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Abstract

We developed an automated 2-tiered Fuhrman’s grading system for clear cell renal cell car-

cinoma (ccRCC). Whole slide images (WSI) and clinical data were retrieved for 395 The

Cancer Genome Atlas (TCGA) ccRCC cases. Pathologist 1 reviewed and selected regions

of interests (ROIs). Nuclear segmentation was performed. Quantitative morphological,

intensity, and texture features (n = 72) were extracted. Features associated with grade were

identified by constructing a Lasso model using data from cases with concordant 2-tiered

Fuhrman’s grades between TCGA and Pathologist 1 (training set n = 235; held-out test

set n = 42). Discordant cases (n = 118) were additionally reviewed by Pathologist 2. Cox pro-

portional hazard model evaluated the prognostic efficacy of the predicted grades in an

extended test set which was created by combining the test set and discordant cases (n =

160). The Lasso model consisted of 26 features and predicted grade with 84.6% sensitivity

and 81.3% specificity in the test set. In the extended test set, predicted grade was signifi-

cantly associated with overall survival after adjusting for age and gender (Hazard Ratio

2.05; 95% CI 1.21–3.47); manual grades were not prognostic. Future work can adapt our

computational system to predict WHO/ISUP grades, and validating this system on other

ccRCC cohorts.

Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common malignant tumor of epithelial ori-

gin in the kidney [1]. For over 30 years, ccRCC was graded using the 4-tiered Fuhrman nuclear

grading system which incorporates nuclear size, nucleolar prominence, and nuclear mem-

brane irregularities. Diagnostic challenges can occur with the presence of other morphological

features such as sarcomatoid or spindle cell pattern, when higher grade ccRCC show more

eosinophilic staining in the cytoplasm, or other renal cancer histologic types (e.g. papillary

RCC type1 and chromophobe RCC) exhibit clear cytoplasm [2,3]. The correct classification of

ccRCC grade and stage is important for guiding clinical management, molecular-based
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therapies, and prognosis [4,5]. Fuhrman grade is widely accepted as a prognostic factor despite

mediocre inter-observer agreement [6,7]. To improve inter-observer agreement, simplified 2-

or 3-tiered grading systems have been proposed. These simplified systems appear to retain

prognostic ability similar to that of 4-tiered systems [8,9]. Recently, a new nuclear/nucleolar

grading system, known as the World Health Organization (WHO)/International Society of

Urological Pathology (ISUP) Grading Classification for RCC, was introduced [10].

Technological advances have enabled computational pathology to discover novel histomics

features from whole slide images (WSIs) that may add diagnostic and/or prognostic informa-

tion [11–13]. Computational pathology techniques can analyze cancer WSIs [14–16], includ-

ing the detection of malignant RCC cells [17]. In this study, we developed an automated

grading system to predict 2-tiered Fuhrman grade using ccRCC WSIs from The Cancer

Genome Atlas (TCGA). Our specific aims were to establish a computational pipeline to extract

nuclei histomics features, develop a model to predict 2-tiered ccRCC grade, and evaluate the

prognostic efficacy of computer predicted grades.

Materials and methods

Cases and grade assignment

TCGA ccRCC clinical data, including Fuhrman’s grade (accessed June 2017), and hematoxylin

and eosin (H&E) WSIs were retrieved for 395 cases [18,19]. TCGA ccRCC cases were contrib-

uted by seven participating medical centers. The TCGA Fuhrman’s grade for each case is the

consensus of at least two pathologists from the case’s medical center. In order to identify

tumor areas on each diagnostic WSI (i.e., regions of interest (ROIs)) for this computational

pathology study, Pathologist 1 reviewed each WSI, identified an average of five ROIs for each

case (Fig 1), and assigned a Fuhrman grade of 1 to 4 for each ROI. The highest grade among all

the ROIs was the designated grade. Thus, each patient had two assigned grades: “TCGA grade”

and “Grade by Pathologist 1”. TCGA and Pathologist 1 grades were re-stratified into the

2-tiered grading system: low (grades 1 and 2) and high (grades 3 and 4).

