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Abstract

Introduction

End-stage renal disease (ESRD) strongly associates with cardiovascular disease (CVD)

risk. This risk is not completely mitigated by renal replacement therapy. Endothelial dysfunc-

tion (ED) and low-grade inflammation (LGI) may contribute to the increased CVD risk. How-

ever, data on serum biomarkers of ED and LGI during the transition to renal replacement

therapy (dialysis and kidney transplantation) are scarce.

Methods

We compared serum biomarkers of ED and LGI between 36 controls, 43 participants with

chronic kidney disease (CKD) stage 5 non-dialysis (CKD5-ND), 20 participants with CKD

stage 5 hemodialysis (CKD5-HD) and 14 participants with CKD stage 5 peritoneal dialysis

(CKD5-PD). Further, in 34 and 15 participants repeated measurements were available

during the first six months following dialysis initiation and kidney transplantation, respec-

tively. Serum biomarkers of ED (sVCAM-1, E-selectin, P-selectin, thrombomodulin,

sICAM-1, sICAM-3) and LGI (hs-CRP, SAA, IL-6, IL-8, TNF-α) were measured with

a single- or multiplex array detection system based on electro-chemiluminescence

technology.
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Results

In linear regression analyses adjusted for potential confounders, participants with ESRD

had higher levels of most serum biomarkers of ED and LGI than controls. In addition, in

CKD5-HD levels of serum biomarkers of ED and LGI were largely similar to those in CKD5-

ND. In contrast, in CKD5-PD levels of biomarkers of ED were higher than in CKD5-ND and

CKD5-HD. Similarly, in linear mixed model analyses sVCAM-1, thrombomodulin, sICAM-1

and sICAM-3 increased after PD initiation. In contrast, incident HD patients showed an

increase in sVCAM-1, P-selectin and TNF-α, but a decline of hs-CRP, SAA and IL-6. Fur-

ther, following kidney transplantation sVCAM-1, thrombomodulin, sICAM-3 and TNF-α
were lower at three months post-transplantation and remained stable in the three months

thereafter.

Conclusions

Levels of serum biomarkers of ED and LGI were higher in ESRD as compared with controls.

In addition, PD initiation and, less convincingly, HD initiation may increase levels of selected

serum biomarkers of ED and LGI on top of uremia per se. In contrast to dialysis, several

serum biomarkers of ED and LGI markedly declined following kidney transplantation.

Introduction

Individuals with end-stage renal disease (ESRD) are at high risk of cardiovascular disease

(CVD) mortality[1,2]. Renal replacement therapy is aimed to reduce this risk. However, in the

first months after initiation of hemodialysis (HD) an increased mortality risk[3,4] related to

CVD[1] is observed. In contrast, kidney transplant recipients have a lower CVD risk as com-

pared with individuals with ESRD who receive dialysis and remain on the waiting list[5,6].

Nevertheless, CVD in kidney transplant recipients risk is still higher than that observed in the

general population[6], reflecting a so-called residual CVD risk[7].

Endothelial dysfunction (ED) and low-grade inflammation (LGI) have both been impli-

cated in the adverse CVD risk associated with ESRD[8–10]. Indeed, serum biomarkers of ED

and LGI are associated with CVD events in ESRD[11–13], and may be used for CVD risk strat-

ification in individuals with ESRD. In addition, ED and LGI interact at the renal level and may

contribute to the development and progression of renal injury, as elegantly described recently

[14].

However, to the best of our knowledge, only limited data are available on the course of

serum biomarkers of ED and LGI in the transition phase from untreated ESRD to chronic dial-

ysis (i.e., including assessment of ED and LGI prior and following exposure to dialysis)[15,16].

In addition, the available studies were restricted to participants on peritoneal dialysis (PD).

Studies on ED and LGI following kidney transplantation are similarly scarce and either

examined LGI only or used a single biomarker to assess ED[17–19].

More extensive assessment of ED and LGI may provide complementary information as

both ED and LGI are heterogeneous concepts, which may not be captured with a single bio-

marker. For example, ED may involve multiple endothelial functions such as regulation of leu-

kocyte adhesion and regulation of hemostasis.

In view of the above, we, first, examined cross-sectional differences in an extensive panel of

serum biomarkers of ED and LGI between individuals with chronic kidney disease (CKD)
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stage 5 non-dialysis (CKD5-ND; comprising individuals who were scheduled to initiate

dialysis or receive a kidney transplant), CKD stage 5 HD (CKD5-HD), CKD stage 5 PD

(CKD5-PD) and healthy controls. The serum biomarkers included soluble vascular cellular

adhesion molecule 1 (sVCAM-1), E-selectin, P-selectin, thrombomodulin, soluble intercellular

adhesion molecule 1 (sICAM-1), soluble intercellular adhesion molecular 3 (sICAM-3), high-

sensitivity C-reactive protein (hs-CRP), serum amyloid A (SAA), interleukin 6 (IL-6), interleu-

kin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Second, we examined the courses of

these serum biomarkers during the first six months following initiation of HD and PD, and

following kidney transplantation, respectively.

Materials and methods

Study population and design

This study consisted of a cross-sectional and a longitudinal part, and included participants

from three separate observational studies which have been performed in the southern part of

the Netherlands and focused on dialysis initiation (HD and PD), kidney transplantation and

chronic dialysis (HD and PD), respectively. These studies were conducted between February

2012 and July 2017, between October 2013 and January 2018, and between June 2012 and

December 2017, respectively. The methodology of the individual studies has been published

previously [20,21]. A complete overview of in- and exclusion criteria of these studies is also

provided in S1 Methods.

S1 Fig is a flowchart showing the derivation of the cross-sectional study population. For the

cross-sectional part, we included baseline data of incident dialysis patients and kidney trans-

plant recipients, and data of prevalent dialysis patients. In addition, we included baseline data

of healthy kidney donors and data of healthy controls, which together formed a healthy control

group. The cross-sectional analyses were performed in the subpopulation with data on serum

biomarkers of ED and LGI. Patients receiving nocturnal HD were excluded from the analyses

as a previous study that included participants from the chronic dialysis study has already

shown that levels of the measured serum biomarkers of ED and LGI are similar to those in

conventional HD [21].

