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Abstract

Slope one is a popular recommendation algorithm due to its simplicity and high efficiency

for sparse data. However, it often suffers from under-fitting since the global information of

all relevant users/items are considered. In this paper, we propose a new scheme called

enhanced slope one recommendation through local information embedding. First, we

employ clustering algorithms to obtain the user clusters as well as item clusters to represent

local information. Second, we predict ratings using the local information of users and items

in the same cluster. The local information can detect strong localized associations shared

within clusters. Third, we design different fusion approaches based on the local information

embedding. In this way, both under-fitting and over-fitting problems are alleviated. Experi-

ment results on the real datasets show that our approaches defeats slope one in terms of

both mean absolute error and root mean square error.

Introduction

Collaborative filtering (CF) [1–3] is one of the widely used techniques in recommender sys-

tems [4, 5]. CF does not rely on the content descriptions of items, but purely depends on

preferences expressed by a set of users. Memory-based and model-based CF are two main

approaches [3, 6]. The former uses the entire user-item database to make a prediction [7], such

as slope one [8], k-nearest neighbor [9], and matrix factorization [10]. The latter first learns a

descriptive model of user preferences and then uses it for predicting ratings [11], such as neu-

ral network classifiers [12], Bayesian network [13], linear classifiers [14].

Data sparsity [15] is one of the main factors affecting the prediction accuracy of CF. Slope

one uses a linear regression model to handle data sparsity. By determining the quantitative

relationship between two or more items, efficient recommendation can be generated in real

time. However, slope one often faces under-fitting since the global information of all users/

items are considered.

In this paper, we propose a new approach called enhanced slope one recommendation

through local information embedding (ESLI). On one hand, we try to alleviate under-fitting

caused by slope one with global information. This is fulfilled through using local information

of users/items to accurately measure the similarities between two users’ preferences. On the
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other hand, we try to alleviate over-fitting caused by local information. This is fulfilled through

appropriate granular selection [16] and approach fusion.

First, we employ clustering algorithms to extract local information. Users with similar rat-

ing habits will be clustered into one category. The user clusters represent local user informa-

tion (LU). Correspondingly, items of similar popularity will be clustered into one category.

The item clusters represent local item information (LI).

Second, we predict ratings using the local information of users and items in the same clus-

ter. We design three enhanced slope-one approaches embedding local information. The local-

user-global-item approach (LUGI, also called A1) only embeds user local information. The

global-user-local-item approach (GULI, also called A2) only embeds item local information.

The local-user-local-item approach (LULI, also called A3) embeds both the user and the item

local information.

Third, we design four fusion approaches (A4, A5, A6, and A7) based on the above three

basic approaches to make the best prediction. The four approaches merges LUGI, GULI, and

LULI, respectively. We use the average of any two or three approaches to form four fusion

approaches. In this way, both under-fitting and over-fitting are alleviated.

To examine the performance of the proposed method, we conducted experiments on the

well-known MovieLens, DouBan datasets with a Java implementation. Experimental results

show that (1) ESLI decreases both the mean absolute error (MAE) and root mean square

error (RMSE) evaluation indicators; and (2) ELSI is more prominent than slope one in large

datasets.

The rest of this paper is organized as follows: Firstly, we present the related works including

rating system, slope one algorithm and clustering algorithms. Secondly, we discuss how to

extract local information and embed it into the slope one algorithm. Subsequently, we present

our experimental results for four datasets. Finally, we introduce the conclusion and further

work. All code files and datasets are available from the Github database (https://github.com/

FanSmale/ESLI.git) or Supporting Information (see S1 and S2 Files).

Table 1 defines notations used throughout the paper.

Related work

The ESLI scheme uses the rating system and the local user/item information as input. The

clustering algorithm is employed to obtain the local user/item information using the rating

system.

Rating system

Let U = {u0, u1, . . ., um−1} be the set of users and T = {t0, t1, . . ., tn−1} be the set of items. The

users’ ratings of the items form a rating matrix. The rating function is given by [17]

R : U � T ! V; ð1Þ

where V is the rating scale. For convenience, we denote the rating system as an m × n rating

matrix R = (ri,j)m×n, where ri,j = R(ui, tj), 0� i�m − 1, and 0� j� n − 1.