Image processing and nuclei segmentation

ROIs (n = 1855) from 395 WSIs were extracted and split into 2000 pixel by 2000 pixel patches

(Fig 2). Nuclei segmentation was performed using Fiji (ImageJ, National Institutes of Health)

[20] and using our previously published workflow [14]. H&E patches were converted from the

Red, Green, and Blue (RGB) color space to the Hue, Saturation, and Value (HSV) color space

(i.e., binary patches; Fig 3). A nonlinear mapping approach was applied as preprocessing to

handle the variation across H&E staining inconsistency [21]. The nuclei segmentation method

consists of two steps: adaptive thresholding in each HSV color channel to identify nuclei

regions from the background, and marker controlled watershed-based nuclei segmentation to

separate touching and overlapping nuclei. We further applied morphological operations to

fine-tune the segmentation of nuclei. Extracted nuclei of area less than 200 pixels or greater

than 2000 pixels were excluded to improve the specificity of nuclear detection [14].

2D histomics feature extraction

For each patch, 72 nuclei histomics features were extracted: nine morphological features, 15

intensity-based features, and 48 texture-based features. Morphological features describe the

shape and size variation of nuclei. Intensity features (first order statistical features) describe

the distribution of color variation in the nucleus. Three color channels were analyzed: lightness

from HSV color space, lightness from Lab color space, and Hematoxylin channel from H&E
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color deconvolution [22]. Five first order statistical features were computed—mean, median,

standard deviation, skewness, and kurtosis—for each of the three color channels, for a total of

15 intensity features. Texture features (second order statistical features) quantitatively describe

Fig 1. Schematic diagram showing how regions of interest (ROIs) were identified by Pathologist 1. Pathologist 1 identified ROIs and assigned a Fuhrman grade for

each ROI. The highest grade among all ROIs was the “Grade by Pathologist 1”. Each case also had a “TCGA grade” retrieved from the TCGA database.

https://doi.org/10.1371/journal.pone.0222641.g001

Fig 2. From whole slide image to patches for image processing and nuclei segmentation.

https://doi.org/10.1371/journal.pone.0222641.g002
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patterns and texture of pixel values. Two types of second order statistical features were com-

puted: co-occurrence based features (n = 8) and run length based features (n = 8). Co-occur-

rence based features include correlation, cluster shade, cluster prominence, energy, entropy,

Haralick correlation, inertia, and inverse difference moment [23]. Run length based features

include gray-level non-uniformity, run-length non-uniformity, low and high gray-level run

emphasis, short run low and high gray-level emphasis, and long run low and high gray-level

emphasis [24]. Likewise, texture features were extracted from the three selected color channels,

resulting in a total of 48 texture features. Feature formulas have been previously described

[14,25].

Data summarization and selection of representative ROI

Data extracted at the patch level were summarized to the ROI level by calculating the median

and median absolute deviation (MAD) (i.e., 144 summarized features). Some cases had multi-

ple ROIs annotated with the highest grade. Thus, one ROI among the highest grade ROIs was

selected to represent the case. To do so, the median of all ROIs with the highest grade was cal-

culated, and the ROI with the smallest Euclidean-distance to the calculated median was chosen

(Fig 4).

Developing the machine learning model to predict grade

Cases with concordant 2-tiered grade by TCGA and Pathologist 1 (n = 277) were used to

develop the automated 2-tiered grading system. Concordant cases were spilt into a training set

(n = 235; 85%) and held-out test set (n = 42; 15%; Fig 5). The sampling package, R, was used to

select the 42 patients in the held-out test set based on grade, age, gender, and stage, ensuring

that they were representative of the concordant cases. Histomics features were z-scored. Seven

machine learning classification methods were explored to classify ccRCC cases into either low

or high grade using nuclei histomics features [26,27] (Fig 5). All methods achieved similar area

under the receiver-operator characteristic curves (AUC ROC; S1 Table). Lasso regression was

the top performing method with a built-in feature selection capability. Lasso regression is one

Fig 3. Examples of nuclei detection and segmentation in low and high grade clear cell renal cell carcinoma. The

rightmost column shows computer-generated segmentation mask where cell nuclei are labelled white against a black

background. The middle column shows the overlay of segmented nuclei (green spots) over each hematoxylin and eosin

(H&E) patch.

https://doi.org/10.1371/journal.pone.0222641.g003
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type of linear regression with L1 regularization. The Lasso procedure uses L1 regularization

penalty, which has the effect of shrinking the regression weights of the least predictive features

to 0, thereby creating simpler models that are less prone to overfitting [28]. In the Lasso

model, a hyper parameter λ determines the amount of the L1 regularization penalty applied.