Some participants participated in more than one study (i.e., incident dialysis patients who

subsequently received a kidney transplant or were studied as prevalent dialysis patients). Only

data from their first study was analyzed.

S1 Fig is a flowchart showing the derivation of the longitudinal study population. For the

longitudinal part, we included incident HD, incident PD patients and kidney transplant recipi-

ents who had complete baseline and follow-up data on serum biomarkers of endothelial dys-

function and low-grade inflammation. Participants who participated in both the study on

dialysis initiation and the study on kidney transplantation were included as both dialysis

patients and kidney transplant recipients as there was no direct statistical comparison between

groups.

Incident HD and PD patients were followed prospectively with assessments at six months

after dialysis initiation. Kidney transplant recipients were followed prospectively with assess-

ments at three and six months post-transplantation.

Written informed consent was obtained from each patient prior to participation. The studies

were approved by the Ethical Committee (NL43381.068.13, NL33129.068.10, NL35039.068.10)

and the Hospital Board of the Maastricht University Medical Center+. All methods were carried

out in accordance with relevant guidelines and regulation. In addition, none of the transplant

donors were from a vulnerable population and all donors or next of kin provided written

informed consent that was freely given.

Endothelial dysfunction and inflammation in ESRD
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Renal replacement therapy modalities

Detailed information on the dialysis treatments applied in both incident and prevalent dialysis

patients and the immunosuppressive protocol of kidney transplant recipients are provided in

S1 Methods.

Study measurements

Serum biomarkers of endothelial dysfunction and low-grade inflammation. Blood was

collected in sterile 5 ml BD vacutainer SST II Advance tubes. After centrifugation, serum was

aspirated and stored at -80˚C until analysis. Before analysis, serum samples where thawed and

mixed thoroughly.

sVCAM-1, E-selectin, P-selectin, thrombomodulin, sICAM-1, sICAM-3, hs-CRP, SAA, IL-

6, IL-8, and TNF-α were measured with a single- or multiplex array detection system based on

electro-chemiluminescence technology (Meso Scale Discovery SECTOR Imager 2400, Gai-

thersburg, Maryland, USA). All measurements were performed in duplicate. Inter-assay and

intra-assay variations for all the markers were<9%, except the inter-assay variation for E-

selectin (10.1%), sICAM-1 (10.2%) and IL-6 (14.0%).

Other laboratory parameters. Dialysis adequacy (Kt/V) was retrospectively collected

from the health record (single-pool Kt/V for HD, weekly Kt/V for PD). In addition, serum cre-

atinine and/or serum β2-microglobulin were measured with routine laboratory measurements

at the time of study participation, except for healthy kidney donors and kidney transplant

recipients, for whom these data were retrospectively collected from the health record. In con-

trols and in participants with CKD5-ND, GFR was estimated with the CKD-EPI equation

based on serum creatinine (eGFRCKD-EPI) [22]. In participants with CKD5-D, residual GFR

was estimated with an equation based on serum β2-microglobulin (eGFRresidual)[23].

Clinical characteristics. Origin of renal disease was based on the diagnosis as reported in

the patient’s health record and categorized as nephrosclerosis, glomerulosclerosis, hyperten-

sive nephropathy, renovascular disease, diabetic nephropathy, polycystic kidney disease, IgA

nephropathy, glomerulonephritis, other, and unknown. History of diabetes mellitus and car-

diovascular disease, and medication use were based on self-report for healthy controls and the

health record for patients. Current smoking was based on self-report. Current dialysis modal-

ity, history of kidney transplantation, dialysis vintage and residual urine output were collected

from the health record. Body mass index (BMI) was calculated as weight divided by height

squared. Fluid overload was measured with the Body Composition Monitor (BCM1) (Frese-

nius Medical Care, Bad Homburg, Germany). Office blood pressure was measured with an

electronic sphygmomanometer (Omron M4-I, Omron, Japan).

All participants were requested to be in a fasting state during the measurements. For practi-

cal reasons not all patients were in fasting state as requested, for example, individuals with dia-

betes. In participants on HD, study measurements and blood sampling were performed prior

to one of their dialysis sessions (the midweek session for prevalent HD patients; either the

first, second or third session for incident HD patients and for non-preemptively transplanted

patients prior to KTx).

Statistical analyses

Characteristics of the study population for the cross-sectional and longitudinal analyses were

presented as means with standard deviations (SDs), medians with 25th and 75th percentiles,

and numbers with percentages, as appropriate.

Unadjusted post-hoc comparisons of characteristics of participant groups were performed

with the independent Student t-test for normally distributed data, Dunn’s test for non-
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normally distributed data and Fisher’s exact test for categorical data if a one-way analysis of

variance (ANOVA) test, Kruskal-Wallis test and Fisher’s exact test, respectively, indicated an

overall difference between groups.

Correlations among baseline levels of serum biomarkers of ED and LGI were examined

with Spearman’s rank correlation coefficients, stratified by participant group.

For the cross-sectional analyses, participants were stratified into controls, CKD5-ND (i.e.,
baseline data of incident dialysis patients and future kidney transplant recipients), CKD5-HD

and CKD5-PD (i.e., prevalent dialysis patients including future kidney transplant recipients

who were on dialysis at baseline).

Differences in individual serum biomarkers of ED and LGI between CKD5-ND, CKD5-HD,

CKD5-PD and controls were evaluated with linear regression analyses to allow adjustment for

potential confounders. Levels of serum biomarkers were positively skewed and, therefore, natural

log transformed to obtain acceptably normally distributed residuals. The regression coefficients

were exponentiated to obtain the ratio of (geometric mean) levels of the serum biomarkers in

CKD5-ND, CKD5-HD and CKD5-PD relative to controls and among ESRD groups.

In addition, standardized composite scores (Z-scores) were calculated for ED and LGI and

compared across groups with linear regression analyses. The use of composite scores may

increase statistical efficiency and reduce the influence of biological and analytical variability

[24]. For this purpose, levels of each individual biomarker were natural log transformed

and standardized. Subsequently, the Z-scores were calculated as the standardized average of

the standardized scores of the individual serum biomarkers. The Z-score for ED included

sVCAM-1, E-selectin, P-selectin, thrombomodulin, sICAM-1 and sICAM-3, and the Z-score

for LGI consisted of hs-CRP, SAA, IL-6, IL-8, TNF-α, sICAM-1 and sICAM-3 [25]. The serum

biomarkers sICAM-1 and sICAM-3 were included in the Z-scores for both ED and LGI as

both are expressed by endothelial cells and leukocytes [25].

