskal_Wallis test are conducted based on the opti-

mization results to evaluate the overall performance and we can obtain the rankings of

algorithms. Wilcoxon signed-rank test at the 0.05 significance level and Wilcoxon rank-sum

test respectively are used to verify the differences among algorithms for single and multiple

problems. Signs “+”, “-” and “�” indicate that the performance of SaDSDE is significantly bet-

ter than, worse than and similar to its competitor, respectively. R+ denotes the sum of ranks

for the test problems in which the first algorithm performs better than the second algorithm,

and R− represents the sum of ranks for the test problems in which the first algorithm performs

worse than the second algorithm. Larger ranks indicate larger performance discrepancy. “p-

value” indicates the probability of rejecting the hypothesis. “Yes” indicates that the perfor-

mance of the first algorithm is better than the second algorithm significantly, and “No” indi-

cates that there is no significant performance discrepancy.

Table 6. The optimization results obtained by SaDSDE and 7 DE variants at D = 30.

F Rcr-JADE EsDEr-NR IMMSADE AGDE EFADE MPEDE EDEV SaDSDE

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD

f1 3.52E-51±1.06E-50 1.80E-54±1.22E-54 4.41E-28±1.67E-27 2.25E-09±6.18E-10 3.64E-12±5.56E-12 7.76E-36±2.31E-35 2.54E-31±1.09E-30 0.00E+00±0.00E+00

f2 1.74E-13±4.67E-13 1.32E-11±3.14E-11 6.51E+00±1.63E+01 1.72E+00±9.76E-01 2.52E+00±2.63E+00 1.70E-21±8.93E-21 1.19E-07±3.35E-07 0.00E+00±0.00E+00

f3 3.75E-46±9.37E-46 3.04E-50±4.19E-50 8.56E-26±4.67E-25 5.24E-06±2.57E-06 4.69E-10±4.27E-10 1.55E-31±4.74E-31 1.40E-26±7.39E-26 0.00E+00±0.00E+00

f4 1.12E-24±2.60E-24 4.60E-26±2.88E-26 7.96E-17±3.30E-16 2.42E-06±3.51E-07 2.80E-05±6.21E-06 2.19E-17±3.78E-17 1.18E-14±4.36E-14 0.00E+00±0.00E+00

f5 2.09E-11±2.50E-11 5.33E-13±1.44E-12 2.72E-08±4.78E-08 1.18E+00±1.74E-01 2.72E+00±4.92E-01 5.39E-14±4.81E-14 1.94E-02±1.82E-02 0.00E+00±0.00E+00

f6 9.28E-52±1.68E-51 3.07E-55±2.46E-55 4.15E-31±1.46E-30 2.53E-10±9.49E-11 2.08E-13±2.06E-13 1.28E-37±5.09E-37 5.82E-31±2.72E-30 0.00E+00±0.00E+00

f7 8.73E-45±2.61E-44 2.69E-48±2.55E-48 9.11E-25±3.50E-24 2.39E-03±6.11E-04 3.65E-06±8.10E-06 1.93E-31±3.95E-31 3.58E-26±1.63E-25 0.00E+00±0.00E+00

f8 3.44E-10±7.06E-10 4.36E-09±1.12E-08 4.02E+00±3.42E+00 3.41E-09±7.38E-10 9.11E-13±1.11E-12 1.42E-06±6.54E-06 2.42E-05±8.19E-05 0.00E+00±0.00E+00

f9 3.81E-44±8.30E-44 5.54E-47±1.10E-46 1.02E-20±5.50E-20 1.52E-03±4.89E-04 1.78E-06±3.36E-06 3.43E-30±9.72E-30 1.26E-26±2.58E-26 0.00E+00±0.00E+00

f10 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f11 1.25E+03±8.23E-06 2.13E-03±7.04E-04 1.25E+03±5.75E-06 2.01E-02±4.87E-03 4.50E-03±1.77E-03 1.25E+03±5.04E-06 2.56E-03±7.91E-04 1.25E+03±3.83E-06

f12 3.15E-02±2.32E-02 6.16E-02±2.25E-01 4.13E+01±3.25E+01 7.32E+00±2.83E+00 2.60E+01±4.49E+00 3.13E-11±3.41E-11 6.07E-05±2.45E-04 0.00E+00±0.00E+00

f13 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 1.07E-06±3.25E-06 1.37E-09±1.18E-09 2.47E-04±1.35E-03 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f14 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 9.19E-14±2.57E-14 1.07E-16±5.88E-16 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f15 3.30E-52±5.98E-52 2.50E-55±2.54E-55 1.05E-26±5.75E-26 6.44E-10±2.30E-10 2.53E-12±2.00E-12 3.55E-38±6.14E-38 6.53E-30±3.55E-29 0.00E+00±0.00E+00

f16 5.68E-15±1.77E-15 3.67E-15±6.49E-16 3.79E-15±1.30E-15 1.13E-05±1.48E-06 8.46E-05±2.09E-05 3.67E-15±6.49E-16 3.79E-15±9.01E-16 0.00E+00±0.00E+00

f17 3.15E-01±1.02E+00 1.11E+01±1.95E+00 2.59E+01±1.53E-01 4.13E+01±2.94E+01 3.17E+01±2.10E+01 5.63E-01±1.38E+00 5.71E+00±1.58E+00 2.35E+01±6.98E-01