We decided to move forward to use Lasso to build our final classification model because it is

computationally efficient and more interpretable compared to other machine learning meth-

ods such as deep learning. Lasso regression and its optimal hyper parameter selected the final

list of histomics features most associated with grade. We evaluated its performance on the held

out test set.

Survival analyses

The Lasso model was applied to predict the grade of the previously held out test set (n = 42)

and cases with discordant grades (n = 118). These 160 cases were combined to create an

extended test set to evaluate the prognostic capability (i.e., overall survival [OS]) of our pre-

dicted grade using crude and adjusted Cox proportional hazard models. The adjusted Cox

Fig 4. Data summarization and the selection of the representative region of interest (ROI).

https://doi.org/10.1371/journal.pone.0222641.g004
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models include patient age, gender, and cancer stage. TCGA treatment information was missing

from 69% of the cases and thus was not included in the adjusted Cox models. Kaplan-Meier

curves were plotted to visualize differences between the curves (survival package, R) [29].

Additional pathological review for discordant cases

The grades provided by TCGA may be assessed from ROIs other than the representative ROIs

selected in our study. To obtain a fairer comparison between manual and predicted grades among

the discordant cases, the representative ROIs were additionally reviewed by Pathologist 2.

Statistical analyses

Confusion matrices determined the concordance of the 2-tiered and 4-tiered grades between

two raters [27]. Inter-rater reliability among three raters was evaluated using Fleiss’ kappa.

Fig 5. A summary of the workflow used to develop the 2-tiered clear cell renal cell carcinoma (ccRCC) grade classification. Seven machine learning classification

methods were evaluated to determine the optimal method to develop a robust classification model for ccRCC using cases from the Training Set (A). Lasso regression

produced an average area under the receiver operator characteristic curve of 0.84 and identified nuclei histomics features associated with ccRCC grade. The Test Set was

used to evaluate the performance of the final model; and grades were predicted in the Extended Test Set (B).

https://doi.org/10.1371/journal.pone.0222641.g005
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Boxplots were created using ggplot2 version 2.2.1. Comparisons between the nine morphologi-

cal features with 2-tiered and 4-tiered grading were done using Mann-Whitney U or Kruskal

Wallis test, respectively. All tests of statistical significance were two-sided. Statistical signifi-

cance was achieved when p-value was <0.05 or when the false discovery rate (FDR) was <0.05.

All analyses were conducted using R version 3.4.0.

Results

The majority of TCGA ccRCC cases were white males. Most participants were between the

ages of 50 to 69 and had stage I disease (Table 1). The agreement of 4-tiered grading between

TCGA and Pathologist 1 was poor (frequency of agreement = 0.47, Cohen’s kappa = 0.20; S1A

Fig). When the grading was stratified into 2-tiers, 277 out of 395 cases were concordant (fre-

quency of agreement = 0.70, Cohen’s kappa = 0.41; S1B Fig). Most of the discordant cases

were assigned high grade by TCGA and low grade by Pathologist 1.

Computer extracted morphological features reflected the variation of ccRCC nuclei as

observed by pathologists. Nuclei size (i.e., area, perimeter, and spherical perimeter and radius)

Table 1. Demographic table of the 395 The Cancer Genome Atlas (TCGA) clear cell renal cell carcinoma cases with 2-tiered histological grade (low and high). Note

that the TCGA grade for each patient in the discordant set is the opposite grade assigned by Pathologist 1.