All linear regression analyses were adjusted for age, sex and diabetes mellitus.

Longitudinal analyses were conducted stratified for incident HD and PD patients, and for

kidney transplant recipients. Courses of natural log transformed serum biomarkers of ED and

LGI over time following dialysis initiation and kidney transplantation were analyzed with lin-

ear mixed models to account for within-person correlations between repeated measurements

and missing data. The fixed-effects part contained time as categorical variable (baseline served

as reference), and the random-effects parts included a random intercept. The models for

incident HD and PD patients also contained an interaction term between time and dialysis

modality to test whether courses differ between HD and PD. Models were fitted by restricted

maximum likelihood. Regression coefficients were exponentiated to obtain the ratio of (geo-

metric mean) biomarker levels relative to baseline levels.

A two-tailed P value< 0.050 was considered statistically significant, except for interaction

analyses for which 0.100 was used as a cut-off.

Analyses were conducted in IBM SPSS Statistics Version 24.0 (IBM Corp., Armonk, NY,

USA) and in R Version 3.5.1 with RStudio Version 1.1.456 combined with the packages tidy-

verse, haven, scales, ggpubr, corrplot and nlme.

Results

Population characteristics—Cross-sectional analyses

Thirty-six controls, 43 participants with CKD5-ND, 20 participants with CKD5-HD and 14

participants with CKD5-PD comprised the cross-sectional study population (Table 1; flow-

chart in S1 Fig). In general, participants with CKD5-ND, CKD5-HD and CKD5-PD were

more often men and had a worse CVD risk profile than controls.

Endothelial dysfunction and inflammation in ESRD
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Table 1. Population characteristics cross-sectional analyses.

Controls CKD5-ND CKD5-HD CKD5-PD

(n = 36) (n = 43) (n = 20) (n = 14)

Clinical characteristics
Age (years) 57.6 ±12.3 58.8 ±13.9 61.4 ±13.6 56.9 ±11.8

Men 19 (52.8%) 29 (67.4%) 14 (70.0%) 9 (64.3%)

Origin of end-stage renal disease: ‡ ‡

Nephrosclerosis NA 6 (14.0%) 0 (0.0%) 0 (0.0%)

Glomerulosclerosis NA 2 (4.7%) 0 (0.0%) 0 (0.0%)

Hypertensive nephropathy NA 2 (4.7%) 4 (20.0%) 4 (28.6%)

Renovascular disease NA 0 (0.0%) 1 (5.0%) 1 (7.1%)

Diabetic nephropathy NA 2 (4.7%) 5 (25.0%) 2 (14.3%)

Polycystic kidney disease NA 11 (25.6%) 6 (30.0%) 0 (0.0%)

IgA nephropathy NA 2 (4.7%) 0 (0.0%) 1 (7.1%)

Glomerulonephritis NA 4 (9.3%) 2 (10.0%) 4 (28.6%)

Nephrotic syndrome NA 6 (14.0%) 0 (0.0%) 0 (0.0%)

Other NA 1 (2.3%) 2 (10.0%) 1 (7.1%)

Unknown NA 7 (16.3%) 0 (0.0%) 1 (7.1%)

History of KTx NA 8 (18.6%) 3 (15.0%) 3 (21.4%)

Immunosuppressive therapy in participants with positive history of KTx

None NA 0 (0.0%) 1 (33.3%) 1 (33.3%)

Prednisolone monotherapy NA 1 (12.5%) 0 (0.0%) 0 (0.0%)

TAC monotherapy NA 4 (50.0%) 1 (33.3%) 1 (33.3%)

MMF monotherapy NA 0 (0.0%) 1 (33.3%) 1 (33.3%)

TAC/MMF monotherapy (unclear) NA 1 (12.5%) 0 (0.0%) 0 (0.0%)

Unknown NA 2 (25.0%) 0 (0.0%) 0 (0.0%)

First future treatment modality

HD NA 19 (44.2%) NA NA

PD NA 18 (41.9%) NA NA

Preemptive KTx NA 6 (14.0%) NA NA

Non-preemptive KTx NA 0 (0%) NA NA

Dialysis vintage (months)� NA NA 27 [22–54] 14 [6–22] ¶

Kt/V HD (single-pool)/ PD (weekly)� NA NA 2.2 ±0.1 2.3 ±0.7

Serum creatinine (μmol/L)� 83 [75–90] 579 [431–720] 722 [565–829] 694 [495–1106]

eGFRCKD-EPI (mL/min/1.73m2)� 81.4 ±13.6 8.6 ±3.1† NA NA

eGFRresidual (mL/min/1.73m2)� NA NA 3.6 [1.9–4.4] 9.3 [4.7–18.8] ¶

Diuresis / Residual urine output� 16 (100%) 38 (100%) 15 (75.0%)‡ 13 (92.9%)

Diuresis / Residual urine output (mL/24h)� 1,790 [1,138–2,352] 2,000 [1,700–2,296] 1,025 [15–1,694] 1,125 [288–1,533]

Diabetes mellitus 0 (0.0%) 5 (11.6%) 8 (40.0%)†,‡ 5 (35.7%)†

Cardiovascular disease 2 (5.6%) 13 (32.6%)† 9 (45.0%)† 2 (14.3%)

Current smoking 2 (5.6%) 8 (18.6%) 5 (25.0%) 3 (21.4%)

BMI (kg/m2) 26.0 ±4.1 24.8 ±3.9 28.1 ±4.6‡ 27.9 ±4.7‡

Fluid overload (L) 0.04 ±1.1 1.3 ±2.0† 1.2 ±1.5† 1.7 ±2.0†

SBP (mmHg) 138.9 ±15.1 147.1 ±23.2† 156.6 ±24.6† 156.9 ±28.5†

DBP (mmHg) 85.4 ±10.1 83.0 ±13.1 80.6 ±10.6 87.5 ±11.2

Renin-angiotensin-aldosterone system inhibitor use 2 (5.6%) 18 (41.9%) 10 (50.0%) 11 (78.6%)

(Continued)
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Participants with CKD5-HD and CKD5-PD more often had diabetes mellitus than those

with CKD5-ND. All participants with CKD5-ND and most with CKD5-HD or CKD5-PD had

residual urine output. Participants with CKD5-PD were slightly younger, less often men, less

often had a history of CVD, and had higher residual GFR (eGFRresidual), slightly more fluid

overload and shorter dialysis vintage than participants with CKD5-HD, although not all differ-

ences were statistically significant in this relatively small study population.