f18 8.28E-02±5.98E-02 9.30E-02±1.66E-01 2.42E-05±5.63E-05 9.75E-01±1.16E-01 4.52E+00±3.29E-01 3.64E-03±6.38E-03 1.71E-01±8.76E-02 0.00E+00±0.00E+00

f19 3.82E-04±0.00E+00 3.82E-04±0.00E+00 3.82E-04±0.00E+00 3.82E-04±5.40E-11 3.82E-04±2.88E-09 3.82E-04±0.00E+00 3.82E-04±0.00E+00 3.82E-04±0.00E+00

f20 2.22E-01±3.61E-02 2.36E-01±3.32E-02 4.34E-01±6.80E-02 4.24E-01±3.81E-02 4.74E-01±6.65E-02 2.18E-01±2.58E-02 2.67E-01±3.78E-02 5.29E-01±8.87E-02

f21 3.83E-01±1.18E-01 3.73E-01±1.36E-01 3.97E-01±3.27E-02 2.79E-01±2.39E-02 3.32E-01±2.92E-02 3.20E-01±8.86E-02 3.59E-01±1.08E-01 5.00E-01±0.00E+00

f22 5.59E-04±1.70E-03 1.39E-03±5.45E-03 0.00E+00±0.00E+00 8.61E-04±1.29E-04 7.15E-03±7.52E-04 0.00E+00±0.00E+00 1.01E-07±4.34E-07 0.00E+00±0.00E+00

f23 5.15E-03±7.43E-04 5.01E-03±1.21E-03 6.01E-01±8.73E-02 1.14E-01±1.17E-02 1.14E-01±1.50E-02 1.34E-03±3.70E-04 1.00E-02±1.74E-03 0.00E+00±0.00E+00

f24 4.09E+00±3.25E-01 4.85E-01±6.53E-02 8.70E+00±4.92E-01 1.23E+00±9.76E-02 4.80E+00±3.90E-01 2.03E+00±3.35E-01 1.22E+00±1.98E-01 0.00E+00±0.00E+00

f25 4.14E+00±3.30E-01 2.08E+00±1.82E-01 1.19E+01±1.08E+00 5.71E+00±3.97E-01 6.71E+00±7.35E-01 2.32E+00±2.58E-01 3.54E+00±5.65E-01 1.25E+01±7.66E-01

f26 8.46E+00±1.30E+00 6.31E-01±5.86E-01 5.20E+01±7.55E+00 1.57E+01±8.42E-01 2.11E+01±1.13E+00 4.81E-04±7.07E-04 5.95E-01±5.12E-01 0.00E+00±0.00E+00

f27 1.02E-03±7.39E-04 6.29E-07±3.44E-06 4.20E-15±1.23E-14 3.77E-03±4.32E-04 9.22E-03±8.62E-04 1.58E-05±1.52E-05 1.82E-03±6.17E-04 0.00E+00±0.00E+00

f28 3.50E-02±1.92E-01 1.38E-02±7.54E-02 0.00E+00±0.00E+00 2.17E-07±7.59E-08 1.41E-08±1.73E-08 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f29 1.57E-32±5.57E-48 1.57E-32±5.57E-48 1.68E-03±6.77E-04 2.95E-11±1.40E-11 1.51E-12±2.76E-12 1.57E-32±5.57E-48 1.72E-31±4.26E-31 1.34E-10±2.75E-10

f30 1.68E-32±1.40E-33 1.37E-32±4.26E-34 4.72E-03±1.89E-03 6.35E-13±2.51E-13 4.89E-16±6.39E-16 1.35E-32±5.57E-48 1.34E-31±4.59E-31 1.24E-01±3.61E-01

https://doi.org/10.1371/journal.pone.0222706.t006
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A. Comparison with 7 improved DE variants. In this experiment, the proposed algo-

rithm is compared with 7 improved DE variants on 30-dimensional and 100-dimensional

problems. The experimental results are listed in Tables 6 and 7. To show the performance

clearly, we summarize the number of the best, the second best results and global optimums

graphically in Figs 4 and 5, respectively. Wilcoxon signed-rank test results and the average

rankings of all the DEs are shown in Figs 6 and 7, respectively. In addition, Wilcoxon rank-

sum test results are represented in Table 8.

From Tables 6 and 7, we can draw the following conclusions: (1) SaDSDE can obtain the

global optimal solution on 10 unimodal functions (f1-f10) and 12 multimodal functions (f12-f16,
f18, f20, f22-f24 and f25-f28). (2) Except for f11, f17, f20-f21, f27 and f29-f30, the convergence precision

of SaDSDE is best at D = 30 and D = 100, and SaDSDE is comparable to the other compared

algorithms on f19, f22 and f28. In addition, at D = 30, Rcr-JADE is best on f17 and f29, EsDEr-NR

is best on f11, f25 and f29, IMMSADE is best on f22, AGDE is best on f21, MPEDE is best on f17,

f20 and f29; at D = 100, EsDEr-NR is best on f11, IMMSADE is best on f17, MPEDE is best on

f20-f21, f25 and f29, EDEV is best on f30. (3) The optimization performance of other algorithms

Table 7. The optimization results obtained by SaDSDE and 7 DE variants at D = 100.