Concordant

Cases

Discordant cases

(Grades by TCGA)

Discordant cases

(Grades by Pathologist 1)

Total n (%) Low n (%) High n (%) Low n (%) High n (%) Low n (%) High n (%)

Cases, n 395 (100) 162 (58.5) 115 (41.5) 28 (23.7) 90 (76.3) 90 (76.3) 28 (23.7)

Age group, n
<50 80 (20.3) 36 (22.2) 22 (19.1) 4 (14.3) 18 (20.0) 18 (20.0) 4 (14.3)

50–59 106 (26.8) 50 (30.9) 29 (25.2) 6 (21.4) 21 (23.3) 21 (23.3) 6 (21.4)

60–69 109 (27.6) 37 (22.8) 33 (28.7) 10 (35.7) 29 (32.2) 29 (32.2) 10 (35.7)

70–79 82 (20.8) 31 (19.1) 26 (22.6) 8 (28.6) 17 (18.9) 17 (18.9) 8 (28.6)

>80 18 (4.6) 8 (4.9) 5 (4.3) 0 (0.0) 5 (5.6) 5 (5.6) 0 (0.0)

Gender, n
Female 130 (32.9) 67 (41.4) 28 (24.3) 10 (35.7) 25 (27.8) 25 (27.8) 10 (35.7)

Male 265 (67.1) 95 (58.6) 87 (75.7) 18 (64.3) 65 (72.2) 65 (72.2) 18 (64.3)

Race, n
Asian 7 (1.8) 3 (1.9) 2 (1.7) 0 (0.0) 2 (2.2) 2 (2.2) 0 (0.0)

Black 33 (8.4) 13 (8.0) 10 (8.7) 2 (7.1) 8 (8.9) 8 (8.9) 2 (7.1)

White 349 (88.4) 142 (87.7) 102 (88.7) 25 (89.3) 80 (88.9) 80 (88.9) 25 (89.3)

Not reported 6 (1.5) 4 (2.5) 1 (0.9) 1 (3.6) 0 (0.0) 0 (0.0) 1 (3.6)

Stage, n
Stage I 207 (52.4) 121 (74.7) 35 (30.4) 13 (46.4) 38 (42.2) 38 (42.2) 13 (46.4)

Stage II 44 (11.1) 17 (10.5) 15 (13.0) 5 (17.9) 7 (7.8) 7 (7.8) 5 (17.9)

Stage III 92 (23.3) 18 (11.1) 36 (31.3) 8 (28.6) 30 (33.3) 30 (33.3) 8 (28.6)

Stage IV 52 (13.2) 6 (3.7) 29 (25.2) 2 (7.1) 15 (16.7) 15 (16.7) 2 (7.1)

Type of Treatment, n
Chemotherapy 7 (1.8) 3 (1.9) 4 (3.5) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Immunotherapy 6 (1.5) 2 (1.2) 2 (1.7) 0 (0.0) 2 (2.2) 2 (2.2) 0 (0.0)

Molecular therapy 79 (20.0) 31 (19.1) 24 (20.9) 5 (17.9) 19 (21.1) 19 (21.1) 5 (17.9)

Radiation 10 (2.5) 2 (1.2) 4 (3.5) 2 (7.1) 2 (2.2) 2 (2.2) 2 (7.1)

Mixed therapy 21 (5.3) 4 (2.5) 10 (8.7) 2 (7.1) 5 (5.6) 5 (5.6) 2 (7.1)

Unknown 272 (68.9) 120 (74.1) 71 (61.7) 19 (67.9) 62 (68.9) 62 (68.9) 19 (67.9)

https://doi.org/10.1371/journal.pone.0222641.t001
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and shape (i.e., roundness, elongation, flatness and major axis of ellipse fit) were significantly

larger and less spherical in higher grades (FDR<0.05; S2 Fig and S2 Table).

Lasso classification model

The final Lasso model with the optimal λ at 0.0101 had an average ROC AUC of 0.84. The

model predicted 2-tiered ccRCC grade with 83.3% accuracy (95% confidence interval (CI)

0.69–0.93), 84.6% sensitivity, 81.3% specificity, 18.8% false positive rate, and 15.4% false nega-

tive rate in the test set. The agreement between predicted and manual grades was good (fre-

quency of agreement = 0.83, Cohen’s kappa = 0.65). The 18 unique histomics features

associated with ccRCC 2-tiered grade are in Table 2.

