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Abstract

We propose a new model of the read-out of spike trains that exploits the multivariate struc-

ture of responses of neural ensembles. Assuming the point of view of a read-out neuron

that receives synaptic inputs from a population of projecting neurons, synaptic inputs are

weighted with a heterogeneous set of weights. We propose that synaptic weights reflect the

role of each neuron within the population for the computational task that the network has to

solve. In our case, the computational task is discrimination of binary classes of stimuli, and

weights are such as to maximize the discrimination capacity of the network. We compute

synaptic weights as the feature weights of an optimal linear classifier. Once weights have

been learned, they weight spike trains and allow to compute the post-synaptic current that

modulates the spiking probability of the read-out unit in real time. We apply the model on

parallel spike trains from V1 and V4 areas in the behaving monkey macaca mulatta, while

the animal is engaged in a visual discrimination task with binary classes of stimuli. The read-

out of spike trains with our model allows to discriminate the two classes of stimuli, while pop-

ulation PSTH entirely fails to do so. Splitting neurons in two subpopulations according to the

sign of the weight, we show that population signals of the two functional subnetworks are

negatively correlated. Disentangling the superficial, the middle and the deep layer of the cor-

tex, we show that in both V1 and V4, superficial layers are the most important in discriminat-

ing binary classes of stimuli.

Introduction

A half century ago, pioneers of neuroscience have stated the following: “At present we have no

direct evidence on how the cortex transforms the incoming visual information. Ideally, one

should determine the properties of a cortical cell, and then examine one by one the receptive

fields of all the afferents projecting upon that cell.” (Hubel and Wiesel, 1962, Journal of Physi-

ology, [1]). While lots of insights in the computations in cortical circuits have been made in
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the meantime, the question, posed by Hubel and Wiesel, has not yet found a clear answer [2].

Addressing this question requires observing the activity of many neurons simultaneously and

has demanded an important progress in recording techniques. Besides advances on the experi-

mental side, a major challenge is to interpret these rich datasets and to understanding the

underlying principles of cortical computation [3, 4]. One of the biggest conceptual gaps to

bridge is between sensory processing and animal’s behavior, addressed by decision-making

studies [5–8]. Linking behavioral choices with the neural activity in the sensory areas requires

the understanding of the transformation between sensory and decision-related signals. On the

one hand, spiking patterns of neural populations in sensory areas are highly variable across tri-

als [9], and can be described as a probabilistic process. The choice behavior of animal agents,

on the other hand, appears to be highly precise and coherent with respect to the incoming

(natural) stimuli. Even though the behavior is noisy [10], and prone to errors due to wrong

internal representation [11], this might be so because it can adapt to perturbations and the

uncertainty in the environment [12]. Our main question here is how does the brain transform

a high-dimensional probabilistic signal, enacted by spike trains of cortical populations, into a

reliable signal, that presumably underlies coherent animal behavior.

Recent theoretical and modeling work has shown that it is possible to read-out a determin-

istic population signal from variable spike trains of a spiking neural network [13]. In [13], it is

assumed that the population signal is encoded at the network level and cannot be accounted

for by the observation of single neurons. The population signal is distributed among single

neurons in a non-linear fashion, giving rise to a distributed code. The distributed code maps

from the high-dimensional space of spike trains of many neurons to the low-dimensional

space of the population signal. If the coding function of individual neurons is redundant

within the network, many different spiking patterns can be decoded as the same population

signal. Such a coding scheme therefore allows to reconcile variable spike trains with a deter-

ministic signal, that might underlie animal’s behavior. While efforts have been made to design

an efficient network that is biologically plausible [14], no convincing evidence for such a com-

putation in biological ensembles has been presented so far.

In the present study, we apply theoretical propositions of the model with the distributed

code [13, 15] to experimental data. Our goal is to connect the theory on representation of an

abstract and arbitrary population signal to behaviorally relevant variables in the biological

brain. Aforementioned studies suggested that the activity of a spiking network can be decoded

by weighting spikes ([13], [15], [16], [17]), where decoding consists in transforming spike

trains of many neurons, a high-dimensional variable, into a low-dimensional population sig-

nal. The core of the transformation is to weight the spike trains of individual neurons by their

decoding weight and sum across neurons, giving a low-dimensional representation of net-

work’s spiking activity. Since these studies show the proof of a concept, they utilize random

weights. Here, we propose that weights depend on the computational task at hand, in our case,

discrimination of binary stimulus classes. We also propose that in the biological setting, such a

low-dimensional signal corresponds to the synaptic current received by a read-out neuron,

modulating its probability of spiking.

Our aim is to build a framework that is a minimal but generic model of stimulus processing

in the brain. In general, decoding models either do classification or stimulus reconstruction
[18]. Here, we break the decoding problem in two parts, 1) learning of weights and 2) low-

dimensional reconstruction of parallel spike trains. We assume that learning of weights occurs

through supervised learning and is a classification problem. Once the weights are learned, they

are fixed and we use them for stimulus reconstruction in real time. Methods of supervised

learning have the advantage of dealing naturally with multivariate signals and of insuring that

the model generalizes on yet unseen data, but often suffer from lack of interpretability of
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results [19]. We combine classification with reconstruction to design a read-out method that is

interpretable in a biological setting. While our method cannot establish a causal relationship

between neural activity and behavior (see [20]), it does compute the upper bound of the infor-

mation about the choice variable that can be extracted from neural activity of observed neural

ensembles [19]. Whether optimal weights are plausible in a biological neural network is an

open question [18]. We address this issue by showing that optimality of weights can be relaxed,

with only a small loss of decoding power. To truly remove the danger of a “black-box” method-

ology, we also explicitly demonstrate the role of each source of information for the model by

removing a specific type of information and evaluating the effect of such a perturbation on the

read-out.

In short, this study attempts to bridge the gap between abstract models of computation in

neural networks and activity of neural populations, recorded in vivo in visual areas V1 and V4.

It addresses decoding of multivariate signals that pertain to correct choice behavior and tries

to bring insights about “. . .how do the connectivity and dynamics of distributed neural circuits

give rise to specific behaviors and computations” (Gao & Ganguli, 2015, Curr. Op. in Neurobi-
ology, [3]).

Materials and methods

Animal subjects and experimental setup

All experiments performed in this study were conducted in accordance with protocols

approved by The Animal Welfare Committee (AWC) and the Institutional Animal Care and

Use Committee (IACUC) for McGovern Medical School at The University of Texas Health

Science Center at Houston (UTHealth), and met or exceeded the standards proposed by the

National Institutes of Health’s Guide for the Care and Use of Laboratory Animals.