Table 2 depicts an example of rating system, where m = 5, n = 5 and V = {1, 2, . . ., 10}. “–”

indicates that the users do not have ratings on the items.

Slope one

The underlying principle of the slope one algorithm [8] is based on linear regression to deter-

mine the extent by which users prefer one item to another. It uses a simple formula f(x) = x +

b, where the parameter b represents the average deviation of the ratings of two users or items
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[8]. Then, given a user’s ratings of certain items, we can predict the user’s ratings of other

items based on the average deviation.

Slope one [8] is adaptive to data sparsity. It is easy to realize and extend. Due to it can gener-

ate effective recommendation in real time, it is used in many online recommender systems,

such as movies, music and books. However, owing to calculate the average deviation with

global information, this can lead to under-fitting problem.

Global and local rating information fusion

CF uses rating information to predict users’ preferences for items [18–21]. Rating information

can be collected by implicit means, explicit means or both. Implicit ratings are inferred from a

user’s behaviors. In the explicit collection of ratings, the user is asked to provide an opinion

Table 2. The rating matrix (R).

UID/TID t0 t1 t2 t3 t4
u0 2 4 – 5 1

u1 7 9 8 6 9

u2 – 8 9 8 6

u3 6 – 9 8 7

u4 1 3 5 4 2

https://doi.org/10.1371/journal.pone.0222702.t002

Table 1. Notations.

Notations Meaning

U The set of all users

T The set of all items

R The rating matrix

m The number of users

n The number of items

ri,j The rating of ui to tj
ri;: The average rating of ui
r:;j The average rating of tj
g The g-th user cluster index

q The q-th item cluster index

Gg The set of g-th user cluster

Qq The set of q-th item cluster

C The total number of user clusters

E The total number of item clusters

Rg,. The sub-matrix ratings for Gg and T
R.,q The sub-matrix ratings for U and Qq

Rg,q The sub-matrix ratings for Gg and Qq

pg;:i;j The predicting rating of ui to tj corresponding to g-th user cluster

p:;qi;j The predicting rating of ui to tj corresponding to q-th item cluster

pg;qi;j The predicting rating of ui to tj corresponding to g-th user cluster and q-th item cluster

f 1
i;j ðpg;:i;j þ p:;qi;j Þ=2

f 2
i;j ðpg;:i;j þ pg;qi;j Þ=2

f 3
i;j ðp:;qi;j þ pg;qi;j Þ=2

f 4
i;j ðpg;:i;j þ p:;qi;j þ pg;qi;j Þ=3

https://doi.org/10.1371/journal.pone.0222702.t001
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about the item on a rating scale. Explicit ratings provide a more accurate description of a

user’s preference for an item than implicit ratings. We only take explicit ratings as input in this

paper.

CF algorithms typically use global or local information about user preferences to help peo-

ple make choices. Some studies take global information as input, such as slope one [8], matrix

factorization [22], which leads to under-fitting problems. Some studies take local information

as input, such as MG-LCR [23], UPUC-CF [24], which leads to over-fitting problems. In order

to avoid the above two problems, some studies combine local and global information to learn

models, such as MPMA [25], GLOMA [26]. However, to the best of our knowledge, the fusion

of global and local information has not been used for slope one algorithm.

Clustering algorithms

Clustering is used to reveal the intrinsic properties and laws of data [27, 28]. It attempts

to divide the data sample into several subsets which are usually not intersected [28]. In col-

laborative filtering, users and items can be grouped into different clusters. User-based clus-

tering [29] divides users with similar rating habits into a cluster. Item-based clustering [3]

divides items into different clusters based on the similarity of attributes such as item popu-

larity, etc.

There are a lot of clustering algorithms, such as k-means [30] and M-distance [31]. k-means

[30] randomly selects k samples as the center points and obtains clusters through multiple iter-

ations. It is easy to implement, but the convergent speed is slow and the clustering results are

uncertain. M-distance [31] defines the relationship between users or items using the average

rating. Compared with k-means clustering, its convergent speed is fast and the clustering

results are deterministic.