Correlations among serum biomarkers

In general, the strength of correlations among serum biomarkers of ED and among serum bio-

markers of LGI varied. In addition, there was no strict distinction between serum biomarkers

of ED and serum biomarkers of LGI in view of the degree of correlation. Further, for some

serum biomarkers, correlations in the dialysis groups were in the opposite direction as com-

pared with those in CKD5-ND and controls (S2 Fig).

Associations of end-stage renal disease with serum biomarkers of

endothelial dysfunction and low-grade inflammation

S1 Table and Fig 1 shows the distributions of serum biomarkers of ED and LGI stratified by

participant group.

As compared with controls and after adjustment for age, sex and diabetes mellitus

(Table 2), sVCAM-1, E-selectin, thrombomodulin, hs-CRP, SAA, IL-6, and TNF-α were

higher in CKD5-ND, CKD5-HD and CKD5-PD. In addition, sICAM-1 was higher in

CKD5-ND and CKD5-PD, and sICAM-3 was higher in CKD5-PD only.

These results of individual serum biomarkers were also reflected by higher Z-scores for ED

and LGI in CKD5-ND, CKD5-HD and CKD5-PD.

As compared with CKD5-ND and after adjustment for age, sex and diabetes mellitus

(Table 2), biomarkers of ED and LGI were in general similar in CKD5-HD. In addition, as

Table 1. (Continued)

Controls CKD5-ND CKD5-HD CKD5-PD

(n = 36) (n = 43) (n = 20) (n = 14)

Statin use 2 (5.6%) 22 (51.2%) 9 (45.0%) 10 (71.4%)

Data are presented as n (%), mean ± standard deviation, or median [25th percentile– 75th percentile].

Abbreviations: AU, arbitrary units; BMI, body mass index; CKD5-D, chronic kidney disease stage 5 dialysis; CKD5-ND, chronic kidney disease stage 5 non-dialysis;

DBP, diastolic blood pressure; eGFRCKD-EPI, estimated glomerular filtration rate based on the creatinine CKD-EPI equation; eGFRresidual, estimated residual GFR based

on β2-microglobulin; HD, hemodialysis; hs-CRP, high-sensitivity C-reactive protein; IL-6, interleukin 6; IL-8, interleukin 8; KTx, kidney transplantation; MMF,

mycophenolate mofetil; NA, not applicable; PD, peritoneal dialysis; SAA, serum amyloid A; SBP, systolic blood pressure; sICAM-1, soluble intercellular adhesion

molecule 1; sICAM-3, soluble intercellular adhesion molecule 3; sVCAM-1, soluble vascular cell adhesion molecule 1; TAC, tacrolimus; TNF-α, tumor necrosis factor

alpha.

� Available in (Controls/ CKD5-ND/ CKD5-HD/ CKD-5-PD) n = NA/ NA/ 16/ 11 for dialysis vintage, n = NA/ NA/ 13/ 11 for Kt/V, n = 36/ 42/ 20/ 14 for serum

creatinine, n = 36/ 42/ NA/ NA for eGFRCKD-EPI, n = NA/ NA/ 15/ 10 for eGFRresidual, n = 22/ 44/ 20/ 14 for diuresis / residual urine output (dichotomous), n = 14/ 27/

20/ 14 for diuresis / residual urine output (continuous).
† P value < 0.05 vs. controls;
‡ P value < 0.05 vs. CKD5-ND;
¶ P value < 0.05 vs. CKD5-HD.

Unadjusted post-hoc comparisons of controls, CKD5-ND, CKD5-HD and CKD5-PD were performed with the independent Student t-test for normally distributed data,

Dunn’s test for non-normally distributed data and Fisher’s exact test for categorical data if an ANOVA, Kruskal-Wallis test and Fisher’s exact test, respectively, indicated

an overall difference between groups.

https://doi.org/10.1371/journal.pone.0222547.t001
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compared with both CKD5-ND and CKD5-HD, sVCAM-1, E-selectin, thrombomodulin,

sICAM-3 were higher in CKD5-PD. Further, as compared with CKD5-HD, sICAM-1 was

higher in CKD5-PD.

These results of individual serum biomarkers were also reflected by a higher Z-score for

ED, but not LGI, in CKD5-PD as compared with CKD5-ND and CKD5-HD.

The above results were not materially changed after additional adjustment for systolic or

diastolic blood pressure, use of renin-angiotensin-aldosterone system inhibitors, use of

HMG-CoA inhibitors, current smoking or BMI (results not shown).

Population characteristics—Longitudinal analyses

Thirty-four participants with CKD5-ND who initiated dialysis (18 HD, 16 PD), 6 with

CKD5-ND who received a kidney transplant, and 5 on chronic dialysis who received a kidney

transplant were included in the longitudinal analyses (S2 Table; S1 Fig). In addition, 4 partici-

pants who initiated dialysis and later received a kidney transplant were included as kidney

transplant recipients as well.

As compared with kidney transplant recipients, incident HD and PD patients were older

(65.1 ±12.0 and 57.1 ±12.1 years vs. 51.6 ±12.8 years) and more often had a history of CVD

Fig 1. Boxplots of serum biomarkers of endothelial dysfunction and low-grade inflammation stratified according to participant group.