Animal subjects. Two male rhesus macaques (Macaca mulatta; M1, 7 years old, 15kg;

M2, 11 years old, 13kg) were used in this study. Subjects were housed individually (after

failed attempts to pair house) in cages sized 73 x 69 x 31 or 73 x 34.5 x31 inches, in close prox-

imity to monkeys in adjacent cages, allowing for visual, olfactory and auditory contact. Toys

were given in rotation, along with various puzzles, movies and radio programming as envi-

ronmental enrichments. Monkeys were fed a standard monkey biscuit diet (LabDiet), that

was supplemented daily with a variety of fruits and vegetables. Subjects had been previously

trained to perform visual discrimination task, and each implanted with a titanium head post

device and two 19mm recording chambers (Crist Instruments) over V1 and V4. All surgeries

were performed aseptically, under general anesthesia maintained and monitored by the vet-

erinary staff from the Center for Laboratory Animal Medicine and Care (CLAMC), with

appropriate analgesics as directed by the specialized non-human primate veterinarian at

CLAMC. During the study the animals had unrestricted access to fluid, except on days when

behavioral tasks were performed. These days, animals had unlimited access to fluid during

the behavioral task, receiving fluid for each correctly completed trial. Following the behav-

ioral task, animals were returned to their home cage and were given additional access to

fluid. The minimal daily fluid allotment was 50ml/kg (monkeys were weighed weekly),

though monkeys could drink more through their participation in the task. During the study,

the animals’ health and welfare was monitored daily by the veterinarians and the animal facil-

ity staff at CLAMC and the lab’s scientists, all specialized with working with non-human

primates.

Experimental setup. Animals performed a visual, delayed-match-to-sample task. The

trial started after 300 ms of successful fixation within the fixation area consisted in displaying

the target and the test stimuli, naturalistic images in black and white, with a delay period in
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between. The target and the test stimuli were either identical (condition “match” else the test

stimulus was rotated with respect to the target stimulus (condition “non-match”). The target

and the test stimuli were shown for 300 ms each while the delay period had a random duration

between 800 and 1000 ms. Random duration of the delay period prevented that the subject

anticipates the time of arrival of the second stimulus. Visual stimuli were images in black and

white and represented an outdoor scene. The identity of the stimulus changed on every trial,

but always fell into one of the two categories, “match” and “non-match”, where “match” indi-

cates an identical pair of target and test stimuli, and “non-match” indicates the rotation of the

test stimulus with respect to the target. The task of the animal was to decide about the similar-

ity of the target and the test stimuli by holding a bar for “different” and releasing the bar for

“same”. The subject was required to respond within 200 and 1200 ms from the time the test

stimulus was off, otherwise the trial was discarded. The difference in orientation of the test

stimulus ranged between 3 and 10 degrees and was calibrated on-line in order to have on aver-

age 70 percent correct responses on non-matching stimuli. The subject was rewarded for a cor-

rect response with fruit juice.

Recording were made with laminar electrodes with 16 recording channels. In part of ses-

sions, recordings were made in V1 and V4 simultaneously, with one laminar electrode in

each area, while in other sessions, only V1 has been recorded. The position of the electrode

was calibrated in such a way that neurons from the two areas had overlapping receptive

fields. The multi-unit signal and the local field potential were recorded in 20 recording ses-

sions in V1 and in 10 recording sessions in V4. We analyzed the activity of cells that

responded to the stimulus by increasing their firing rate at least four-fold with respect to

their baseline. We used the activity of all neurons that obeyed that criterion, which gave 160

neurons in V1 and 102 neurons in V4. The number of trials was roughly balanced across

conditions (Table 1).

The spike train and the population PSTH

The following analyses were done with Matlab, Mathworks, version R2017b.

The spike train of a single neuron n in trial j is a vector of zeros and ones,

on;jðtkÞ ¼
1; if neuron n in trial j spikes during the k‐th millisecond

0 otherwise

(

ð1Þ

where n = 1, . . ., N is the neural index, j = 1,.., J is the trial index and k = 1, . . ., K is the time

index with step of 1 millisecond. The population PSTH is computed by averaging spike trains

across neurons and across trials.

PSTHðtkÞ ¼
1

N
1

J

XN

n¼1

XJ

j¼1

on;jðtkÞ ð2Þ

Table 1. Number of trials per condition.

Area Condition average nb. trials Area Condition average nb. trials

V1 “match” 118 V4 “match” 99

“non-match” 107 “non-match” 76

https://doi.org/10.1371/journal.pone.0222649.t001
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The PSTH is convolved with a Gaussian kernel, w tð Þ ¼
P

t2T expð�
t2

2s2
w
Þ

� �� 1

expð� t2

2s2
w
Þ

with variance s2
w ¼ 10 ms and support T = {−10, . . ., 10} ms.

PSTHconvðtÞ ¼
X

t2T

PSTHðt � tÞwðtÞ ð3Þ

Estimation of decoding weights

Trials were split into training and validation set, with j = 1, . . ., J0 trial indexes for the training

set and j = J0 + 1, . . ., J trial indexes for the validation set. We used the training set to compute

decoding weights and the validations set to apply weights to spike trains and compute the pop-

ulation signal. The training and the validation set were non-overlapping and utilized half of

the available trials each. The split into training and validation set was cross-validated with the

Monte Carlo method. In every cross-validation run, the trial index is randomly permuted,

without repetition, and the data is split into training and validation set. Throughout the paper,

we used 100 cross-validations and the reported results are averages across cross-validations.

All computations are done for each recording session independently.

Constructing features. Cortical neurons adjust the strength of their synapses through

learning. Here, we assume that after learning, synaptic weights reflect the role of each neuron

within the population for the computational task that the network has to solve, which is binary

classification of stimulus classes. Since the animal is rewarded in correct trials, we assume that

the reward signals enacts a teaching signal, formalized in the setting of supervised learning.

Moreover, a single cortical neuron typically receives synaptic inputs from many projecting

cells [9]. For this reason, we assume that learning of synaptic weights relies on the joint activity

of simultaneously recorded neurons, where interactions between neurons are taken into

account.

Decoding weights were computed as the feature weights of the linear Support Vector

Machine (SVM, [21]). The latter has been chosen for its optimality and for the interpretability

of results in the biological setting. The SVM was trained on the spike count statistics. The

spike count of the neuron n in trial j, sn;j ¼
PK

k¼1
on;jðtkÞ, is computed in target and test time

windows, corresponding to the interval of [0, 400] milliseconds with respect to the onset of the

target and the test stimuli. Rather than the absolute spike count, we assume that the relevant

signal for learning is the deviation of the spike count from the baseline. Spike counts are there-

fore z − scored, for each neuron independently,

~sn;j ¼
sn;j � hsn;jij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varj ðsn;jÞ

q ð4Þ

where hsn,jij is the empirical mean and Varj (sn,j) is the empirical variance across trials.

Model fitting and extraction of weights. Let’s have an N-dimensional vector of activities

in trial j, ~s j ¼ ½~s1;j;~s2;j; :::;~sN;j�
T
, and the class label yj 2 {−1, 1}, where y = −1 is the label for

condition “non-match” and y = 1 is the label for condition “match”. Linear SVM searches

for an N − 1-dimensional plane (hyperplane) that optimally separates points in conditions

“match” and “non-match”,

H0 : wTsj ¼ w1~s1;j þ w2~s2;j þ :::þ wN~sN;j þ b ¼ 0 ð5Þ

where w = [w1, . . ., wN]T is a N-dimensional vector of feature weights and b is the offset of the

hyperplane from the origin. Given data points, the hyperplane H0 is fully described by the
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vector of feature weights and the offset, where the vector of feature weights determines its

direction (i.e., w is perpendicular to H0).