ESLI scheme

In this section, we describe our proposed scheme. Firstly, we describe the extraction of local

information. Then, we describe the ESLI scheme, which includes three basic approaches and

four fusion approaches.

Local information extraction

Local information is intended to extract the rating habits of similar users or the popularity of

similar items. Naturally, the clustering algorithm is employed to obtain it. LU/LI are used to

represent the local user/item information, respectively. S1 Fig depicts the schematic diagram

of local information extraction.

S1A Fig depicts an example of LU. Users are classified into different clusters based on the

rating habits. The first user cluster is composed of u0 and u4. Their ratings are no more than 5

points for all items. They are more strict users and are used to providing the lower rating. The

second user cluster is composed of u1, u2 and u3. Their ratings are no less than 6 points for all

items. They are more tolerant users and are used to providing the higher rating.

S1B Fig depicts an example of LI. Items are classified into different clusters based on the

items popularity. The first item cluster is composed of t0 and t4. They get a lot of low ratings of

1-2 points. The low ratings indicate that they are less popular. The second item cluster is com-

posed of t1, t2 and t3. They get a lot of high ratings of 8-9 points. The high ratings indicate that

they are popular items.

S1C Fig depicts an example of LULI. Each cluster contains a subset of users and a subset of

items. The first cluster is composed of a user group {u0, u4} and an item group {t0, t4}. They are

the lowest rating of 1-2 points. The second cluster is composed of a user group {u0, u4} and an
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item group {t1, t2, t3}. They are the lower rating of 3-5 points. The third cluster is composed

of a user group {u1, u2, u3} and an item group {t0, t4}. They are the higher rating of 6-7 points.

The fourth cluster is composed of a user group {u1, u2, u3} and an item group {t1, t2, t3}. They

are the highest rating of 8-9 points. Within each LULI cluster, the rating distribution is more

balanced and the rating similarity is higher than LUGI and GULI.

Enhanced slope one algorithms

S2 Fig lists eight slope one approaches. S2A Fig depicts global-user-global-item approach

(GUGI) [8]. S2B–S2D Fig depict three basic approaches, including LUGI, GULI and LULI.

S2E–S2H Fig depict four fusion approaches.

Approach A1 uses the sub-matrix Rg,. as input, and computes the predicted rating pg;:i;j for ui
to tj as

pg;:i;j ¼

Pm� 1

j0¼0

P
ui0 2Gg

ðri0 ;j � ri0 ;j0 Þ

jfui0 2Gg jri0 ;j>0;ri0 ;j0>0gj

jftj0 jri;j0>0gj
: ð2Þ

Based on S2B Fig, we have

Example 1 p1;:
3;1 ¼

ð9� 7þ6Þþð
ð8� 9Þþð9� 8Þ

2
þ9Þþð

ð8� 8Þþð9� 9Þ

2
þ8Þþð

ð8� 6Þþð9� 6Þ

2
þ7Þ

4
� 8:6.

Approach A2 uses sub-matrix R.,q as input, and computes the predicted rating p:;qi;j for ui to tj
as

p:;qi;j ¼

P
j02Qq

Pn� 1

i0¼0
ðri0 ;j � ri0 ;j0 Þ

jfui0 jri0 ;j>0;ri0 ;j0>0gj

jftj0 jtj0 2Qq;ri;j0>0gj
:

ð3Þ

Based on S2C Fig, we have

Example 2 p:;13;1 ¼
ð
ð4� 5Þþð9� 9Þþð8� 8Þþð3� 4Þ

4
þ8Þþð

ð9� 8Þþð8� 9Þþð3� 5Þ

3
þ9Þ

2
� 7:9.

Approach A3 uses the sub-matrix Rg,q as input, and computes the predicted rating pg;qi;j for ui
to tj as

pg;qi;j ¼

P
j02Qq

P
i02Gg

ðri0 ;j � ri0 ;j0 Þ

jfui0 jri0 ;j>0;ri0 ;j0>0;i02Gggj

jftj0 jri0 ;j0 > 0; j0 2 Qq; i0 2 Gggj
: ð4Þ

Based on S2D Fig, we have

Example 3 p1;1
3;1 ¼

ð
ð8� 8Þþð9� 9Þ

2
þ8Þþð

ð8� 9Þþð9� 8Þ

2
þ9Þ

2
¼ 8:5.