Abbreviations: hs-CRP, high-sensitivity C-reactive protein; IL-6, interleukin 6; IL-8, interleukin 8; NA, not applicable; SAA, serum amyloid A;

sICAM-1, soluble intercellular adhesion molecule 1; sICAM-3, soluble intercellular adhesion molecule 3; sVCAM-1, soluble vascular cell

adhesion molecule 1; TNF-α, tumor necrosis factor alpha. Please note that in the boxplot of IL-8 levels in controls, one extreme outlier with an

IL-8 level of 2469.8 ng/L was removed to improve the clarity of the graph. † P value< 0.05 vs. controls; ‡ P value< 0.05 vs. CKD5-ND; ¶ P
value< 0.05 vs. CKD5-HD based on unadjusted linear regression analyses of natural log transformed serum biomarkers.

https://doi.org/10.1371/journal.pone.0222547.g001
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(38.9% and 31.2% vs. 13.3%). In addition, incident HD patients were more often men (83.3%

vs. 60.0%). Estimated GFRCKD-EPI was similar and all participants had residual urine output.

Incident dialysis patients on PD were younger (57.1 ±12.1 vs. 65.1 ±12.0 years) and less often

men (56.2% vs. 83.3%), and had lower BMI (23.5 ±3.0 vs. 26.6 ±3.8 kg/m2), higher diastolic

blood pressure (87.3 ±16.0 vs. 77.4 ±9.2 mmHg), and less fluid overload (0.8 ±1.4 vs. 1.9 ±2.4 L),

Table 2. Associations of end-stage renal disease with serum biomarkers of endothelial dysfunction and low-grade inflammation.

CKD5-ND vs. controls� CKD5-HD vs. controls� CKD5-PD vs. controls�

Individual serum biomarkers Ratio (95%CI) P value Ratio (95%CI) P value Ratio (95%CI) P value

sVCAM-1 1.70 (1.52; 1.90) < 0.001 1.62 (1.40; 1.88) < 0.001 2.08 (1.77; 2.44) < 0.001

E-selectin 1.34 (1.10; 1.63) 0.004 1.30 (1.00; 1.68) 0.048 1.98 (1.49; 2.63) < 0.001

P-selectin 1.04 (0.87; 1.25) 0.631 1.08 (0.85; 1.37) 0.534 0.93 (0.71; 1.20) 0.559

Thrombomodulin 4.04 (3.62; 4.52) < 0.001 4.18 (3.62; 4.83) < 0.001 5.45 (4.65; 6.39) < 0.001

sICAM-1 1.19 (1.08; 1.32) < 0.001 1.08 (0.95; 1.23) 0.252 1.26 (1.09; 1.45) 0.002

sICAM-3 1.14 (0.95; 1.37) 0.161 1.12 (0.88; 1.42) 0.354 1.61 (1.23; 2.09) < 0.001

hs-CRP 3.14 (1.73; 5.72) < 0.001 3.28 (1.49; 7.21) < 0.001 3.28 (1.38; 7.80) < 0.001

SAA 2.88 (1.61; 5.15) < 0.001 3.65 (1.70; 7.84) 0.001 4.18 (1.80; 9.67) 0.001

IL-6 2.04 (1.48; 2.80) < 0.001 1.88 (1.24; 2.86) 0.003 1.92 (1.22; 3.05) 0.006

IL-8 1.10 (0.78; 1.56) 0.579 1.08 (0.69; 1.71) 0.728 0.78 (0.69; 1.71) 0.728

TNF-α 2.41 (2.13; 2.73) < 0.001 2.72 (2.31; 3.20) < 0.001 2.87 (2.40; 3.43) < 0.001

Z-scores Beta (95%CI) P value Beta (95%CI) P value Beta (95%CI) P value

Endothelial dysfunction 1.34 (1.01; 1.67) < 0.001 1.20 (0.77; 1.63) < 0.001 2.00 (1.52; 2.47) < 0.001

Low-grade inflammation 1.22 (0.85; 1.58) < 0.001 1.18 (0.70; 1.66) < 0.001 1.48 (0.95; 2.01) < 0.001

CKD5-HD vs. CKD5-ND� CKD5-PD vs. CKD5-ND� CKD5-PD vs. CKD5-HD�

Individual serum biomarkers Ratio (95%CI) P value Ratio (95%CI) P value Ratio (95%CI) P value

sVCAM-1 0.95 (0.83; 1.09) 0.491 1.22 (1.05; 1.42) 0.010 1.28 (1.08; 1.52) 0.004

E-selectin 0.97 (0.76; 1.23) 0.786 1.47 (1.12; 1.93) 0.005 1.52 (1.13; 2.06) 0.006

P-selectin 1.03 (0.83; 1.29) 0.783 0.89 (0.69; 1.14) 0.337 0.86 (0.65; 1.13) 0.276

Thrombomodulin 1.03 (0.90; 1.18) 0.633 1.35 (1.16; 1.57) < 0.001 1.30 (1.10; 1.54) 0.002

sICAM-1 0.91 (0.80; 1.02) 0.110 1.06 (0.92; 1.21) 0.430 1.17 (1.00; 1.36) 0.046

sICAM-3 0.98 (0.78; 1.23) 0.880 1.41 (1.10; 1.81) 0.008 1.43 (1.08; 1.90) 0.012

hs-CRP 1.04 (0.50; 2.18) 0.909 1.04 (0.46; 2.38) 0.920 1.00 (0.40; 2.49) 0.999

SAA 1.27 (0.62; 2.59) 0.510 1.45 (0.65; 3.22) 0.359 1.14 (0.47; 2.77) 0.765

IL-6 0.92 (0.62; 1.36) 0.684 0.94 (0.61; 1.46) 0.792 1.02 (0.63; 1.66) 0.928

IL-8 0.98 (0.64; 1.51) 0.937 0.71 (0.44; 1.15) 0.158 0.72 (0.43; 1.23) 0.225

TNF-α 1.13 (0.97; 1.31) 0.124 1.19 (1.00; 1.41) 0.047 1.06 (0.87; 1.27) 0.572

Z-scores Beta (95%CI) P value Beta (95%CI) P value Beta (95%CI) P value

Endothelial dysfunction -0.14 (-0.55; 0.26) 0.485 0.65 (0.20; 1.11) 0.005 0.80 (0.30; 1.30) 0.002

Low-grade inflammation -0.03 (0.48; 0.42) 0.880 0.27 (-0.24; 0.77) 0.293 0.30 (-0.25; 0.86) 0.283

Ratios represent the ratio of (geometric mean) levels of the serum biomarkers in the respective end-stage renal disease group relative to controls, relative to individuals

with chronic kidney disease stage 5 non-dialysis, chronic kidney disease stage 5 hemodialysis, and chronic kidney disease stage 5 peritoneal dialysis, respectively.