F Rcr-JADE EsDEr-NR IMMSADE AGDE EFADE MPEDE EDEV SaDSDE

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD

f1 1.36E-15±1.51E-15 5.47E-04±1.44E-03 4.76E-17±1.81E-16 3.97E+00±7.32E-01 2.56E+01±1.33E+01 1.74E-16±3.07E-16 8.17E-10±6.88E-10 0.00E+00±0.00E+00

f2 1.99E+02±6.49E+01 6.55E+02±1.97E+02 1.22E+04±1.44E+04 5.84E+04±3.33E+04 9.93E+03±2.34E+03 7.22E+00±3.38E+00 3.92E+02±1.47E+02 0.00E+00±0.00E+00

f3 8.36E-10±1.13E-09 1.12E+03±2.52E+03 5.96E-12±2.85E-11 5.77E+03±9.39E+02 4.38E+03±2.61E+03 7.56E-11±9.07E-11 2.23E-06±1.63E-06 0.00E+00±0.00E+00

f4 2.58E-06±4.13E-06 7.09E-02±7.71E-02 1.73E-09±4.51E-09 7.55E-01±5.60E-02 2.59E+00±4.60E-01 4.42E-08±3.95E-08 2.05E-06±3.04E-06 0.00E+00±0.00E+00

f5 8.01E+00±1.32E+00 1.01E+01±1.92E+00 5.71E-04±1.39E-03 4.04E+01±1.73E+00 5.03E+01±3.01E+00 3.97E-01±1.20E-01 1.20E+01±1.60E+00 0.00E+00±0.00E+00

f6 1.16E-15±2.05E-15 4.77E-04±1.15E-03 3.44E-13±1.88E-12 1.52E+00±2.11E-01 9.31E+00±5.25E+00 5.73E-17±8.31E-17 2.82E-10±1.74E-10 0.00E+00±0.00E+00

f7 3.98E-09±4.50E-09 7.89E+02±2.54E+03 2.08E-11±1.04E-10 3.88E+06±7.56E+05 2.57E+07±1.11E+07 1.35E-10±1.39E-10 1.79E-04±1.71E-04 0.00E+00±0.00E+00

f8 4.88E+00±2.34E+00 5.02E+00±1.14E+01 8.63E+01±4.07E+01 4.65E-01±1.94E-01 2.23E-01±1.35E-01 1.19E+01±1.71E+01 1.22E+00±1.55E+00 0.00E+00±0.00E+00

f9 2.49E-08±3.31E-08 9.87E+02±1.28E+03 5.01E-10±2.54E-09 3.77E+06±7.22E+05 2.29E+07±1.33E+07 5.77E-09±1.59E-08 2.48E-04±3.05E-04 0.00E+00±0.00E+00

f10 6.47E+00±4.86E+00 7.61E+01±2.96E+01 0.00E+00±0.00E+00 2.70E+00±1.82E+00 3.20E+01±1.21E+01 1.97E+00±1.71E+00 3.20E+00±5.62E+00 0.00E+00±0.00E+00

f11 1.36E+04±6.12E-06 5.25E-02±1.30E-02 1.36E+04±5.84E-06 2.43E-01±4.77E-02 6.48E-02±1.57E-02 1.36E+04±4.05E-06 8.02E-02±1.49E-02 1.36E+04±5.13E-06

f12 2.02E+02±1.12E+01 1.02E+02±9.02E+00 1.36E+02±2.20E+02 4.52E+02±1.36E+01 5.61E+02±1.45E+01 4.48E+01±5.65E+00 1.97E+02±1.60E+01 0.00E+00±0.00E+00

f13 3.28E-03±5.50E-03 1.73E-02±3.31E-02 3.38E-15±1.60E-14 9.53E-01±5.43E-02 1.38E+00±1.36E-01 4.02E-03±7.30E-03 7.11E-03±1.52E-02 0.00E+00±0.00E+00

f14 2.35E-16±1.91E-16 3.37E-08±1.36E-07 0.00E+00±0.00E+00 2.17E-04±3.38E-05 1.25E-03±8.02E-04 0.00E+00±0.00E+00 5.87E-14±2.84E-14 0.00E+00±0.00E+00

f15 1.19E-15±1.61E-15 7.59E-05±1.19E-04 1.46E-15±7.94E-15 1.08E+00±1.11E-01 4.52E+00±1.19E+00 2.27E-17±4.40E-17 1.90E-10±7.61E-11 0.00E+00±0.00E+00

f16 1.29E+00±3.98E-01 2.75E+00±3.43E-01 9.97E-10±2.30E-09 4.26E-01±4.69E-02 3.91E+00±2.44E-01 1.61E-01±3.68E-01 1.37E+00±4.04E-01 0.00E+00±0.00E+00

f17 1.42E+02±4.35E+01 3.42E+02±1.50E+02 9.69E+01±2.86E-01 2.46E+04±5.24E+03 1.08E+03±4.62E+02 1.13E+02±3.47E+01 3.33E+02±1.50E+02 9.70E+01±6.77E-01

f18 2.75E+01±1.38E+01 1.01E+02±1.52E+01 8.48E-03±1.44E-02 1.65E+02±6.67E+00 3.72E+02±1.57E+01 2.97E+01±9.40E+00 1.25E+01±4.45E+00 0.00E+00±0.00E+00

f19 1.27E-03±5.03E-12 1.30E-03±6.94E-05 1.27E-03±0.00E+00 4.27E-01±6.59E-02 3.19E+00±1.55E+00 1.27E-03±1.33E-12 1.27E-03±3.26E-11 1.27E-03±0.00E+00

f20 5.31E-01±6.62E-02 6.57E-01±6.67E-02 8.54E-01±6.00E-02 7.96E-01±6.00E-02 2.31E+00±9.65E-01 4.94E-01±5.71E-02 5.22E-01±6.80E-02 9.31E-01±6.87E-02