The algorithm A4 takes the average of the approaches A1 and A2 as the final predicted

rating

f 1
i;j ¼

pg;:i;j þ p;:qi;j
2

: ð5Þ

Based on Example 1 and 2, we have

Example 4 f 1
3;1
¼

p1;:

3;1
þp:;1

3;1

2
¼ 8:6þ7:9

2
� 8:3.

The algorithm A5 takes the average of the approaches A1 and A3 as the final predicted

rating

f 2
i;j ¼

pg;:i;j þ pg;qi;j
2

: ð6Þ

Based on Example 1 and 3, we have
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Example 5 f 2
3;1
¼

p1;:

3;1
þp1;1

3;1

2
¼ 8:6þ8:5

2
� 8:6.

The algorithm A6 takes the average of the approaches A2 and A3 as the final prediction

rating

f 3
i;j ¼

p:;qi;j þ pg;qi;j
2

: ð7Þ

Based on Example 2 and 3, we have

Example 6 f 3
3;1
¼

p:;1
3;1
þp1;1

3;1

2
¼ 7:9þ8:5

2
¼ 8:2.

The approach A7 takes the average of the approaches A1, A2 and A3 as the final prediction

rating

f 4
i;j ¼

pg;:i;j þ p:;qi;j þ pg;qi;j
3

: ð8Þ

Based on Example 1, 2 and 3, we have

Example 7 f 4
i;j ¼

p1;:

3;1
þp:;1

3;1
þp1;1

3;1

3
¼ 8:6þ7:9þ8:5

3
� 8:3.

Time complexity analysis

Let the number of users and items be m and n, respectively. The complexity analysis includes

off-line and on-line phases. Local information can be extracted in the off-line phase by cluster-

ing algorithm. For M-distance clustering algorithm [31], the time complexity is O(mn).

In the on-line prediction stage, we discuss the time complexity of predicting a rating.

For global-user-global-item approach (GUGI), the time complexity is O(mn). Let the num-

ber of user groups and item groups be C and E, respectively. The time complexity of local-

user-global-item approach (LUGI) is O mn
C

� �
. The time complexity of global-user-local-item

approach (GULI) is O mn
E

� �
. The time complexity of local-user-local-item approach (LULI) is

O mn
CE

� �
.

Experiments

In this section, we report extensive computational tests designed to address the following

questions:

1. Does the ESLI model perform better than existing slope one [8] in terms of MAE and

RMSE?

2. Does the ESLI model have a more prominent advantage than the existing slope one [8]

when there are more users or items?

Question 1 compares the MAE and RMSE between our proposed scheme and existing

slope one. The question is the core issue of this paper.

Question 2 compares the MAE and RMSE between our proposed scheme and the existing

slope one under different scale of users or items.

Datasets

Table 3 lists the basic information of Movielens 100K (ML100K), Movielens 1M (ML1M),

Movielens 10M (ML10M) and DouBan [32] (DB, https://www.cse.cuhk.edu.hk/irwin.king.

new/pub/data/douban) datasets. The number of users ranges from 943 to 71,567. The

number of items ranges from 1,682 to 39,695. The number of ratings ranges from 100,000 to
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10,000,054, while the density of rating ranges from 0.78% to 6.30%. The average rating ranges

from 3.51 to 3.75.

The rating distributions of four datasets have similar normal distribution characteristics.

The rating scale ranges from 0.5 to 5. The highest scale is 5. The lowest scale is 0.5. The step

length is 0.5. The frequency is the highest when the rating is 4, and the frequency is the second

highest when the rating is 3 or 5. For the ML100K dataset, the maximum number of ratings

for users/movies are 737/583, respectively, with a minimum of 168/1, respectively. For the

ML1M dataset, the maximum number of ratings for users/movies are 2,314/3,428, respectively,

with a minimum of 341/388, respectively. For the ML10M dataset, the maximum number

of ratings for users/movies are 7,359/34,864, respectively, with a minimum of 20/1, respec-

tively. For the DB dataset, the maximum number of ratings for users/movies are 10,157/1,274,

respectively, with a minimum of 166/1, respectively.