Betas represent the differences in Z-scores for endothelial dysfunction and low-grade inflammation (expressed as standard deviations) between the respective end-stage

renal disease group and controls, and among the respective end-stage renal disease groups.

All analyses are adjusted for age, sex and diabetes mellitus.

Abbreviations: CKD5-HD, chronic kidney disease stage 5 hemodialysis; CKD5-ND, chronic kidney disease stage 5 non-dialysis; CKD5-PD, chronic kidney disease stage

5 peritoneal dialysis; hs-CRP, high-sensitivity C-reactive protein; IL-6, interleukin 6; IL-8, interleukin 8; SAA, serum amyloid A; sICAM-1, soluble intercellular adhesion

molecule 1; sICAM-3, soluble intercellular adhesion molecule 3; sVCAM-1, soluble vascular cell adhesion molecule 1; TNF-α, tumor necrosis factor alpha.

� Analyses based on (Controls/ CKD5-ND/ CKD5-HD/ CKD5-PD) n = 36/43/20/14.

https://doi.org/10.1371/journal.pone.0222547.t002
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although not all differences were statistically significant. One PD patient switched to HD during

follow-up.

Courses of serum biomarkers of endothelial dysfunction and low-grade

inflammation following dialysis initiation

Figs 2 and 3 and S3 Table provide data on the distributions and individual trajectories of

serum biomarkers of ED and LGI in incident HD and incident PD patients from baseline up

to six months after dialysis initiation.

In linear mixed model analyses (Table 3), incident HD patients showed a an increase in

sVCAM-1, P-selectin and TNF-α from baseline to six months after dialysis initiation, although

this change was only borderline statistically significantly for sVCAM-1. In addition, hs-CRP,

SAA and IL-6 were lower after six months of follow-up.

In linear mixed model analyses (Table 3), incident PD patients showed a statistically signifi-

cant increase in sVCAM-1, thrombomodulin, sICAM-1 and sICAM-3 from baseline to six

months after dialysis initiation.

In these analyses, statistically significant interaction terms suggested that the courses of P-

selectin, sICAM-1, sICAM-3, hs-CRP, SAA and IL-6 were different between incident HD and

incident PD patients (Pinteraction < 0.10).

Fig 2. Boxplots and individual trajectories of serum biomarkers of endothelial dysfunction and low-grade inflammation over time in

incident hemodialysis patients. Abbreviations: hs-CRP, high-sensitivity C-reactive protein; IL-6, interleukin 6; IL-8, interleukin 8; NA, not

applicable; SAA, serum amyloid A; sICAM-1, soluble intercellular adhesion molecule 1; sICAM-3, soluble intercellular adhesion molecule 3;

sVCAM-1, soluble vascular cell adhesion molecule 1; TNF-α, tumor necrosis factor alpha. † P value< 0.05 vs. baseline based on linear mixed

model analyses with a random intercept.

https://doi.org/10.1371/journal.pone.0222547.g002
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Courses of serum biomarkers of endothelial dysfunction and low-grade

inflammation following kidney transplantation

Fig 4 and S4 Table provide data on the distributions and individual trajectories of serum bio-

markers of ED and LGI in kidney transplant recipients from baseline up to six months post-

transplantation.

In linear mixed model analyses (Table 4), kidney transplant recipients showed a statistically

significant reduction in sVCAM-1, thrombomodulin, sICAM-3, and TNF-α at three months

post-transplantation, which was still present after six months of follow-up. In addition, E-

selectin, hs-CRP, SAA and IL-6 were lower at three and six months post-transplantation with

similar or even larger magnitudes of effect (i.e., ratios), albeit not statistically significantly and

with wide 95% confidence intervals.

Additional analyses

First, when we excluded outliers (i.e., defined as participants with standardized residuals < 2

or> 2 SD) in the cross-sectional linear regression analyses, results were largely similar (S5

Table). Most notable dissimilarities after exclusion of outliers were a smaller difference

between CKD5-HD and CKD5-PD for E-selectin; more pronounced differences in SAA

Fig 3. Boxplots and individual trajectories of serum biomarkers of endothelial dysfunction and low-grade inflammation over time in

incident peritoneal dialysis patients. Abbreviations: hs-CRP, high-sensitivity C-reactive protein; IL-6, interleukin 6; IL-8, interleukin 8; NA,

not applicable; SAA, serum amyloid A; sICAM-1, soluble intercellular adhesion molecule 1; sICAM-3, soluble intercellular adhesion molecule

3; sVCAM-1, soluble vascular cell adhesion molecule 1; TNF-α, tumor necrosis factor alpha. † P value< 0.05 vs. baseline based on linear mixed

model analyses with a random intercept.

https://doi.org/10.1371/journal.pone.0222547.g003
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between CKD5-HD/CKD5-PD and CKD5-ND; and more pronounced differences in Z-score

for LGI between CKD5-PD and CKD5-ND/CKD5-HD.

Second, when we excluded outliers in analyses for the courses of serum biomarkers follow-

ing dialysis initiation (S6 Table) and kidney transplantation (S7 Table), results were in general

similar or somewhat more pronounced.

Third, results of cross-sectional analyses were similar after exclusion of participants with a

history of KTx (results not shown).

Fourth, results of longitudinal analyses were similar for incident HD and PD patients after

exclusion of participants with a history of KTx (results not shown). In addition, for kidney

transplant recipients, results were largely similar, except for the decline in hs-CRP, SAA and

IL-6 which was more pronounced after exclusion of participants with prior KTx (S8 Table).

Fifth, cross-sectional difference in sICAM-3 and the Z-score for ED between CKD5-HD and

CKD5-PD were attenuated by ~45% and ~15%, respectively, after additional adjustment for

Table 3. Course of serum biomarkers of endothelial dysfunction and low-grade inflammation stratified by dialysis modality.