f21 6.04E-01±2.01E-01 5.44E-01±2.46E-01 5.01E-01±6.34E-02 7.11E-01±2.89E-01 2.12E+01±1.42E+01 4.97E-01±1.63E-01 5.57E-01±1.93E-01 5.00E-01±0.00E+00

f22 4.54E+00±1.79E+00 1.29E+01±2.24E+00 1.54E-06±6.70E-06 4.19E+00±2.68E-01 1.99E+01±1.48E+00 3.43E+00±1.10E+00 1.71E+00±8.96E-01 0.00E+00±0.00E+00

f23 1.17E-01±1.16E-02 1.08E-01±1.53E-02 2.00E+00±1.58E-01 5.71E-01±4.70E-02 5.87E-01±4.06E-02 1.35E-02±2.97E-03 1.87E-01±5.13E-02 0.00E+00±0.00E+00

f24 3.35E+01±5.89E-01 5.78E+00±4.78E-01 4.20E+01±7.16E-01 1.83E+01±6.23E-01 3.81E+01±4.67E-01 2.46E+01±1.70E+00 1.50E+01±4.21E+00 0.00E+00±0.00E+00

f25 3.67E+01±2.09E+00 2.15E+01±1.62E+00 6.67E+01±7.36E+00 5.84E+01±1.76E+00 9.89E+01±2.59E+01 2.13E+01±2.16E+00 3.91E+01±2.64E+00 4.39E+01±7.11E-01

f26 1.47E+02±6.66E+00 7.72E+01±4.76E+00 4.75E+02±9.81E+01 3.49E+02±2.30E+01 4.22E+02±2.11E+01 6.95E+01±6.31E+00 1.40E+02±8.54E+00 0.00E+00±0.00E+00

f27 1.99E-06±9.67E-06 7.80E-03±9.03E-03 1.43E-08±7.61E-08 2.50E+00±6.58E-01 4.82E+01±2.03E+00 1.08E-08±1.56E-08 7.27E-04±1.74E-03 0.00E+00±0.00E+00

f28 8.89E+00±2.09E+00 2.21E+01±3.01E+00 4.68E-15±2.50E-14 4.16E+01±2.13E+00 1.21E+02±4.60E+01 5.22E+00±1.68E+00 7.73E+00±2.00E+00 0.00E+00±0.00E+00

f29 1.56E-03±8.57E-03 7.21E-05±2.34E-04 3.03E-02±9.81E-03 1.22E-01±2.64E-02 4.31E-01±1.38E-01 8.74E-20±1.10E-19 3.30E-11±1.23E-10 3.96E-02±2.27E-02

f30 2.56E-03±4.73E-03 3.66E-03±5.27E-03 3.45E-01±9.96E-02 1.92E-03±2.83E-04 8.57E-03±5.20E-03 2.56E-03±4.73E-03 1.39E-03±5.91E-03 9.33E+00±1.73E+00

https://doi.org/10.1371/journal.pone.0222706.t007
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decreases rapidly for the high dimensions, but SaDSDE still keep the excellent optimization

performance.

Form the statistical histogram in Fig 4, SaDSDE and Rcr-JADE, EsDEr-NR, IMMSADE,

AGDE, EFADE, MPEDE and EDEV can obtain the best results on 23, 6, 7, 6, 2, 1, 8 and 5 func-

tions and obtain the second best results on 0, 1, 10, 2, 1, 4, 9 and 3 functions at D = 30, respec-

tively. For the high-dimensional problem tests, the advantage of the proposed SaDSDE is more

prominent. SaDSDE and 7 improved DE variants can obtain the best results on 23, 0, 1, 4, 0, 0,

5 and 1 functions and obtain the second best results on 2, 1, 2, 11, 1, 2, 9 and 2 functions at

D = 100, respectively.

According to the statistical results in Fig 5, SaDSDE can obtain global optimums on 22

(= 10 unimodal cases+12 multimodal cases) functions in all dimensions, while 7 DE variants

in turn obtain global optimums on 3 (= 1+2), 3 (= 1+2), 5 (= 1+4), 1 (= 1+0), 1 (= 1+0), 4 (= 1

+3) and 4 (= 1+3) functions at D = 30. As the dimension increases, the number of global opti-

mum decreases greatly for compared algorithms.

As shown in Fig 6, SaDSDE is significantly better than Rcr-JADE, EsDEr-NR, IMMSADE,

AGDE, EFADE, MPEDE and EDEV on 19, 18, 19, 22, 21, 17 and 18 functions out of 30 func-

tions at D = 30, respectively. On the contrary, SaDSDE is worse than 7 DE variants only on 6,

7, 2, 5, 6, 6 and 7 functions, respectively. At D = 100, SaDSDE is significantly better than all the

competitors at least in 20 out of 30 functions and the advantage of proposed SaDSDE is more

prominent.

Fig 4. Number of cases on which each algorithm performs the best and second best in the comparison. (A) D = 30. (B) D = 100.

https://doi.org/10.1371/journal.pone.0222706.g004
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According to Fig 7, SaDSDE is the best, and EsDEr-NR and MPEDE are respectively the

second best at D = 30 and D = 100.

As shown in Table 8, we can observe that SaDSDE gets higher R+ values than R− values for

all the compared DEs, and all the p-values are less than 0.05. It proves that SaDSDE outper-

forms other compared DE algorithms significantly.