Evaluation metrics

We employ MAE [33, 34] and RMSE [34, 35] as evaluation metrics. The lower the values of

MAE and RMSE, the better the performance of the recommender system [36].

Given a rating system, the MAE is calculated by

MAE ¼
Pm� 1

0

Pn� 1

0
jri;j � pi;jj

jfhi; jij0 � i < m; 0 � j < n; ri;j > 0gj
; ð9Þ

and the RMSE is computed by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm� 1

0

Pn� 1

0
ðri;j � pi;jÞ

2

jfhi; jij0 � i < m; 0 � j < n; ri;j > 0gj

s

; ð10Þ

where pi,j is the prediction rating of ui for tj.

Experimental design

We design two sets of experiments to answer the questions raised at the beginning of this

section.

Exp1. We first determine the parameters C and E, and then obtain the optimal MAE and

RMSE. We employ k-means and M-distance clustering algorithms to extract user and item

local information. To determine the parameters, we change C 2 [2, 10] and E 2 [2, 10] and

obtain the minimum MAE and RMSE.

Exp2. Our aim is to analyze its impact on the ESLI scheme under different scale of users

and items. First, we gradually increase the number of users under the condition that all items

are involved. Second, we gradually increase the number of items under the condition that all

users are involved.

We randomly divide the entire dataset into a training set and a testing set. 80% of the data

are usually specified as a training set and the remaining 20% as a testing set.

Table 3. The basic information of four datasets.

Dataset # of Users # of Items # of Ratings # of Density # of Average rating

ML100K 943 1,682 100,000 6.30% 3.53

ML1M 6,040 3,900 1,000,209 4.19% 3.59

ML10M 71,567 10,681 10,000,054 1.31% 3.51

DB 2,965 39,695 912,479 0.78% 3.75

https://doi.org/10.1371/journal.pone.0222702.t003
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Sensitivity to parameters

Granular selection is one of the important factors affecting the performance of the ESLI

scheme [37–39].

Because the approach A7 is a fusion algorithm for all basic approaches. We find the optimal

C and E through computing the MAE of approach A7. S3 and S4 Figs show the MAE of

approach A7 when C 2 [2, 10] and E 2 [2, 10] for the ML1M dataset.

In S3 Fig, the number of item clusters is set to 3. When the user cluster C 2 [2, 4], the MAE

decreases. When the user cluster C 2 [4, 10], the MAE increases. We get the minimum MAE

when C = 4. In S4 Fig, the number of user clusters is set to 4. When the user cluster E 2 [2, 3],

E 2 [4, 5] and E 2 [8, 10], the MAE decreases. When the user cluster E 2 [3, 4] and E 2 [5, 8],

the MAE increases. We get the minimum MAE when E = 3.

We analyze the performance of the ESLI through changing the number of users/items. S5

and S6 Figs show the MAE comparison between A7 and GUGI. In S5 Fig, we fix the number of

items, then gradually increase the number of users. As the number of users increases, the

advantages of the ESLI scheme become more apparent. In S6 Fig, we fix the number of users,

then gradually increase the number of items. As the number of items increases, the advantages

of the ESLI scheme become more apparent.

Runtime comparison

The time complexities of GUGI, LUGI (A1), GULI (A2), and LULI (A3) is O(mn), O mn
C

� �
, O mn

E

� �
,

and O mn
CE

� �
, respectively. Therefore we expect the runtime of LUGI, GULI, and LULI is 1/C, 1/E,

and 1/CE of GUGI. When C = 4 and E = 3, they should be 1/4, 1/3, and 1/12, respectively.

The runtime of all algorithms under M-distance clustering is compared in Table 4. Note

that the runtime is the total execution time, which includes the file input and output overhead.

The computations were performed on a Windows 10 64-bit operating system with 8 GB RAM

and intel Core i5 CPU@3.4GHz processors, using java software.