Prognostic efficacy of predicted grades

There were 65 death events out of 160 cases in the extended test set. Cases predicted as high

grade had significantly poorer OS compared to low grade (Fig 6). The association between pre-

dicted grade and OS was significant in the crude analysis (hazard ratio (HR) 2.07; 95% CI

1.25–3.43) and after adjusting for age and gender (HR 2.05; 95% CI 1.21–3.47). The association

was attenuated when stage was included in the model (HR 1.66; 95% CI 0.97–2.83).

Comparing predicted grade with TCGA and Pathologist 1

Among the concordant cases, 2-tiered manual grades were significantly associated with OS

(Fig 7A; Table 3). Predicted grade for concordant cases were not evaluated as the majority of

the concordant cases were part of the training set used to build the Lasso model. Within the

discordant cases, neither grade provided by TCGA nor Pathologist 1 was associated with OS

(Fig 7B and 7C). Predicted grade was significantly associated with OS (crude model HR 2.01;

95% CI 1.14–3.54) and when adjusted for age and gender (HR 2.31; 95% CI 1.26–4.24). The

association of predicted grade and OS among the discordant cases was attenuated when

adjusted stage was included in the model (HR 1.83; 95% CI 0.98–3.41; Fig 7D; Table 3).

Additional pathological review for discordant cases

There was no effective agreement between TCGA, Pathologist 1, and Pathologist 2 among the

discordant cases (4-tiered grading: Fleiss’ kappa = -0.23; 2-tiered grading: Fleiss’ kappa =

-0.33). When comparing between TCGA and Pathologist 2, there was no effective agreement

(4-tiered grading: frequency of agreement = 0.33, Cohen’s kappa = -0.14; 2-tiered grading: fre-

quency of agreement = 0.39, Cohen’s kappa = -0.19). Despite assessing the same representative

ROIs, the agreement between Pathologist 1 and Pathologist 2 was poor for 4-tiered grading

(frequency of agreement = 0.48, Cohen’s kappa = 0.11) and slightly improved for 2-tiered

grading (frequency of agreement = 0.61, Cohen’s kappa = 0.20). Discordant cases between

Pathologist 1 and Pathologist 2 were more likely to be assigned as high grade by Pathologist 2.

Contingency tables between TCGA, Pathologist 1, and Pathologist 2 are in S3 Table.

Grades assigned by Pathologist 2 were not associated with OS (Table 3). Further analyses

were explored to determine if the incorporation of manual grade by Pathologist 2 may

improve prognostic efficacy. The grades for discordant cases were re-assigned as low or high

by using the most frequent grade among TCGA, Pathologist 1, and Pathologist 2, and among

Pathologist 1, Pathologist 2, and the predicted grade (i.e., integrating manual and computer).

Re-assigned grades were not associated with OS (p>0.05; S4 Table). Next, these cases were fur-

ther divided into cases that did and did not agree between Pathologist 1 and Pathologist 2.

Manual grades were not associated with OS in cases that did and did not agree between
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Pathologist 1 and Pathologist 2 (p>0.05; Table 4). Predicted grade was only associated with OS

in cases that agreed between Pathologist 1 and Pathologist 2 (Table 4). S1 File contains the

manual and predicted grades of these ccRCC cases.

Discussion

This study utilized the large and diverse TCGA ccRCC dataset to extract quantitative histomics

features from ROIs and applied a Lasso regression model to develop an automated 2-tiered

grading system using 18 unique features (26 total features) which achieved an ROC AUC of

0.84. Using discordant cases as an independent validation set, our data-driven system stratified

ccRCC cases into low and high grades that were significantly associated with OS. The

Table 2. Nuclear histomics features associated with 2-tiered ccRCC grade selected in the final Lasso classification model (18 unique features; 26 total features).