The optimization problem that the linear SVM solves is, in its primal form, expressed with

a Lagrangian,

Lp ¼
1

2
wTw �

XJ0

j¼1

lj½yjðw
T~s j þ bÞ � 1� ð6Þ

with λj� 0 8j the Lagrange multiplier. The minimization of the Lagrangian results in Lagrange

multipliers equal to zero for as many samples as possible, and only a subset of samples, those

that lie on the margin, will be used to determine the separation boundary. Those samples are

called the support vectors: vq = [v1,q, v2,q, . . ., vN,q], q = 1, . . ., Q, vn;q 2 R. Minimizing the

Lagrangian, i.e., differentiating the Lagrangian with respect to the weight vector w and setting

the derivative to zero, one obtains the expression for the weight vector.

w ¼
XQ

q¼1

lqyqvq ð7Þ

We normalize the weight vector with the L2 norm,

~w ¼
w
jjwjj ð8Þ

with jjwjj ¼ ðw2
1
þ :::þ w2

NÞ
1
2. The normalized weight vector, ~w ¼ ½~w1; :::; ; ~wN �

T
, was com-

puted in every recording session (i.e., for simultaneously recorded neurons). It associates the

activity of each neuron within the population with neuron’s function for classification. Since

the classification is done in the high-dimensional space, the weight of a single neuron is rela-

tive to activities of other neurons from the population, and the weight vector naturally takes

into account inter-neuron interactions.

In general, it is not necessarily possible to linearly separate all the input samples, not even

in the training data. The classification model of the SVM optimizes the separating hyperplane

also with respect to the data points that lie on the wrong side of the margin (slack points). The

regularization parameter determines how much do slack points contribute to the error that the

model is minimizing. If slack points contribute strongly to the error, the model converges to a

narrow margin, which might result in bad generalization of the hyperplane to the test data

(overfitting). Here, we chose the regularization parameter with 5-fold cross-validation on the

training set. The training set was split into 5 folds, the classifier was trained on 4 folds and vali-

dated on the remaining fold. Each validation sample is classified as the true positive, true, neg-

ative, false positive or false negative.

if wT~s j þ b > 0 ^ yj ¼ 1! true positive

if wT~s j þ b < 0 ^ yj ¼ 1! false positive

if wT~sj þ b < 0 ^ yj ¼ � 1! true negative

if wT~s j þ b > 0 ^ yj ¼ � 1! false negative

ð9Þ

The performance of the classifier is evaluated with balanced accuracy,

BAC ¼
1

2

TP
TP þ FN

þ
1

2

TN
TN þ FP

; ð10Þ

where TP, TN, FP and FN are the number of true positive, true negative, false positive and false
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negative samples, respectively. Balanced accuracy accounts for imbalanced classes, that is, dif-

ferent number of trials in conditions “match” and “non-match”. When the 5 combinations of

training/validation folds are exhausted, we compute the average balanced accuracy across

folds. Iterating this procedure for a range of regularization parameters, C 2 {0.0012, 0.0015,

0.002, 0.005, 0.01, 0.05, 0.1, 0.5}, we chose the regularization parameter that maximized the

balanced accuracy. The regularization parameter is fitted to every recording session

independently.

Notice that the range of the weight vector (Eq 7) depends on the regularization parameter

C, and is therefore different across recording sessions. Since we combine results from many

recording sessions, normalization of the weight vector (Eq 8) is necessary to keep decoding

weights in the same range across recording sessions [18].

Low-dimensional population signal

The population signal as the weighted sum of spikes. Imagine a population of N neu-

rons that project to a read-out neuron. Every spike of a projecting neuron creates a small jump

in the membrane potential of the read-out neuron, followed by a decay towards the baseline

[22]. Moreover, spikes of all projecting neurons are summed up in the membrane potential of

the read-out neuron [22]. Consider the spike train of N simultaneously recorded neurons in

trial j and in time step tk,

ojðtkÞ ¼ ½o1;jðtkÞ; o2;jðtkÞ; :::; oN;jðtkÞ�
T

ð11Þ

where j = J0 + 1, . . ., . . ., J are trials from the test set. Trials in condition “non-match”, j = J0 +
1, . . ., J00, are followed by trials in condition “match”, j = J0 0 + 1, . . ., J. The transformation of

spike trains into a low-dimensional population signal consists in multiplying the spike train of

each neuron with the corresponding weight, summing across neurons and convolving with an

exponential kernel. Equivalently, this can be written as the projection of spike trains on the

vector of decoding weights,

xjðtkÞ ¼ Fð~w1o1;jðtkÞ þ ~w2o2;jðtkÞ þ :::þ ~wNoN;jðtkÞÞ

¼ Fð~wTojðtkÞÞ
ð12Þ

where F(y) is the transfer function. The transfer function is defined as the convolution with an

exponential kernel,

FðyðtkÞÞ ¼ ðy � uÞðtkÞ

¼
X

t2T

yðtk � tÞuðtÞ
ð13Þ

with u(t) = exp(−λt). Convolution with an exponential kernel models the causal effect of the

presynaptic spike on the neural membrane of the read-out neuron. Note that the transforma-

tion applies to a specific trial and maintains the temporal dimension of the spike train. The

only manipulation is to reduce the dimensionality from N (dimensionality of the spike train)

to 1 (dimensionality of the population signal). We compute the deviation of the resulting signal

from the mean,

~xjðtkÞ ¼ xjðtkÞ � zðtkÞ ð14Þ

Reading-out task variables from parallel spike trains
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where z(tk) is the average population signal across trials from both conditions.

zðtkÞ ¼
1

J � J0
XJ

j¼J0þ1

xjðtkÞ ð15Þ

The low-dimensional signal is then averaged across trials, distinguishing trials from condi-

tion “match” and “non-match”.

~xnmðtkÞ ¼
1

J@ � J 0
XJ@

j¼J0þ1

~xjðtkÞ

~xmðtkÞ ¼
1

J � J@
XJ

j¼J@þ1

~xjðtkÞ

ð16Þ

The significance of the discrimination between the population signal in “match” and “non-

match” is evaluated with he permutation test. The test statistics is the difference of population

signals.

DxðtkÞ ¼ ~xmðtkÞ � ~xnmðtkÞ ð17Þ

We compare Δx(tk) with Dxpermp ðtkÞ, where the latter has been computed with random per-

mutation of class labels for “match” and “non-match. The permutation is done in the training

as well as in the validation step. In the training step, decoding weights are computed with

SVMs that are trained on randomly permuted class labels. In the validation step, we randomly

permute class labels of parallel spike trains, keeping the same label across neurons. The whole

procedure is repeated nperm-times and gives a distribution of results for each time step. When

the result of the true model appears outside of the distribution of results for the null model, the

difference of signals in conditions “match” and “non-match is considered to be significant.