For ML100K dataset, the experimental values are 41/63, 49/63, and 36/63, respectively. For

ML1M dataset, the experimental values are 53/92, 56/92, and 40/92, respectively. For ML10M

dataset, the experimental values are 53/93, 55/93, and 41/93, respectively. For DB dataset, the

experimental values are 53/78, 56/78, and 43/78, respectively. They generally comply with the

expected values. A4, A5, A6 and A7 are fusion algorithms, therefore they have more runtime

than GUGI.

Comparison of MAE and RMSE

We compare the performance between ESLI scheme and the traditional slope one in terms of

MAE and RMSE.

Table 4. Runtime comparison under M-distance clustering (unit: ms).

Algorithms Dataset

ML100K ML1M ML10M DB

GUGI 6,295 92,499 9,278,753 78,398

A1 4,061 53,109 5,334,255 53,159

A2 4,926 55,990 5,468,273 55,923

A3 3,617 39,643 4,073,868 43,139

A4 7,638 98,433 9,075,662 85,890

A5 9,945 106,902 11,450,463 90,936

A6 9,839 106,844 11,336,946 92,349

A7 19,777 255,122 20,658,793 165,813

https://doi.org/10.1371/journal.pone.0222702.t004
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Table 5 shows MAE comparison under M-distance clustering.

For dataset ML100K, approach A2 obtains the lowest MAE, which is 0.21% lower than

the traditional GUGI approach. For dataset ML1M, approach A4 obtains the lowest MAE,

which is 3.11% lower than the traditional GUGI approach. For dataset ML10M, approach A1

obtains the lowest MAE, which is 4.60% lower than the traditional GUGI approach. For data-

set DB, approach A3 obtains the lowest MAE, which is 1.66% lower than the traditional GUGI

approach.

Table 6 shows RMSE comparison under M-distance clustering.

For dataset ML100K, all ESLI approaches are no lower than the traditional GUGI approach.

For dataset ML1M, approach A1 obtains the lowest RMSE, which is 2.55% lower than the tradi-

tional GUGI approach. For dataset ML10M, approach A1 obtains the lowest RMSE, which is

4.23% lower than the traditional GUGI approach. For dataset DB, approach A6 obtains the

lowest RMSE, which is 1.00% lower than the traditional GUGI approach.

Table 7 shows MAE comparison under k-means clustering.

For datasets ML100K and DB, all ESLI approaches are no lower than the traditional GUGI

approach. For dataset ML1M, approach A5 obtains the lowest MAE, which is 0.21% lower than

the traditional GUGI approach. For dataset ML10M, approach A2 obtains the lowest MAE,

which is 0.66% lower than the traditional GUGI approach.

Table 8 shows RMSE comparison under k-means clustering.

Table 5. MAE comparison under M-distance clustering.

Algorithms Dataset

ML100K ML1M ML10M DB

GUGI 0.7417±0.0047 0.7713±0.0023 0.7624±0.0052 0.6632±0.0045

A1 0.7594±0.0029 0.7474±0.0033 0.7273±0.0008 0.6792±0.0064

A2 0.7401±0.0043 0.7751±0.0020 0.7641±0.0004 0.6634±0.0045

A3 0.7575±0.0029 0.7489±0.0035 0.7301±0.0050 0.6522±0.0057

A4 0.7552±0.0027 0.7473±0.0032 0.7276±0.0009 0.6716±0.0061

A5 0.7470±0.0031 0.7516±0.0030 0.7349±0.0007 0.6659±0.0050

A6 0.7452±0.0027 0.7532±0.0028 0.7361±0.0007 0.6585±0.0045

A7 0.7433±0.0027 0.7520±0.0029 0.7351±0.0008 0.6660±0.0050

Lower 0.21% 3.11% 4.60% 1.66%

https://doi.org/10.1371/journal.pone.0222702.t005

Table 6. RMSE comparison under M-distance clustering.