Ratios of biomarker following dialysis initiation levels�

6 month vs. baseline

Biomarkers Modality Ratio (95%CI) P value Pinteraction
��

sVCAM-1 (μg/L) HD 1.06 (0.99; 1.14) 0.090 0.598

PD 1.09 (1.01; 1.18) 0.023

E-selectin (μg/L) HD 1.00 (0.88; 1.14) 0.983 0.509

PD 1.07 (0.93; 1.23) 0.355

P-selectin (μg/L) HD 1.24 (1.10; 1.38) < 0.001 0.015

PD 1.00 (0.89; 1.13) 0.938

Thrombomodulin (μg/L) HD 1.06 (0.97; 1.15) 0.224 0.335

PD 1.12 (1.02; 1.23) 0.017

sICAM-1 (μg/L) HD 0.98 (0.90; 1.07) 0.720 0.036

PD 1.13 (1.03; 1.24) 0.012

sICAM-3 (μg/L) HD 1.06 (0.98; 1.14) 0.152 0.022

PD 1.20 (1.11; 1.30) < 0.001

hs-CRP (mg/L) HD 0.54 (0.36; 0.81) 0.004 0.015

PD 1.14 (0.74; 1.74) 0.543

SAA (mg/L) HD 0.50 (0.30; 0.82) 0.008 0.057

PD 1.01 (0.59; 1.73) 0.961

IL-6 (ng/L) HD 0.82 (0.65; 1.04) 0.094 0.052

PD 1.15 (0.90; 1.46) 0.261

IL-8 (ng/L) HD 1.02 (0.81; 1.27) 0.887 0.462

PD 0.90 (0.71; 1.14) 0.381

TNF-α (ng/L) HD 1.27 (1.08; 1.49) < 0.001 0.306

PD 1.13 (0.95; 1.33) 0.164

Ratios represent the ratio of (geometric mean) levels of the biomarkers at the respective time point after dialysis initiation relative to baseline levels based on a linear

mixed model containing the respective serum biomarkers, categorical time, serum biomarker�categorical time, and a random intercept.

Abbreviations: hs-CRP, high-sensitivity C-reactive protein; IL-6, interleukin 6; IL-8, interleukin 8; NA, not applicable; SAA, serum amyloid A; sICAM-1, soluble

intercellular adhesion molecule 1; sICAM-3, soluble intercellular adhesion molecule 3; sVCAM-1, soluble vascular cell adhesion molecule 1; TNF-α, tumor necrosis

factor alpha.

� Analyses based on (incident hemodialysis/ incident peritoneal dialysis) n = 18/16.

�� P value for the interaction term between categorical time and dialysis modality.

https://doi.org/10.1371/journal.pone.0222547.t003
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dialysis vintage. In contrast, results were similar after additional adjustment for eGFRresidual,

residual urine output and fluid overload (results not shown).

Sixth, additional adjustment for eGFRresidual in linear mixed model analyses attenuated the

courses of sVCAM-1 in incident HD and thrombomodulin in incident PD, but did not explain

the courses in the other serum biomarkers (S9 Table).

Discussion

This study on ED and LGI on individuals transitioning from untreated ESRD to renal

replacement therapy had four main findings. First, participants with ESRD had higher

levels of most serum biomarkers of ED and LGI than controls. Second, in participants

with CKD5-HD, levels of serum biomarkers of ED and LGI were largely similar to those in

CKD5-ND. In contrast, participants with CKD5-PD had higher levels of biomarkers of ED

than participants with CKD5-ND and CKD5-HD. Third, incident PD patients showed an

increase in several serum biomarkers of ED as well, but no convincing change in serum bio-

markers of LGI. In contrast, results for incident HD patients were mixed, with an increase

in some serum biomarkers of ED and LGI, but a decrease in other biomarkers of LGI.

Fourth, following kidney transplantation levels of several serum biomarkers of ED and

Fig 4. Boxplots and individual trajectories of serum biomarkers of endothelial dysfunction and low-grade inflammation over time in

kidney transplant recipients. Abbreviations: hs-CRP, high-sensitivity C-reactive protein; IL-6, interleukin 6; IL-8, interleukin 8; NA, not

applicable; SAA, serum amyloid A; sICAM-1, soluble intercellular adhesion molecule 1; sICAM-3, soluble intercellular adhesion molecule 3;

sVCAM-1, soluble vascular cell adhesion molecule 1; TNF-α, tumor necrosis factor alpha. † P value< 0.05 vs. baseline based on linear mixed

model analyses with a random intercept.

https://doi.org/10.1371/journal.pone.0222547.g004
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LGI were lower at three months post-transplantation and remained stable at three months

thereafter.

Higher levels of multiple serum biomarkers of ED and LGI in participants with ESRD fits

previous literature that characterizes ESRD as a state of ED and LGI[26,27]. In addition, these

results indicate that multiple endothelial functions (including regulation of leukocyte adhesion

and hemostasis) and inflammatory pathways are affected.

Differences were most remarkable for sVCAM-1, thrombomodulin and TNF-α. In this

regard, VCAM-1 is a cell adhesion molecule, which is upregulated by cytokines, including

TNF-α[28]. Increased levels of TNF-α may reflect activation of the TNF-α system of peripheral

blood monocytes, which could be involved in the immunoincompetence of ESRD patients as

well[29]. In addition, increased thrombomodulin levels may indicate ED and/or a hypercoagu-

lable state in ESRD[30].

The causal mechanisms of ED and LGI in ESRD are likely multifactorial and may include

exposure to traditional CVD risk factors, oxidative stress, fluid and sodium overload, gut dys-

biosis, accumulation of uremic toxins[14,26,31], and turbulent flow[32] due to the hyperdy-

namic circulation after arteriovenous shunt creation[33]. In addition, ED and LGI may be

interrelated[34] as illustrated by the correlation matrix.

Dialysis initiation could either attenuate or augment ED and LGI, which may depend on

the relative contributions of improved clearance of uremic toxins and bioincompatibility of

the dialysis membrane[35–37].