Feature Type Biological

Relevance

Color

Space

Summary

Function

Coefficient

Elongation Morphology Nuclear pleomorphism,

nuclear shape (irregular)

- MAD -1.51E-01

Minor axis of the Ellipse Fit Morphology Nuclear pleomorphism,

nuclear shape (irregular)

- Median -1.25E+00

Flatness Morphology Nuclear shape (irregular) - MAD -4.20E-16

Kurtosis Intensity Uneven distribution of

nucleus staining

HSV Median 5.38E-03

Skewness Intensity Uneven distribution of

nucleus staining

H&E MAD -2.22E-01

HSV Median -2.87E-01

Lab MAD -1.10E-01

Correlation Texture Granularity of chromatin (a) HSV MAD -2.48E-02

Haralick Correlation Texture Granularity of chromatin (a) H&E Median -2.24E-01

Energy Texture Granularity of chromatin (b) Lab Median -9.36E-01

MAD -3.74E-01

Inverse difference moment Texture Granularity of chromatin (b) H&E Median -4.81E-01

MAD -4.19E-02

HSV Median 1.67E-01

MAD -1.19E-01

Inertia Texture Granularity of chromatin (b) H&E Median -1.77E-01

Lab Median -9.72E-02

Entropy Texture Granularity of chromatin (c) HSV Median 8.97E-03

Low gray-level run emphasis Texture Granularity of chromatin (c) H&E MAD -7.52E-02

Long run high gray-level emphasis Texture Granularity of chromatin (c) HSV MAD 1.50E-01

Long run low gray-level emphasis Texture Granularity of chromatin (c) H&E MAD -7.71E-16

Short run high gray-level emphasis Texture Granularity of chromatin (c) HSV MAD 4.02E-02

Short run low gray-level emphasis Texture Granularity of chromatin (c) H&E MAD -1.28E-15

Gray level non-uniformity Texture Granularity of chromatin (d) HSV Median -4.26E-01

Lab MAD 2.45E+00

High gray-level run emphasis Texture Granularity of chromatin (d) HSV MAD 6.21E-03

a) Correlation is a co-occurrence based texture feature, describing roughness and repeated direction inside the nuclei.

b) Co-occurrence based texture feature, describing roughness inside the nuclei.

c) Run-length matrix based texture feature, describing randomness of gray-level distribution.

d) Run-length matrix based texture feature, describing coarseness inside nuclei.

MAD: median absolute deviation; Lab: Lab color space; HSV: hue-saturation-value color space; H&E: Hematoxylin and Eosin color space. Median and MAD were used

to summarize the data extracted at the patch level to the region of interest (ROI) level.

https://doi.org/10.1371/journal.pone.0222641.t002
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prognostic efficacy of predicted grades in the discordant cases outperformed the manual

grades assessed by TCGA, Pathologist 1, and Pathologist 2. This proof-of-concept study dem-

onstrated the potential of computational pathology to predict ccRCC grades via a more objec-

tive and quantitative pipeline, as well as addressed the issue of grade disagreement commonly

encountered between pathologists.

The grading of ccRCC is highly challenging and subjective, but the accurate assignment of

ccRCC grade is important for clinical care and follow-up. Research groups, specifically Yeh

and colleagues [30], Kruk and colleagues [31], and Holdbrook and colleagues [32], have been

actively developing computational pathology systems to provide objectivity and/or automate

ccRCC grading. Each computational system is highly unique with differences in image pro-

cessing, feature extraction, classification method, and predicting 2 or 4-tiered grades. We uti-

lized an unbiased data-driven approach where we extracted a set of high dimensional nuclear

features (n = 144), and used Lasso, a machine learning-based method, to build our final predic-

tive model. This is different from Yeh et al. [30] who only evaluated 1 feature (i.e., maximum

nuclei size) to predict 2-tiered grade, Kruk et al. [31] who pre-selected features (out of 31 fea-

tures) prior to building the final model to predict 4-tiered grade, and Holdbrook et al. who

used up to 4 concatenate feature vectors to calculate fraction value scores prior to classification

into low or high grade [32]. In addition, our Lasso regression allowed us to identify the 18

unique histomics biomarkers in our final predictive model while the features in the models by