B. Comparison with 3 non-DE algorithms. DE simulates the natural evolution (such as

mutation, crossover and selection) for global search. Unlike DE algorithm, SL-PSO [51],

GWO [52] and WOA [53] are swarm intelligence optimization algorithms which simulate

the social behavior of natural biological groups (such as foraging, nesting, migration, hunting,

predation, etc.). SL-PSO, GWO and WOA are highly competitive swarm intelligence optimi-

zation algorithms. Therefore, in order to further verify the effectiveness of SaDSDE algorithm,

SaDSDE is compared with SL-PSO, GWO and WOA algorithms. The obtained results (i.e.,

Mean and STD) and Wilcoxon signed-rank test results at the 0.05 significance level are shown

in Tables 9 and 10. The number of the best and the second best results are shown in Fig 8.

Additionally, the statistical analysis results for all test functions are listed in Fig 9 and the Wil-

coxon rank-sum test results are represented in Table 11.

Analyzing the test results in Tables 9 and 10, SaDSDE is significantly better than SL-PSO,

GWO and WOA on 17, 20 and 15 functions out of 30 functions at D = 30, respectively. At

D = 100, SaDSDE performs better than 3 non-DE algorithms on 23, 19 and 12 functions. From

the diagram in Fig 8, SaDSDE obtains best results on 24 and 23 functions at D = 30 and

Fig 5. Number of cases on which each algorithm obtains global optimum. (A) D = 30. (B) D = 100.

https://doi.org/10.1371/journal.pone.0222706.g005
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D = 100, respectively. Fig 9 shows that SaDSDE gets the best ranking, followed by WOA.

SaDSDE is better than 3 non-DE variants significantly, as shown in Table 11.

4.5.2 Convergence analysis. In order to study the evolution properties, convergence

curves are utilized to prove the difference, as illustrated in Fig 10. Furthermore, to illustrate the

distribution of the results of each algorithm, the box plots of function solutions of all the algo-

rithms on 6 functions (1 unimodal function and 5 multimodal functions) at D = 30 are

depicted in Fig 11.

Fig 10 shows that SaDSDE can obtain the global optimum and has the best convergence

rate on 6 functions in the minimum generations, while other compared algorithms have

strapped into "evolution stagnation" on different functions. For example, Non-Continuous

Rastrigin’s Function (f26) is multi-modal, non-separable and asymmetrical function and the

local optima’s number is huge, DE is easy to suffer premature convergence to be trapped in

one of its many local minima. SaDSDE can find the global optimal solution. However,

IMMSADE, EFADE, AGDE and GWO have trapped into “evolution stagnation”. In addition,

we can see that SaDSDE performs more consistently than other algorithms on these problems,

as shown in Fig 11.

As evident from above analysis, the proposed SaDSDE demonstrates the better perfor-

mance of convergence precision and robustness than most of the compared algorithms. To

summarize, the proposed SaDSDE has the best convergence precision and stability. The reason

is that the proposed mutation strategy, scaling factor self-adaption strategy and dynamic

Fig 6. Wilcoxon signed-rank test results at the 0.05 significance level. (A) D = 30. (B) D = 100.

https://doi.org/10.1371/journal.pone.0222706.g006
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adjustment strategy of the exploration ability control factor achieve a better balance of explora-

tion and exploitation.

4.6 Efficiency analysis of proposed algorithmic components

The proposed algorithm represents a combined effect. Therefore, we do the efficiency analysis

of proposed algorithmic components, including dual-strategy mutation operator, scaling fac-

tor self-adaption strategy and dynamic adjustment strategy of exploration ability control fac-

tor. Some variants of SaDSDE are listed as follows.

Fig 7. Non-parametric statistical test results over 30 independent runs. (A) Friedman test results. (B) Kruskal_Wallis test results.

https://doi.org/10.1371/journal.pone.0222706.g007

Table 8. The results of Wilcoxon rank-sum test over 30 independent runs.

Comparisons D = 30 D = 100

R+ R- p-value α = 0.05 α = 0.1 R+ R- p-value α = 0.05 α = 0.1

SaDSDE versus Rcr-JADE 227 124 6.19E-04 Yes Yes 391 74 6.94E-06 Yes Yes

SaDSDE versus EsDEr-NR 205 146 9.15E-04 Yes Yes 379 86 1.37E-06 Yes Yes

SaDSDE versus IMMSADE 238 62 5.76E-04 Yes Yes 303 75 1.04E-04 Yes Yes

SaDSDE versus AGDE 323 112 3.84E-05 Yes Yes 419 46 2.24E-07 Yes Yes

SaDSDE versus EFADE 319 116 5.00E-05 Yes Yes 425 40 6.47E-08 Yes Yes

SaDSDE versus MPEDE 188 137 1.65E-03 Yes Yes 336 99 3.37E-05 Yes Yes

SaDSDE versus EDEV 189 136 1.34E-03 Yes Yes 366 99 1.06E-05 Yes Yes

https://doi.org/10.1371/journal.pone.0222706.t008
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1. To study the effectiveness of scaling factor self-adaptation strategy, SaDSDE variants adopt

dynamic λ and fixed scaling factor of F = 0.3, F = 0.7 and random real number in [0, 1],

which are respectively named SaDSDE-1, SaDSDE-2 and SaDSDE-3 one by one.

2. To verify the contribution of dynamic adjustment strategy of the exploration ability control

factor (λ), SaDSDE variants with self-adaptive F, λ = 0.3, λ = 0.7 and random real number

in [0, 1] are respectively named SaDSDE-4, SaDSDE-5 and SaDSDE-6 for short.