The population signal of neurons with positive and negative weights. We separate the

population of simultaneously recorded neurons with respect to the sign of the decoding

weight, distinguishing neurons with positive weight (plus neurons) and negative weight

(minus neurons). Weight vector of plus (~wþ) and minus neurons (~w � ), is defined by replacing

weights of the opposite sign with zero. This way, spikes of neurons with the opposite sign are

weighted by a zero weight and do not contribute to the projection. The population signal is

computed with each of the two weight vectors,

xþj ðtkÞ ¼ Fððf þ ~wþÞTojðtkÞÞ

x�j ðtkÞ ¼ Fððf � ~w � ÞTojðtkÞÞ
ð18Þ

where f + (f −) stands for the correction factor for the number of plus (minus) neurons. The cor-

rection factor is computed as f þ;� ¼ N
2Nþ;�= , where N+ (N−) is the number of plus (minus)

neurons. We have, on average, 58% of plus neurons in V1 and 54% in V4 during target, and

54% of plus neurons in V1 and 62% in V4 during test. To be able to compare results across the

two neuronal types, we scale the weight vector with the correction factor.

We compute the deviation of the population signal from the mean,

~xþj ðtkÞ ¼ xþj ðtkÞ � zþðtkÞ

~x �j ðtkÞ ¼ x�j ðtkÞ � z� ðtkÞ
ð19Þ
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with z+(tk) and z−(tk) are the sign-specific average of population signals.

zþðtkÞ ¼
1

J � J 0
XJ

j¼J0þ1

xþj ðtkÞ

z� ðtkÞ ¼
1

J � J 0
XJ

j¼J0þ1

x�j ðtkÞ

ð20Þ

Finally, we average each of the signals across trials, distinguishing conditions “match” and

“non-match”.

~xþ;nmðtkÞ ¼
1

J@ � J 0
XJ@

j¼J0þ1

~xþj ðtkÞ

~xþ;mðtkÞ ¼
1

J � J@
XJ

j¼J@þ1

~xþj ðtkÞ

ð21Þ

Same follows for minus neurons.

The significance is evaluated with the permutation test. The test statistic is the sign-specific

difference of signals in conditions “match” and “non-match”, e.g., for plus neurons:

DxþðtkÞ ¼ ~xþ;mðtkÞ � ~xþ;nmðtkÞ ð22Þ

The null model is computed with the random permutation of class labels when training the

classification model as well as in the reconstruction step. In addition, we use a random assign-

ment to the class of plus and minus neurons by randomly permuting neural indexes before

splitting neurons in plus and minus neurons.

The population signal in cortical layers. We distinguish three cortical layers, superficial

(supragranular, SG), middle (granular, G) and deep layer (infragranular, IG, [23]). The

method for determining cortical layers is described in the last section of methods, “Determin-

ing cortical layers from the current source density”. We define three layer-specific weight

vectors, ~wr , r 2 {SG, G, IG}. The layer-specific weight vectors take into account weights of neu-

rons from the specific layer, while weights of other neurons are replaced with zero. The recon-

struction in layer r is defined as follows:

xrj ðtkÞ ¼ Fððf r ~wrÞ
TojðtkÞÞ ð23Þ

where f r ¼ N
3Nr= is the correction factor for the number of neurons across layers, with Nr the

number of neurons in layer r. For the rest, the computation of layer-specific signals is identical

as for the plus and minus neurons, substituting sign-specific with layer-specific signals.

Disentangling sources of information for discrimination of conditions “match” and

“non-match”. The population signal contains several sources of information that might

inform successful discrimination of conditions “’match” from “non-match”. Useful informa-

tion could come from the weight vector and/or from the spike timing (Eq 12). Note that the

weight vector is computed utilizing spike counts and therefore does not contain the informa-

tion on spike timing. To investigate the contribution of different sources of information, we

remove a particular source while keeping others intact, and test how such a perturbation

affects the discrimination. If a particular source of information is critical, its removal will com-

promise the discrimination. The information is removed by replacing the true statistics with

random statistics.

Reading-out task variables from parallel spike trains
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We remove the information in the weight vector by substituting the true weight vector with

a random vector. The random vector is given by drawing N random samples (where N is the

number of neurons in the recording session) from the uniform distribution with the same

range as the range of the regular weight vector. We compute the population signal (Eqs 12–21)

utilizing true spike trains and the random weight vector. The information in decoding weights

can be further split into the information contained in the sign of weights (positive or negative)

and in the modulus of weights (the absolute value of each element of the weight vector). The

information contained in the sign of weights is removed by drawing N random samples from

the uniform distribution, collecting their signs and applying them to the regular weight vector.

The information in the modulus is removed by replacing the modulus of each element of the

regular weight vector with the modulus of a random vector, but keeping the correct sign.

Finally, we use regular weights but randomize the spike timing in the reconstruction step. This

is done by randomly permuting, without repetition, the order of time steps of the spike train

(the order of time steps is the same for all neurons within the population). For all four types of

perturbation, the procedure is repeated nperm−times.

Decoding with single neurons

We also decode correct choice behavior from the activity of single neurons. We compute the

decoding weight with an univariate method, for each neuron independently, and apply the

weight to the spike train of the single neuron. We use the same cross-validation procedure as

with the multivariate method described above. The univariate decoding weight is computed as

the Receiver-Operating Characteristics Curve (AUC, [24]), utilizing spike counts. To have uni-

variate decoding weights comparable to multivariate weights, we center the AUC score around

zero and scale it with the L2 norm,

wAUC
n ¼

AUCn � AUC0

jjwAUC � AUC01jj
ð24Þ

with jjwAUCjj ¼ ðAUC1 þ AUC2 þ :::AUCNÞ
1
2, AUC0 ¼

1

2
is the at chance prediction and 1 is

vector of ones.

Univariate decoding weights are then weighting spikes in the hold-out set, for each neuron

independently.

xAUCj;n ðtkÞ ¼ FðwAUC
n oj;nðtkÞÞ ð25Þ

Same as in the multivariate case, we compute the deviation of the signal from the mean,

~xAUCj;n ðtkÞ ¼ xj;nðtkÞ � zAUCn ðtkÞ ð26Þ

where zAUCn ðtkÞ is the average signal across trials from both conditions.

zAUCn ðtkÞ ¼
1

J � J0
XJ

j¼J0þ1

xAUCj;n ðtkÞ: ð27Þ

The univariate signal is then averaged across trials, distinguishing conditions “match” and

“non-match”.