Kruk et al [31] and Holdbrook et al. [32] are unknown. Our 18 features provided information

about the nucleus, the uneven distribution of nucleus staining, and the granularity of chroma-

tin and nucleoli, highlighting that the addition of computer textual and intensity-related fea-

tures to traditional pathology morphological features can improve the ability to predict ccRCC

grade. We and Holdbrook et al [32] demonstrated that our predicted grade had prognostic sig-

nificance whilst the studies by Kruk et al [31] and Yeh et al [30] did not report if their grade

was associated with prognosis. Lastly, our system was trained using a much larger and more

diverse dataset of 277 cases from seven TCGA participating institutions, and we validated our

Fig 6. Prognostic efficacy of predicted grades. Cases predicted as high grade have significantly poorer overall survival

rates compared to cases predicted as low grade in the extended test set (hazard ratio 2.07, 95% confidence interval of

1.25–3.43, p<0.01; 65 death events among 160 cases). The shaded areas reflect the 95% confidence interval for high or

low grade.

https://doi.org/10.1371/journal.pone.0222641.g006
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system using 160 cases. This is in contrast to those three studies which used small numbers for

training (n = 38 to 70) and validation (n = 6 to 62), and obtaining their cases from a single

institution. Collectively, our work and others are substantial efforts to improve ccRCC grading.

Each computational method will require further refinement and validation before their clinical

utility can be determined.

Each TCGA grade is the consensus of at least two pathologists. One reason for grade dis-

agreement between TCGA and Pathologist 1 can be explained by TCGA pathologists assessing

different ROIs than the representative ROIs selected in our study. However, even when

Fig 7. Kaplan-Meier curves comparing manual and predicted grades with overall survival in concordant and discordant cases. Grades assigned by

TCGA/Pathologist 1 were significantly associated with overall survival within the concordant cases (A). In the discordant set, neither grades assigned by

TCGA (B) nor Pathologist 1 (C) were associated with overall survival while predicted grade remained significantly prognostic (D). Please refer to Table 3 for

hazard ratios and 95% confidence intervals for each analysis. The shaded areas reflect the 95% confidence interval for high or low grade.

https://doi.org/10.1371/journal.pone.0222641.g007
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reviewing the same ROIs for discordant cases, there was very poor agreement between Pathol-

ogist 1 and Pathologist 2, reiterating the challenges of ccRCC grading. These discordant cases

could be more diagnostically challenging or ambiguous. Since manual grades for concordant

cases were significantly associated with OS, it could be argued that concordant cases were diag-

nostically less challenging where the tumors were overwhelmingly of a low or high grade, and

Table 3. The association of manual or computer predicted 2-tiered grade with overall survival in the concordant and discordant cases.

Manual Grade Computer Predicted Grade

Hazard

Ratio

(95% CI) p-value Hazard

Ratio

(95% CI) p-value

A. Concordant cases between TCGA and Pathologist 1 (85 events out of 277 cases)

Model A: Crude 3.12 (2.00, 4.86) <0.01 NA NA NA

Model B: Adjusted for Age and Gender 3.00 (1.91, 4.71) <0.01 NA NA NA

Model C: Adjusted for Age, Gender, and Stage 1.59 (0.99, 2.57) 0.06 NA NA NA

B. Discordant cases between TCGA and Pathologist 1 (52 events out of 118 cases)

Grade assigned by TCGA

Model A: Crude 1.16 (0.59, 2.25) 0.67 2.01 (1.14, 3.54) 0.02

Model B: Adjusted for Age and Gender 1.09 (0.56, 2.13) 0.80 2.31 (1.26, 4.24) <0.01

Model C: Adjusted for Age, Gender, and Stage 1.08 (0.55, 2.11) 0.83 1.83 (0.98, 3.41) 0.06

Grade assigned by Pathologist 1

Model A: Crude 0.86 (0.44, 1.68) 0.67 NA NA NA

Model B: Adjusted for Age and Gender 0.92 (0.47, 1.79) 0.80 NA NA NA

Model C: Adjusted for Age, Gender, and Stage 0.93 (0.47, 1.82) 0.83 NA NA NA

Grade assigned by Pathologist 2

Model A: Crude 1.09 (0.63, 1.89) 0.75 NA NA NA

Model B: Adjusted for Age and Gender 1.21 (0.70, 2.10) 0.50 NA NA NA

Model C: Adjusted for Age, Gender, and Stage 1.15 (0.66, 2.00) 0.62 NA NA NA

Confidence Interval, CI

https://doi.org/10.1371/journal.pone.0222641.t003

Table 4. The association of manual or computer predicted 2-tiered grade with overall survival in 118 discordant cases.