In order to evaluate and compare the performance of different SaDSDE variants, Fried-

man test and Wilcoxon’s rank-sum test are employed, and the test results are plotted in Fig

12 and Table 12, respectively. Observing the test results in Fig 12 and Table 12, we can obtain

the following conclusions easily. (1) From Fig 12, the proposed SaDSDE and SaDSDE-1 are

Table 9. The optimization results obtained by SaDSDE and 3 non-DE algorithms at D = 30.

F SL-PSO GWO WOA SaDSDE

Mean ± STD Mean ± STD Mean ± STD Mean ± STD

f1 2.83E-44±3.37E-44 2.34E-85±4.17E-85 1.60E-191±0.00E+00 0.00E+00±0.00E+00

f2 6.78E-02±4.83E-02 9.46E-27±4.30E-26 4.41E+03±3.15E+03 0.00E+00±0.00E+00

f3 1.76E-38±6.23E-38 1.10E-81±2.91E-81 9.44E-186±0.00E+00 0.00E+00±0.00E+00

f4 1.98E-23±1.12E-23 2.59E-49±2.33E-49 2.22E-114±7.19E-114 0.00E+00±0.00E+00

f5 4.36E-12±2.46E-12 1.01E-21±1.41E-21 6.46E-08±1.90E-07 0.00E+00±0.00E+00

f6 4.65E-45±7.14E-45 3.08E-86±9.99E-86 2.07E-188±0.00E+00 0.00E+00±0.00E+00

f7 3.63E-38±4.09E-38 2.29E-79±6.05E-79 1.82E-184±0.00E+00 0.00E+00±0.00E+00

f8 1.15E+02±3.95E+01 8.78E-83±2.04E-82 6.44E+01±6.70E+01 0.00E+00±0.00E+00

f9 5.79E-38±1.16E-37 8.18E-80±1.17E-79 1.42E-184±0.00E+00 0.00E+00±0.00E+00

f10 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f11 1.25E+03±9.78E-06 2.98E-04±1.58E-04 1.87E-05±2.12E-05 1.25E+03±3.83E-06

f12 1.34E+01±3.19E+00 1.47E-01±8.04E-01 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f13 9.85E-04±3.21E-03 1.45E-03±4.47E-03 3.20E-03±1.04E-02 0.00E+00±0.00E+00

f14 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f15 4.02E-45±4.18E-45 1.86E-86±3.46E-86 6.82E-194±0.00E+00 0.00E+00±0.00E+00

f16 6.16E-15±1.60E-15 1.05E-14±2.87E-15 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f17 4.84E+01±4.58E+01 2.62E+01±5.51E-01 2.59E+01±2.21E-01 2.35E+01±6.98E-01

f18 2.45E-02±2.39E-02 1.30E-22±1.07E-22 2.18E-65±6.09E-65 0.00E+00±0.00E+00

f19 3.82E-04±0.00E+00 3.82E-04±7.40E-13 3.82E-04±0.00E+00 3.82E-04±0.00E+00

f20 2.19E-01±4.18E-02 5.35E-01±7.87E-02 3.68E-01±7.32E-02 5.29E-01±8.87E-02

f21 4.18E-01±7.51E-02 4.31E-01±5.58E-02 3.30E-01±7.09E-02 5.00E-01±0.00E+00

f22 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f23 0.00E+00±0.00E+00 1.69E-01±4.27E-02 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f24 3.77E-01±1.85E-01 6.10E-01±3.57E-01 1.06E+00±1.39E+00 0.00E+00±0.00E+00

f25 4.30E+00±2.05E+00 8.17E+00±1.38E+00 0.00E+00±0.00E+00 1.25E+01±7.66E-01

f26 2.55E+01±8.28E+00 1.90E+00±5.18E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f27 4.07E-17±1.55E-16 5.24E-05±1.55E-04 3.63E-01±1.99E+00 0.00E+00±0.00E+00

f28 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f29 1.57E-32±5.57E-48 8.40E-02±5.10E-02 1.91E-01±8.57E-01 1.34E-10±2.75E-10
f30 1.10E-03±3.35E-03 1.39E-01±1.39E-01 5.26E-03±5.28E-03 1.24E-01±3.61E-01

+ 17 20 15 -

- 5 3 4 -

� 8 7 11 -

https://doi.org/10.1371/journal.pone.0222706.t009
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respectively the best and the second best, followed by SaDSDE-4, SaDSDE-3, SaDSDE-2,

SaDSDE-6 and SaDSDE-5. It is clear that the combined effect of proposed algorithm compo-

nents is best. (2) From Table 12, there is no significant performance difference between pro-

posed SaDSDE and SaDSDE variants with exploration ability control factor, while proposed

SaDSDE is better than SaDSDE-5 with a larger exploration ability control factor signifi-

cantly. The validity of two proposed strategies is verified by means of above experimental

comparisons. It is note that the contribution of dynamic adjustment strategy of the explora-

tion ability control factor is larger than scaling factor self-adaptation strategy. In other

words, although the scaling factor self-adaption is effective, SaDSDE is less susceptible to

scaling factor.

Table 10. The optimization results obtained by SaDSDE and 3 non-DE algorithms at D = 100.