The null model of reconstruction with single neurons is computed with random permuta-

tion of class labels. We compute the AUC score on spike counts with randomly permuted class

labels for conditions “match” and “non-match”. Weights are then applied on spike trains,

where the label for condition has again been randomly permuted.
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Correlation analysis

Cross-Correlation between the population signals of plus and minus neurons. We

compute the cross-correlation function between population signals of plus and minus neurons

in trial j,

Rþ�j ðtÞ ¼

XK� t� 1

k¼0

xþj ðtkÞx
�

j ðtk þ tÞ for t � 0

R� þj ð� tÞ for t < 0

8
>>>>><

>>>>>:

ð28Þ

with time lag τ = 1, 2, . . ., 2K − 1. The correlation function is normalized with autocorrelation

functions at zero time lag,

~Rþ�j ðtÞ ¼
Rþ�j ðtÞ

R� �j ð0ÞR
þþ
j ð0Þ

ð29Þ

where R+ + (R−−) is the autocorrelation function for plus (minus) neurons.

Rþþj ðtÞ ¼

XK� t� 1

k¼0

xþj ðtkÞx
þ

j ðtk þ tÞ; for t � 0

Rþþj ð� tÞ for t < 0

8
>>>>><

>>>>>:

ð30Þ

The correlation function is computed in single trials and then averaged across trials, distin-

guishing conditions “match” and “non-match”,

~Rþ� ;mðtÞ ¼
1

Jm
XJm

j¼1

~Rþ�j ðtÞ

~Rþ� ;nmðtÞ ¼
1

J � Jm
XJ

j¼Jmþ1

~Rþ�j ðtÞ:

ð31Þ

where Jm is the number of trials in condition “match” and trials are ordered such that trials in

condition “non-match” follow trials in condition “match”. We estimate the significance of the

correlation function with the permutation test. Since there was no difference across condi-

tions, we compute the correlation function using trials from both conditions,

~Rþ� ðtÞ ¼
1

J

XJ

j¼1

~Rþ�j ðtÞ ð32Þ

and compare it with the null model. The null model is computed with random weights and

random assignment to the group of plus and minus neurons.

Correlation function of the population signals in cortical layers. Similarly, we compute

the cross-correlation of population signals between pairs of cortical layers. As before, the
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correlation function is computed for the two population signals in the same trial,

Rc1c2
j ðtÞ ¼

XK� t� 1

k¼0

xc1j ðtkÞx
c2
j ðtk þ tÞ; for t � 0

Rc2c1
j ð� tÞ; for t < 0

8
>>>>><

>>>>>:

ð33Þ

with (c1, c2) 2 {(SG, G), (SG, IG), (G, IG)}. The rest of the procedure is the same as for plus and

minus neurons. The significance of results is evaluated with the permutation test. The null

model is computed with random weights and random assignment to one of the three cortical

layers.

Determining cortical layers from the current source density

The cortical depth can be split into three cortical layers, the superficial or the supragranular

layer (SG), the middle or the granular layer (G), and the deep or the infragranular (IG) layer

[23]. To split neurons in layers, we designed a method that utilizes patterns of activation of the

current source density (CSD). CSD is a 3-dimensional tensor that associates direction of the

current flow to every point in space and time. Normalized CSD is defined as Aijk, i = 1, . . .,

Nspace, j = 1, . . ., Ntime, k 2 [−1, 1], where i extends in the spatial dimension, j in the temporal

dimension and k is the direction of the current flow. CSD is computed as the second spatial

derivative of the trial-averaged local field potential [25]. In general, the G layer is the input

layer for sensory stimuli and is characterized by a current sink upon the presentation of a

salient visual stimulus, while, simultaneously, the SG and IG layers present a current source

[26]. We utilize this pattern of sink and sources to determine the borders of the G layer. First,

we search for the strongest current sink in the time window [20, 100] ms after the onset of the

test stimulus, which is the point in space and time with the maximal value of the current flow,

Amax(i0, j0, k0). The pattern of sink and sources is primarily a spatial feature and we capture it

with the spatial covariance of the current source density,

C ¼
1

Ntime
ATA ð34Þ

where T denotes the transpose. We now define the vector cmax as the vector of covariance that

passes through the point Amax.

cmax ¼ c1;k0 ; :::; cj;k0 ; :::; cNspace ;k0 ð35Þ

Along this particular vector of covariance, current sinks correspond to peaks and current

sources correspond to troughs. We capture the peak that corresponds to the strongest current

sink, cj0, k0. On each side of this peak, the two troughs correspond to the two current sources of

interest. Between the peak and each of the troughs, the vector of covariance crosses the zero

line, indicating the current inversion. We determine the upper and the lower border of the G

layer as the zero crossing on each side of the peak. After determining the borders of the G

layer, units above the upper border of the G layer were assigned to the the SG layer and units

recorded below the lower border to the IG layer. In V1, we identified 48, 51 and 61 neurons in

the SG, G and IG layer, respectively. In V4, we identified 18 (SG), 42 (G) and 42 (IG) neurons

in the respective layers.
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Results

The population PSTH does not allow to discriminate correct choices on

binary stimulus classes “match” and “non-match”

Two adult monkeys macaca mulatta have been tested on the visual discrimination task with

complex naturalistic images (see Methods). In each trial, animal subjects visualized two

images, the target and the test, with a delay period in between (Fig 1A). Laminar arrays were

inserted into the visual areas V1 and V4, perpendicularly to the cortical surface, spanning the

cortical depth (Fig 1B). We limited the analysis to correct trials and distinguish two conditions,

“match’” (correct choice on matching stimuli) and “non-match” (correct choice on non-

matching stimuli). Classes “match” and “non-match” are conditioned on a mixed variable that

potentially contains the information about both the stimulus and the choice and discriminat-

ing the two classes relies on either of these two sources of information or, more likely, a

Fig 1. Experimental paradigm and spiking data. (A) Experimental paradigm. One trial consisted of the visualization

of the target and the test stimuli, interleaved with the delay period. (B) Schema of the macaque brain with approximate

location of recording sites. (C) Spike trains of an example recording session in V4 during the visualization of the test

stimulus. We show 3 randomly selected trials in condition “non-match” (blue) and “match” (red). The yellow region

marks the presence of the stimulus. (D) Mean firing rate of single neurons in V1 (top) and in V4 (bottom) during the

target time window (left) and the test time window (right). We show the firing rate in condition “match” (red) and

“non-match” (blue). Neurons were collected across all recording sessions and sorted (from strongest to weakest) for

the firing rate in condition “match”. (E) Population PSTH in conditions “match” (red) and “non-match” (blue). We

show the mean ± SEM for the variability across sessions. The presence of the stimulus is marked as the yellow region.

https://doi.org/10.1371/journal.pone.0222649.g001
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combination of both. Throughout the study, we analyze neural responses in two time win-

dows, corresponding to the interval [0, 400] ms with respect to the onset of the target and the

test stimuli. The information, necessary for discriminating matching from non-matching sti-

muli, is only available during the test time window and we therefore expect to discriminate

“match” from “non-match” during test, but not during target.