Manual Grade Computer Predicted Grade

Hazard

Ratio

(95% CI) p-value Hazard

Ratio

(95% CI) p-value

A. Cases with identical grades between Pathologist 1 and Pathologist 2 (31 events out of 76 cases)

Model A: Crude 0.99 (0.44, 2.23) 0.99 2.05 (1.00, 4.21) 0.05

Model B: Adjusted for Age and Gender 1.04 (0.46, 2.34) 0.93 2.42 (1.13, 5.20) 0.02

Model C: Adjusted for Age, Gender, and Stage 1.18 (0.52, 2.68) 0.69 1.89 (0.87, 4.12) 0.11

B. Cases with different grades between Pathologist 1 and Pathologist 2 (21 events out of 46 cases)

Grade assigned by Pathologist 1

Model A: Crude 0.64 (0.19, 2.20) 0.48 2.49 (0.83, 7.45) 0.10

Model B: Adjusted for Age and Gender 0.63 (0.18, 2.17) 0.46 2.49 (0.72, 7.28) 0.16

Model C: Adjusted for Age, Gender, and Stage 0.59 (0.17, 2.03) 0.40 2.03 (0.62, 6.66) 0.24

Grade assigned by Pathologist 2

Model A: Crude 1.56 (0.46, 5.31) 0.48 NA NA NA

Model B: Adjusted for Age and Gender 1.58 (0.46, 5.44) 0.46 NA NA NA

Model C: Adjusted for Age, Gender, and Stage 1.70 (0.49, 5.89) 0.40 NA NA NA

Confidence Interval, CI

https://doi.org/10.1371/journal.pone.0222641.t004
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that our model was trained using more homogeneous ROIs. Predicted grades for discordant

cases were significantly associated with survival, in contrast to manual assessments or using

the most frequent manual grade. Therefore, our automated system has the ability to diagnose a

range of ccRCC cases with consistency and objectivity. In practical application, such computa-

tional system could be useful as a tool to provide a second-opinion in diagnostically ambigu-

ous cases for pathologists.

Our study has some limitations. We did not use the WHO/ISUP grading system because

the TCGA participating medical centers used the Fuhrman’s system. However, since our com-

puter system was constructed based on computer extracted nuclear features, it can be adapted

to predict WHO/ISUP grades which also utilize nuclei/nucleoli features in the future. There

are inherent limitations of reviewing cases using WSIs. Accurate grading may be hindered by

the quality of WSIs and the lack of the Z-axis [33]. Our study reviewed diagnostic WSIs and

analyzed manually selected ROIs that may not be representative of the entire tumor. For future

work, automating ROI detection and grade prediction will allow the review of multiple tumor

sections more efficiently. Lastly, our nuclei segmentation relied on conventional image analy-

sis techniques. While qualitative evaluation of the segmentation results revealed that our

image processing pipeline produced reasonably good results, the nuclei segmentation may not

be optimal in more challenging cases. A solution is to employ deep learning based techniques

to improve nuclei segmentation in future studies [30,34,35].

Conclusions

We developed an automated 2-tiered Fuhrman’s grading system with prognostic significance.

Our system demonstrated the potential of computational pathology to improve the reproduc-

ibility in the diagnosis and grading of ccRCC, and to aid the clinical management of ccRCC

patients. Future work may include adapting our computational system to predict WHO/ISUP

grades; validating our system on other ccRCC cohorts; using deep learning methods to detect

ROIs, segment nuclei and predict grade; and exploring whether histomics features can predict

prognosis independently of grade. This work is one step toward developing an artificial intelli-

gence system for diagnostic pathology.
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