F SL-PSO GWO WOA SaDSDE

Mean ± STD Mean ± STD Mean ± STD Mean ± STD

f1 4.27E-15±2.74E-15 3.51E-41±3.48E-41 3.69E-188±0.00E+00 0.00E+00±0.00E+00

f2 1.06E+05±1.42E+04 3.02E-03±9.79E-03 4.62E+05±7.13E+04 0.00E+00±0.00E+00

f3 6.07E-07±2.65E-06 8.48E-38±8.31E-38 2.09E-183±0.00E+00 0.00E+00±0.00E+00

f4 3.15E-08±1.88E-08 1.18E-24±9.13E-25 3.39E-112±1.58E-111 0.00E+00±0.00E+00

f5 2.65E+00±7.10E-01 2.04E-06±4.86E-06 2.34E-02±8.78E-02 0.00E+00±0.00E+00

f6 1.82E-15±1.59E-15 1.38E-41±1.43E-41 9.20E-191±0.00E+00 0.00E+00±0.00E+00

f7 4.27E-09±2.45E-09 6.27E-35±1.04E-34 2.52E-180±0.00E+00 0.00E+00±0.00E+00

f8 1.60E+05±4.07E+05 1.30E-40±1.53E-40 1.27E+03±4.18E+02 0.00E+00±0.00E+00

f9 7.24E-08±3.75E-07 6.56E-35±6.19E-35 4.07E-182±0.00E+00 0.00E+00±0.00E+00

f10 2.00E-01±4.84E-01 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f11 1.36E+04±1.05E-05 8.48E-04±3.77E-04 2.50E-05±1.77E-05 1.36E+04±5.13E-06

f12 6.84E+02±1.67E+02 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f13 1.81E-03±4.34E-03 1.03E-03±3.17E-03 4.58E-03±1.45E-02 0.00E+00±0.00E+00

f14 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f15 1.26E-15±7.25E-16 4.37E-42±4.41E-42 9.55E-193±0.00E+00 0.00E+00±0.00E+00

f16 1.04E-08±3.04E-09 4.42E-14±4.03E-15 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f17 3.53E+02±3.71E+02 9.68E+01±9.76E-01 9.65E+01±3.29E-01 9.70E+01±6.77E-01

f18 2.57E+00±3.98E+00 3.82E-10±2.18E-10 1.13E-64±5.78E-64 0.00E+00±0.00E+00

f19 1.23E+01±6.74E+01 1.27E-03±3.69E-12 1.27E-03±0.00E+00 1.27E-03±0.00E+00

f20 6.76E-01±5.70E-02 8.58E-01±9.08E-02 4.48E-01±1.23E-01 9.31E-01±6.87E-02

f21 7.01E-01±3.18E-01 5.63E-01±9.11E-02 4.43E-01±8.63E-02 5.00E-01±0.00E+00
f22 5.59E-01±1.05E+00 2.56E-14±1.56E-14 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f23 0.00E+00±0.00E+00 5.05E-01±7.60E-02 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f24 2.27E+00±6.99E-01 1.17E+00±1.26E+00 6.46E-01±2.03E+00 0.00E+00±0.00E+00

f25 6.74E+01±3.63E+00 4.05E+01±1.93E+00 0.00E+00±0.00E+00 4.39E+01±7.11E-01

f26 8.34E+02±3.50E+01 2.53E+00±4.40E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f27 3.70E-08±2.22E-08 6.67E-05±1.80E-04 1.35E-110±6.85E-110 0.00E+00±0.00E+00

f28 5.60E-01±6.60E-01 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00

f29 1.56E-03±8.57E-03 5.16E-01±7.38E-02 2.81E-03±7.52E-04 3.96E-02±2.27E-02

f30 4.03E-03±8.89E-03 5.09E+00±4.57E-01 3.60E-02±1.69E-02 9.33E+00±1.73E+00

+ 23 19 12 -

- 3 4 7 -

� 4 7 11 -

https://doi.org/10.1371/journal.pone.0222706.t010
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4.7 Adaptability analysis to high-dimensional problems

In order to evaluate the adaptability to high-dimensional problems of each algorithm, we con-

duct Wilcoxon’s signed-rank test and Wilcoxon rank-sum test at the 0.05 significance level for

each algorithm between its own 30 variables and 100 variables. The nonparametric statistical

test results are shown in Fig 13 and Table 13. From Fig 13, we can obtain the following obser-

vations: (1) For EsDEr-NR, AGDE and EFADE, the low-dimensional performance is signifi-

cantly better than high-dimensional performance on all the test functions. (2) For SaDSDE,

the low dimensional performance is significantly better than, worse than and similar to high

dimensional performance on 7 and 23 out of 30 functions, respectively. (3) For IMMSADE,

GWO, WOA and SaDSDE, the difference is not statistically significant in Table 13, while the

gap between R+ and R- of SaDSDE is significantly smaller than IMMSADE, GWO and WOA.

Therefore, SaDSDE has the best adaptability to high-dimensional problems.

4.8 Discussions on the comparison results

A series of experiment comparisons have proved the effectiveness of SaDSDE. The reasons can

be concluded as follows. (1) The novel dual-strategy mutation operator gives attention to

exploitation and exploration ability simultaneously. Exploration can make the algorithm

Fig 8. Number of cases on which each algorithm performs the best and second best in the comparison. (A) D = 30. (B) D = 100.

https://doi.org/10.1371/journal.pone.0222706.g008

Fig 9. Non-parametric statistical test results over 30 independent runs. (A) Friedman test results. (B) Kruskal_Wallis test results.

https://doi.org/10.1371/journal.pone.0222706.g009
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Table 11. The results of Wilcoxon rank-sum test over 30 independent runs.