The average firing rate of single neurons is highly variable across neurons but very similar

across conditions (Fig 1D). Also, PSTHs in conditions “match” and “non-match” are highly

overlapping (Fig 1E). With the population PSTH, the spiking activity is summed across neu-

rons, with each neuron contributing equally to the sum (see Methods, Eq 2). In the following,

we will assume that the contribution of neurons within the population is not equal, but is

weighted according to neuron’s decoding weight. This reflects the fundamental idea that neu-

ral networks are not homogeneous ensembles but instead have a structure that allows them to

perform computations.

Weighting spike trains with decoding weights allows to discriminate

conditions “match” and “non-match”

We compute decoding weights by training an optimal linear classifier, SVM, on parallel spike

counts of simultaneously recorded neurons (see Methods). Once decoding weights are learned,

they are fixed and can be used in single trials and in real time to compute the population signal.

The population signal is computed as a weighted linear sum of spikes (see Methods, Eq 12).

We collect the population signal across trials, and average it distinguishing conditions “match”

and “non-match” (Eq 16). The population signal in conditions “match” and “non-match” is

highly overlapping during the target time window (Fig 2A, left). This is expected, since the

information, necessary for discrimination, is not yet available. During the test time window,

the population signal in conditions “match” and “non-match” diverges (Fig 2A, right), and is

significantly different between the two conditions in both V1 and V4 (Fig 2B, right). It can be

seen, however, that the temporal profile of the population signal differs across the two brain

areas. In V1, the signal diverges early in the trial and stays approximately constant throughout

the trial. In V4, the difference between signals in conditions “match” and “non-match” builds

Fig 2. Population signal. (A) Population signal in V1 (top) and V4 (bottom) during the target (left) and the test time window (right). Shaded areas

indicate the mean ± SEM for the variability across sessions. We show population signals in conditions “match” (red) and “non-match” (blue). (B)

Difference between session-averaged population signals, showing the regular model (magenta trace) and the distribution of results of the null model

(gray area). Parameters: λ = 20−1 ms, nperm = 1000.

https://doi.org/10.1371/journal.pone.0222649.g002
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up over time and is the biggest towards the end of the trial (Fig 2B, lower right). Interestingly,

the difference in signals in V4 slowly oscillates and at the same time increases in every cycle.

Considering the population signal as the input current to a read-out neuron, such dynamics

would give windows of high and low probability for spiking.

The exact time course of the population signal depends on the time constant of the convolu-

tion λ. With longer time constant, the effect of a spike lasts longer, giving rise to a signal that

integrates more over time (Fig 3A, left plots). The use of a linear filter, however, essentially

only scales the amplitude of the signal, and this effect can be reversed by rescaling the signal

with the area under the temporal filter, ∑t2T u(t) (Fig 3A, right plots). As signals are rescaled,

the only difference between signals that use different time constants is smoothness, since lon-

ger time constants give smoother signal. The oscillatory dynamics of the population signal in

V4 therefore cannot be due to the convolution with a particular filter, since the same oscil-

latory dynamics is present for different time constants (Fig 3A, bottom right) and since it is

present for time constants that are shorter than the oscillation cycle. In the rest of the paper,

we will use the time constant λ = 20−1 ms.

It is also possible to discriminate conditions “match” from “non-match” from the activity of

single neurons. We compute decoding weights of single neurons as the area under the ROC

curve, and apply the weight of each single neuron to its spike train (see Methods, Eqs 24–27).

Results show that the activity of single neurons also allows to discriminate conditions “match”

and “non-match”. However, we argue that the univariate approach is less biologically plausible.

It is unlikely that any brain structure can isolate the activity of a single synaptic input, while

being “bombarded” by a large number of synaptic inputs from hundreds to thousands of neu-

rons [9].

Correct sign of weights is necessary and sufficient for discrimination

The population signal contains distinct sources of information, and we ask, which of these

sources is necessary for discrimination. We disentangle the necessity of a particular source

Fig 3. Dependency of the population signal on the time scale of the convolution and on the modulus of weights. (A) Difference of population

signals during the test time window for different values of parameter λ. We use time constants λ = [10−1, 20−1, 50−1] ms and plot results without

normalization (left) and with normalization (right). (B) Decoding with single neurons. Top: Signal, decoded from single neurons in conditions “match”

(red) and “non-match” (blue) during the test time window. We show the mean ± SEM for the variability across all recorded neurons in V1 (left) and in

V4 (right). Bottom: Difference of signals, averaged across neurons (magenta), and the distribution of the same results from models with permuted class

labels (gray). Parameters: λ = 20−1 ms, nperm = 1000.

https://doi.org/10.1371/journal.pone.0222649.g003

Reading-out task variables from parallel spike trains

PLOS ONE | https://doi.org/10.1371/journal.pone.0222649 October 17, 2019 15 / 24

https://doi.org/10.1371/journal.pone.0222649.g003
https://doi.org/10.1371/journal.pone.0222649


for discrimination by computing the population signal (Eq 16) with a particular source of

information being removed (see Methods). As we remove the information from the weight

vector, population signals in conditions “match” and “non-match” are highly overlapping

(p = 0.6046 in V1, p = 0.8499 in V4, t-test on time-averaged signals with 1000 permutations),

indicating that the information in the weight vector is critical for discrimination (Fig 4A, left

plots). Next, we disentangle the importance of the sign and of the modulus of weights for dis-

crimination. Removing the information on the sign of weights gives highly overlapping popu-

lation signals in conditions “match” and “non-match” (p = 0.7354 in V1, p = 0.4774 in V4,

Fig 4, middle left). If, instead, we keep the correct sign and use a random modulus, the popula-

tion signal in conditions “match” and“non-match” can clearly be discriminated (p<10−8 in

both areas, Fig 4A, middle right). Finally, as we remove the information in spike timing, dis-

crimination remains possible (p<10−8 in both areas, Fig 4A, right plots), showing that the

spike timing is not critical for discrimination. However, permutation of spike timing removes

the temporal profile of the population signal, including the oscillating dynamics in V4. Never-

theless, we conclude that the information contained in the sign of weights is necessary and suf-

ficient for discrimination of conditions “match” and “non-match”.

Results have shown that the modulus of weights is not necessary for discrimination, and we

compute the population signal using binary weights to see if such a population signal is similar

to the regular population signal (as on Fig 2). All positive weights are set to the same value, a,

and all negative weights are set to its inverse, −a. We estimate the scalar a in such a way that

the range of the weight vector is the same as with original set of weights, i.e., a ¼ N � 1
PN

1
jwnj.

The population signal with binary weights is indeed similar to the population signal with regu-

lar weights, and allows discrimination of conditions “match” from “non-match” (Fig 4B).

Optimal (and heterogeneous) weights still have a slightly greater discriminatory power than

binary weights (e.g., the difference of signals in “match” and “non-match” is greater with opti-

mal weights). Nevertheless, since the loss of discriminatory power is relatively small, we can

relax the hypothesis of optimality, questionable in the biological network, to the correct assign-

ment of the sign of weights.

Fig 4. Distribution of population signals for models with specific permutation. Population signal during the test time window, computed with

random weights (left), random sign of weights (middle left), random modulus of weights (middle right) and randomly permuted spike timing (right).