Algorithms Dataset

ML100K ML1M ML10M DB

GUGI 0.9424±0.0066 0.9670±0.0034 0.9729±0.0008 0.8633±0.0067

A1 0.9804±0.0079 0.9423±0.0045 0.9317±0.0008 0.9134±0.0098

A2 0.9439±0.0073 0.9714±0.0031 0.9750±0.0007 0.8631±0.0063

A3 0.9802±0.0090 0.9430±0.0043 0.9354±0.0067 0.8586±0.0083

A4 0.9754±0.0079 0.9419±0.0044 0.9319±0.0008 0.8931±0.0089

A5 0.9570±0.0069 0.9441±0.0043 0.9397±0.0008 0.8758±0.0076

A6 0.9568±0.0074 0.9476±0.0051 0.9409±0.0007 0.8547±0.0062

A7 0.9531±0.0068 0.9442±0.0043 0.9401±0.0007 0.8758±0.0076

Lower -0.16% 2.55% 4.23% 1.00%

https://doi.org/10.1371/journal.pone.0222702.t006
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For datasets ML100K and DB, all ESLI approaches are no lower than the traditional GUGI

approach. For dataset ML1M, approach A5 obtains the lowest RMSE, which is 0.03% lower

than the traditional GUGI approach. For dataset ML10M, approach A1 obtains the lowest

RMSE, which is 0.37% lower than the traditional GUGI approach.

In general, the M-distance-based ESLI is superior to the k-means-based ESLI. The k-means

clustering is non-deterministic and is related to the initial center and distance function. The

M-distance clustering is deterministic and is only relevant to the average rating of the user/

item. The user average rating indicates her/his rating preference, and the item average score

indicates its popularity. Compared with the k-means clustering method, the M-distance clus-

tering method can better reflect the difference in ratings between different clusters.

Conclusion and further work

In this paper, we propose an ESLI scheme for local information extraction based on clustering.

In the ESLI scheme, we design seven different local information embedding approaches. The

experimental results show that our scheme is better than slope one in terms of both MAE and

RMSE.

In the future, we will apply the concept of local information embedding to other collabora-

tive filtering algorithms. For model-based recommendation algorithms, the local demographic

and occupation information will be considered.

Table 8. RMSE comparison under k-means clustering.

Algorithms Dataset

ML100K ML1M ML10M DB

GUGI 0.9424±0.0066 0.9670±0.0034 0.9729±0.0008 0.8633±0.0067

A1 0.9887±0.0079 0.9711±0.0007 0.9693±0.0012 0.9543±0.0181

A2 0.9469±0.0076 0.9733±0.0030 0.9764±0.0008 0.8635±0.0066

A3 0.9941±0.0088 0.9762±0.0010 0.9745±0.0045 0.9015±0.0132

A4 0.9844±0.0074 0.9728±0.0008 0.9707±0.0010 0.9347±0.0164

A5 0.9589±0.0078 0.9667±0.0014 0.9703±0.0010 0.9041±0.0129

A6 0.9626±0.0085 0.9724±0.0009 0.9736±0.0008 0.8836±0.0110

A7 0.9553±0.0073 0.9688±0.0011 0.9718±0.0008 0.9042±0.0128

Lower -0.49% 0.03% 0.37% -0.02%

https://doi.org/10.1371/journal.pone.0222702.t008

Table 7. MAE comparison under k-means clustering.

Algorithms Dataset

ML100K ML1M ML10M DB

GUGI 0.7417±0.0047 0.7713±0.0023 0.7624±0.0052 0.6632±0.0045

A1 0.7694±0.0059 0.7709±0.0016 0.7614±0.0013 0.6708±0.0067

A2 0.7431±0.0048 0.7766±0.0020 0.7574±0.0009 0.6980±0.0086

A3 0.7717±0.0059 0.7755±0.0011 0.7652±0.0049 0.6634±0.0040

A4 0.7661±0.0056 0.7726±0.0013 0.7585±0.0008 0.6904±0.0080

A5 0.7517±0.0060 0.7697±0.0017 0.7597±0.0010 0.6822±0.0068

A6 0.7510±0.0020 0.7747±0.0013 0.7624±0.0011 0.6748±0.0062

A7 0.7485±0.0057 0.7716±0.0015 0.7609±0.0009 0.6823±0.0068

Lower -0.19% 0.21% 0.66% -0.03%

https://doi.org/10.1371/journal.pone.0222702.t007
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