Comparisons D = 30 D = 100

R+ R- p-value α = 0.05 α = 0.1 R+ R- p-value α = 0.05 α = 0.1

SaDSDE versus SL-PSO 218 82 9.56E-04 Yes Yes 358 48 3.13E-05 Yes Yes

SaDSDE versus GWO 282 69 1.05E-03 Yes Yes 239 112 1.79E-03 Yes Yes

SaDSDE versus WOA 157 74 1.24E-02 Yes Yes 122 109 2.28E-02 Yes Yes

https://doi.org/10.1371/journal.pone.0222706.t011

Fig 10. Convergence curves of the mean function error values for six test functions at D = 30. The horizontal axis and the vertical axis are

generations and the mean function error values over 30 independent runs. The legends of Fig 10 (B-F) are the same as Fig 10(A). (A) f8. (B) f12.
(C) f18. (D) f23. (E) f24. (F) f26.

https://doi.org/10.1371/journal.pone.0222706.g010
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Fig 11. Box plots of the result of solution error at D = 30 over independent 30 runs. (A) f8. (B) f12. (C) f18. (D) f23. (E) f24. (F) f26.

https://doi.org/10.1371/journal.pone.0222706.g011

Fig 12. The Friedman test results over 30 independent runs.

https://doi.org/10.1371/journal.pone.0222706.g012
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search every promising solution area with good diversity, while exploitation can make the

algorithm execute a local search in some promising solution areas to find the optimal point

with a high convergence rate. (2) In scaling factor self-adaption strategy, the scaling factors of

each individual are set for individuals to make full use of the differences in their fitness. There-

fore, the superior individuals are assigned relatively smaller values to exploit their neighbor-

hoods in which better solutions. On the contrary, the inferior individuals are assigned larger

values to explore further areas in the solution space. (3) The exploration ability control factor

Table 12. The results of Wilcoxon’s rank-sum test of proposed SaDSDE and 6 SaDSDE variants over 30 indepen-

dent runs.

Comparisons R+ R- p-value α = 0.05 α = 0.1

SaDSDE versus SaDSDE-1 14 7 9.92E-01 No No

SaDSDE versus SaDSDE-2 16 5 9.02E-01 No No

SaDSDE versus SaDSDE-3 15 6 9.32E-01 No No

SaDSDE versus SaDSDE-4 24 12 6.03E-01 No No

SaDSDE versus SaDSDE-5 114 39 2.85E-02 Yes Yes

SaDSDE versus SaDSDE-6 55 11 2.75E-01 No No

https://doi.org/10.1371/journal.pone.0222706.t012

Fig 13. The Wilcoxon’s signed-rank test results with a significance level of 0.05 over 30 independent runs. Signs“+”, “-”

and “�” indicate the number of functions that the performance of algorithm for low dimensional problems is better than,

worse than and similar to the performance for high dimensional problems, respectively.

https://doi.org/10.1371/journal.pone.0222706.g013

Table 13. The results of Wilcoxon rank-sum test over 30 independent runs.

Comparisons R+ R- p-value α = 0.05 α = 0.1

Rcr-JADE at D = 30 versus Rcr-JADE at D = 100 455 10 7.29E-04 Yes Yes

EsDEr-NR at D = 30 versus EsDEr-NR at D = 100 465 0 2.88E-06 Yes Yes

IMMSADE at D = 30 versus IMMSADE at D = 100 406 0 1.19E-01 No No

AGDE at D = 30 versus AGDE at D = 100 465 0 6.74E-06 Yes Yes

EFADE at D = 30 versus EFADE at D = 100 465 0 7.60E-07 Yes Yes

MPEDE at D = 30 versus MPEDE at D = 100 426 9 5.54E-04 Yes Yes

EDEV at D = 30 versus EDEV at D = 100 454 11 2.83E-04 Yes Yes

SL-PSO at D = 30 versus SL-PSO at D = 100 406 0 1.27E-02 Yes Yes

GWO at D = 30 versus GWO at D = 100 345 33 3.87E-01 No No

WOA at D = 30 versus WOA at D = 100 178 53 9.16E-01 No No

SaDSDE at D = 30 versus SaDSDE at D = 100 28 0 8.94E-01 No No

https://doi.org/10.1371/journal.pone.0222706.t013
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is adjusted dynamically according to the generations, which takes into account the evolution-

ary property in different evolution stages. It can get a good balance between exploration and

exploitation ability to make the algorithm search promising solution area and help algorithm

jump over the trap of local optimal solution.

Conclusions

The novel mutation operator with “DE/best/2” operator and “DE/rand/2” operator is pro-

posed in this paper. The “DE/rand/2” mutation operator can expand the search area in the

later stage of evolution and avoid suffering premature convergence. The “DE/best/2” mutation

operator can accelerate the convergence speed greatly. The performance of the algorithm is

excellent even if CR is set to a fixed value. Experiment results show that: (1) SaDSDE is not sen-

sitive to the population size and it is easier to implement. (2) SaDSDE has the best performance

among all the compared variants. (3) For the high-dimensional functions, with the same-scale

population and iterations, SaDSDE can still get the excellent global optimization performance,

while there is serious performance degradation for other compared algorithms. In other

words, SaDSDE has the best adaptability to high-dimensional problems.

As a continuation of this research, we will focus on multi-objective optimization (MOO)

problems and some actual engineering applications, such as flight conflict resolution and

image registration, etc.
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