We show results in V1 (top) and in V4 (bottom) in conditions “non-match” (blue) and “match” (red). For all procedures, we used 1000 random

permutations and we plot the entire distribution. (B) Difference of population signals for the regular model (magenta) and for the model with binary

weights (blue). The gray area marks the distribution of results using models with permuted class labels. Parameters: λ = 20−1 ms, nperm = 1000.

https://doi.org/10.1371/journal.pone.0222649.g004
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Neurons with positive and negative weights respond with anti-symmetry

Since the sign of weights is the crucial source of information for the model, we ask, how do

plus and minus neurons contribute to the population signal. By design, plus and minus neu-

rons have the opposite effect on classification. The weight vector determines the direction of

the plane that separates data points, and plus and minus neurons rotate the separating plane in

the opposite directions. We therefore split neurons in two subpopulations according to the

sign of weights and compute the population signal with each of the two subpopulations (see

Methods, Eq 18). During test, neurons with positive and negative weights respond with anti-

symmetry (Fig 5A). Minus neurons increase the activity above the baseline in condition “non-

match” and decrease below the baseline in condition “match”, while plus neurons do the oppo-

site. The divergence of the signals in the two conditions most prominently appears at the end

of the trial, which could be due to a neuron-type specific feedback from higher brain areas. In

V4, the anti-symmetric response is observed only with plus neurons, while minus neurons

do not have any significant discriminatory capacity (Fig 5A, bottom). During the target time

window, as expected, the population signal fluctuates around zero in all cases (S1 Fig). We

conclude that plus and minus neurons during test respond with anti-symmetry, with the

exception of minus neurons in V4, that do not seem to discriminate conditions “match” from

“non-match”.

The low-dimensional signal for plus and minus neurons is computed by splitting the popu-

lation of simultaneously recorded neurons into two subpopulations. The signals of plus and

minus neurons therefore evolve simultaneously within the same trial. We compute the interac-

tion between the two signals with the cross-correlation function (see Methods, Eqs 28–32).

Interestingly, there is a negative correlation between the population signals of plus and minus
neurons, in the two brain areas and in both target and test time window (Fig 5B). There is no

significant difference between correlation functions in conditions “match” and “non-match”

(S1D Fig). Negative interaction between plus and minus neurons appears as a strong and

robust effect in both brain areas.

Fig 5. Plus and minus neurons respond with anti-symmetry. (A) Population signal of minus neurons (top) and plus neurons (bottom) during the test

time window. We show the mean ± SEM for the variability across recording sessions and report results in condition “match” (red) and “non-match”

(blue). (B) Cross-correlation function between population signals of plus and minus neurons. To compute the cross-correlation function, we use trials

from both conditions. Results are shown for the true model (magenta) and for models with random assignment to the subpopulation of plus and minus
neurons. Parameters: λ = 20−1 ms, nperm = 1000.

https://doi.org/10.1371/journal.pone.0222649.g005
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The superficial layer of the cortex discriminates best conditions “match”

and “non-match”

In the previous section, neural populations were split according to the sign of decoding

weights. In the last part, we split the neural population according to the spatial location of neu-

rons across the cortical depth in three cortical layers (superficial or SG, middle or G and deep

or IG layer, see Methods). We split neurons in layers using a method based on the spatial

covariance of the current source density (Fig 6, see Methods). The population signal is com-

puted in each layer separately (Eq 23). Layer-specific population signals reveal that the superfi-

cial layers have the strongest discriminatory capacity of conditions “match” and “non-match”

in both V1 and V4 (Fig 7). In V1, the middle layer shows a weak effect during the first half of

the trial (Fig 7B, middle left) and in V4, middle and deep layers show a weak effect towards the

end of the trial (Fig 7B, middle and bottom right). This is true for the test time window, while

during the target time window, the population signal in all layers stays close to zero (S2 Fig).

Fig 6. Method for assignment of cortical layers from the current source density. Left: Current source density (CSD)

during one recording session in V4. The x-axis shows time, relative to the onset of the test stimulus, and the y-axis

shows the cortical depth, relative to the position of the upper channel on the laminar probe. The color indicates the

direction of the current flow, with current sinks in red and with current sources in blue. After the onset of the stimulus,

we observe a characteristic pattern of current sink and sources. The sink is a hallmark of the granular (G) layer, while

sources characterize the supragranular (SG) and the infragranular (IG) layers. Top right: The pattern of sinks and

sources is captured by the spatial covariance of the current source density. We select the vector of covariance that

passes through the strongest sink, cmax. Bottom right: Plotting the vector of covariance as a function of the cortical

depth, one of the peaks corresponds to the strongest current sink (red point) and neighboring troughs correspond to

current sources (blue).

https://doi.org/10.1371/journal.pone.0222649.g006
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The deep layer of V1 shows almost no discriminatory capacity in either test (Fig 7A and 7B,

bottom left), or target (S2 Fig).

With layer-specific reconstruction of spike trains, we obtain three simultaneous population

signals, one in each layer. We measure the linear correlation of population signals for each pair

of layers with the cross-correlation function (see Methods, Eq 33). Results show positive corre-

lation across all pairs of layers during both test (Fig 8) and target time window (S3A Fig).

There is no significant difference across conditions “match” and “non-match” in neither target

nor test (S3B and S3C Fig). We conclude that positive correlation across layers is a robust and

generic property of the cortex, similarly to the negative correlation between subnetworks of

plus and minus neurons.

Conclusion

We presented a new model of the read-out of parallel spike trains that exploits the structure of

the population code. We assumed the point of view of a read-out neuron, receiving synaptic

inputs from a population of projecting neurons. The gist of the present read-out method is to

endow a biological neural network with functionality. This is done by assuming that decoding

weights between projecting neurons and a hypothetical read-out unit are such as to allow clas-

sification. Decoding weight determines how does the spike of a particular neuron affect the

population signal. After weighting spikes and summing across neurons, we get a 1-dimen-

sional signal, evolving in real time, that can be thought of as the sum of post-synaptic potentials

at the read-out unit, modulating the spiking probability of the latter. We have shown that the

population signal clearly allows to discriminate conditions “match” and “non-match” in V1

and V4 during the test time window, when we would expect it to do so. Importantly, the popu-

lation signal does not allow the discrimination during the target time window, when we would

not expect it to do so. We demonstrated that discrimination critically depends on the correct

assignment of the sign of the weight. Results show that neurons with the opposite sign of

weight respond in anti-symmetric fashion to the mutually exclusive stimulus classes “match”

Fig 7. The superficial layer of the cortex is the best in discriminating conditions “match” from “non-match”. (A) Population signal in recording

sessions in the superficial (top), middle (middle) and deep cortical layers (bottom) in V1 (left) and in V4 (right). We show the mean ± SEM across

recording sessions in conditions “match” (red) and “non-match” (blue). (B) Same as in A, but for the session averaged difference of signals. We show

results of the regular model (magenta) and the distribution of results for the model with permutation (gray). Parameters: λ = 20−1 ms, nperm = 1000.

https://doi.org/10.1371/journal.pone.0222649.g007
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and “non-match” and that population signals of neurons from the opposing coding pools are

negatively correlated (for a related analysis in the retina, see [27]). Distinguishing superficial,

middle and deep layers of the cortex, we show that the superficial layer is the most important

in discriminating the two behavioral conditions in both brain areas.

Present model gives insights in the structure of the population code and into how this struc-

ture allows computation at the level of neural networks. The model can be applied to any data

set with parallel spike trains where it is possible to assume the nature of the computation that

underlies the neural activity. While the concept of weighted spike trains is generally applicable,

the way the population decoding weights are computed has to be adapted to the specific case at

hand. Here, we computed decoding weights using a specific supervised learning method (lin-

ear SVM), but another supervised learning method, unsupervised learning or statistical

method can be used instead. Our choice of the linear SVM is justified with SVM’s optimality

for binary classification tasks and we would expect that the use of another classifier would

results in a decoding model with decreased performance. We argue that, in the present con-

text, supervised learning is a plausible assumption. The animal is rewarded for the correct

behavior (which is the one we analyze here) and the reward signal could enact the teaching sig-

nal, assumed by supervised learning. Moreover, we also show that the optimality assumption

can be relaxed with only a small loss of predictive power.

In the present experimental setting, the behavioral task consists in matching delayed sam-

ples. The decision of the animal (“same” or “different”) is based on the comparison of the test

stimulus with the stimulus from the past (the target stimulus). This is a relatively complex cog-

nitive task that presumably requires the activation of the working memory [28]. Visual areas,

in particular their superficial layers, receive top-down projections [29], while, at the same time,

they are also driven by the bottom-up inputs. It has been shown theoretically that in the pres-

ence of the common top-down input, population-wise coding weights can be learned with

local synaptic plasticity rules [17]. We speculate that after learning, the top-down input to V1

and V4 could selectively target plus or minus neurons, depending on the condition. Such a

context-dependent top-down signal could be computed in the prefrontal cortex, as described

in [30]. Neurons with positive weight would be preferentially targeted in condition “match”

and neurons with negative weight in condition “non-match”, and such a condition-specific

Fig 8. Population signals are positively correlated across the cortical layers. The cross-correlation function for pairs

of cortical layers, SG & G (top), SG & IG (middle) and G & IG (bottom) during the test time window. The cross-

correlation function uses trials from both conditions. We plot results of the regular model (magenta) and distribution

of results for models with permutation (gray). Parameters: λ = 20−1 ms, nperm = 1000.

https://doi.org/10.1371/journal.pone.0222649.g008

Reading-out task variables from parallel spike trains

PLOS ONE | https://doi.org/10.1371/journal.pone.0222649 October 17, 2019 20 / 24

https://doi.org/10.1371/journal.pone.0222649.g008
https://doi.org/10.1371/journal.pone.0222649


top-down signal could explain the anti-symmetric activation of plus and minus neurons that

we observe towards the end of trial. Among the three cortical layers that have been tested, the

superficial layers have shown the best discrimination capacity. The strength of the effect in the

superficial layers of V1 and V4 with respect to other layers corroborates our idea of the top-

down influence on representation, since the superficial layers receive top-down inputs most

abundantly and are as such best suited to perform the required computation.

From the biophysical point of view, it has been understood that variable spiking of single

neurons can be mechanistically accounted for by the high-conductance regime [31], where the

stream of excitatory and inhibitory synaptic inputs largely cancel each other out [32]. While

the mean excitatory and inhibitory currents cancel each other out, remaining fluctuation of

the membrane potential gives rise to variable spiking. It has been proposed that similar mecha-

nism operates at the level of the population signal, where neurons with opposite coding func-

tion cancel out each other’s effect [15], and that such canceling is critical for the correct

representation of the population signal. In this respect, the method presented here is funda-

mentally different from methods that do not assume a coding function and where the

dimensionality reduction consists in collapsing the dimensionality of homogeneous neural

ensembles (with a population PSTH, as done here, or using a more advanced method).

According to our results, it is possible to simplify the read-out of cortical spike trains by

assuming binary read-out weights (e.g., for the purpose of the analytical treatment). However,

any further simplification would take away the ability of the neural ensemble to perform com-

putation. It is interesting to consider the striking difference between the population PSTH and

the population signal during the target time window. While we observe a strong peak of activ-

ity after the stimulus onset with the former, the latter stays around zero. Presumably, this is so

because neurons with opposite coding function cancel out each other’s effect and maintain the

representation of the “zero” signal, as suggested in [15].

Comparing our model with Generalized Linear models and other models of Stimulus-

Response Functions (SRF, see [33] for a review), the two have in common the goal of the analy-

sis—modeling neural activity from the functional perspective. However, present read-out

model importantly differs from models of SRF in several ways. First, models of SRF are encod-

ing models while ours is a decoding model. Second, SRFs model the response function of sin-

gle neurons and implicitly assume that the representation of the stimuli can be captured by

spatio-temporal filters of single neurons. Our model, on the contrary, assumes that task vari-

ables are represented by a distributed code and encoded jointly by the entire network. Third,

while models of SRF cannot be mapped on low-level physical properties of biological net-

works, our model presumably can. Potentially, coding with filters and coding with distributed

codes might be two complementary rather than competing approaches that the brain utilizes

for processing of visual stimuli. While coding with filters might be advantageous with simplis-

tic, low-dimensional stimuli (e.g., moving bars, gratings, moving dots, etc. . .), distributed pop-

ulation code could be used by the brain to process complex natural stimuli in a more high-

level and ecological setting.

In the present work, we have assumed, for simplicity, that all neurons within the population

project to the same read-out unit. We argue that in our case, this assumption is reasonable,

since neural populations have been recorded across the cortical depth. Because of the retinoto-

pic organization of the visual cortex [34, 35], neurons that span the cortical depth perpendicu-

larly to the surface share a large proportion of their inputs, and project, at least partially, to the

same read-out units. Moreover, it has to be emphasized that removing some of the neurons

from the population does not change much the population signal, as long as the sign of weights

of remaining neurons is correctly assigned. Nevertheless, it would be interesting to directly

verify the validity of present results with an experimental assay in the behaving animal, where
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the activity projecting neurons and of the read-out neuron is monitored simultaneously, the

experiment envisioned by Hubel and Wiesel [1]. Recordings from behaving animal still give

only a small subsample of all the units that are active in parallel in biological networks. On the

modeling side, an interesting way of extending present work would consist in simulating a

realistic model of the cortical column and endow it with coding functionality, as it follows

from present analysis. Having a realistic number of neurons and biologically plausible connec-

tivity structure would allow to estimate how does the discrimination capacity of the network

behave with bigger number of neurons, the presence of excitatory and inhibitory neurons, etc.

Such a data-driven model could be studied analytically with advanced methods of dimension-

ality reduction [36, 37] that provide an accurate description of the population firing rate.
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