In this study, both CKD5-PD and incident PD showed an increase in serum biomarkers of

ED but not convincingly of serum biomarkers of LGI. In addition, several serum biomarkers

of ED were higher in CKD5-PD than in CKD5-HD.

Increases in serum biomarkers of ED following PD initiation have been described previ-

ously and hypothesized explanations include alterations in fluid status, mechanical stress of

intraperitoneal capillaries and toxicity of absorbed constituents of PD fluid[15]. In this study,

Table 4. Courses of serum biomarkers of endothelial dysfunction and low-grade inflammation following kidney transplantation.

Kidney transplant recipients Ratios of biomarkers following kidney transplantation�

3 months vs. baseline 6 months vs. baseline

Serum biomarkers Ratio (95%CI) P value Ratio (95%CI) P value

sVCAM-1 (μg/L) 0.78 (0.68; 0.90) 0.001 0.76 (0.66; 0.88) < 0.001

E-selectin (μg/L) 0.83 (0.67; 1.02) 0.075 0.85 (0.69; 1.05) 0.128

P-selectin (μg/L) 0.99 (0.81; 1.22) 0.941 1.20 (0.98; 1.47) 0.077

Thrombomodulin (μg/L) 0.38 (0.32; 0.44) < 0.001 0.39 (0.33; 0.45) < 0.001

sICAM-1 (μg/L) 0.99 (0.85; 1.17) 0.943 0.94 (0.80; 1.10) 0.441

sICAM-3 (μg/L) 0.73 (0.63; 0.84) < 0.001 0.78 (0.68; 0.91) < 0.001

hs-CRP (mg/L) 0.44 (0.18; 1.11) 0.079 0.52 (0.21; 1.29) 0.152

SAA (mg/L) 0.76 (0.29; 1.99) 0.565 0.64 (0.24; 1.66) 0.342

IL-6 (ng/L) 0.67 (0.40; 1.11) 0.112 0.67 (0.40; 1.11) 0.112

IL-8 (ng/L) 0.91 (0.51; 1.61) 0.732 1.30 (0.73; 2.31) 0.357

TNF-α (ng/L) 0.57 (0.44; 0.73) < 0.001 0.54 (0.42; 0.69) < 0.001

Ratios represent the ratio of (geometric mean) levels of the biomarkers at the respective time point after kidney transplantation relative to baseline levels based on a

linear mixed model containing categorical time and a random intercept.

Abbreviations: hs-CRP, high-sensitivity C-reactive protein; IL-6, interleukin 6; IL-8, interleukin 8; NA, not applicable; SAA, serum amyloid A; sICAM-1, soluble

intercellular adhesion molecule 1; sICAM-3, soluble intercellular adhesion molecule 3; sVCAM-1, soluble vascular cell adhesion molecule 1; TNF-α, tumor necrosis

factor alpha.

� Analyses based on n = 15.

https://doi.org/10.1371/journal.pone.0222547.t004
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cross-sectional differences between CKD5-HD and CKD-PD were not explained by fluid over-

load. However, the comparison of HD and PD should be interpreted with caution as the sub-

groups were small.

For HD it is less clear whether the observed changes reflect effects of dialysis treatment on

selected endothelial functions (i.e. cellular adhesion) and pathways of LGI, or are the result of

the play of chance, as results of the cross-sectional and longitudinal analyses were incongruent.

Survivorship bias in prevalent dialysis patients with lower levels of sVCAM-1, P-selectin and

TNF-α could be a potential explanation in favor of the results of the longitudinal analyses.

In addition, their role as acute phase proteins may confound the courses of hs-CRP, SAA and

IL-6.

Kidney transplantation was followed by a reduction in several serum biomarkers of ED

and LGI, which was most convincingly shown for sVCAM-1, thrombomodulin, sICAM-3 and

TNF-α. The decrease in serum biomarkers of ED agrees with and expands the results of a pre-

vious study that assessed ED with sVCAM-1 only[17]. Similarly, the decrease in serum bio-

markers of LGI agrees with previous studies on this topic[18,19].

Kidney transplantation may improve ED and LGI by reversing the uremic state that is

described above. In this regard, this study indicated that a major part of the benefit of kidney

transplantation on ED and LGI is already reached in the first three months post-transplanta-

tion. Given their molecular weight, improved renal clearance does not account for the reduc-

tion of serum biomarkers of ED but may (partly) explain the reduction of TNF-α[21]. In

addition, the role of the immunosuppressive regimen is complex as individual immunosup-

pressive medications may have opposite effects on ED and LGI. For example, corticosteroids

reduce LGI[38] and calcineurin inhibitors induce ED[39], possibly tempering the benefits of

kidney transplantation.

In contrast with previous studies, this study observed no statistically significant difference

in hs-CRP and IL-6 in the main analyses. This may be explained by a lack of statistical power

and high variability as median levels of both serum biomarkers were numerically lower at end

of follow-up. In addition, additional analyses suggested that baseline immunosuppressive use

in participants with a prior KTx may have confounded results. However, these results should

be interpreted with caution given the small sample size. Further, in the present study, levels of

hs-CRP and IL-6 were lower as compared with previous studies[18,19]. This may indicate a

more favourable prognosis of participants of the present study, which may be related to the

higher proportion of pre-emptive kidney transplantations and consequently less dialysis-

induced inflammation[40,41].

Strengths of this study were the assessment of multiple serum biomarkers of ED and

LGI, and a design that combined a cross-sectional comparison of CKD5-ND, CKD5-HD,

CKD5-PD and controls with follow-up data in incident patients on renal replacement therapy.

This allowed examining ED and LGI in uremia per se as well as the additional short-term con-

sequences of renal replacement therapy. In addition, the use of composite scores on top of an

analysis of individual serum biomarkers improved statistical power and reduced biological

and analytical variability in the cross-sectional analyses.

This study also had some limitations. First, statistical power was limited, in particular for

the comparison of HD and PD, and for the follow-up of kidney transplant recipients. In addi-

tion, the limited number of kidney transplant recipients precluded further stratification, for

example to compare participants with preemptive and non-preemptive kidney transplantation.

Second, the follow-up time was relatively short. However, this study specifically focused on the

transition phase from CKD5-ND to CKD5-D and from CKD5-ND to kidney transplant recipi-

ent, instead of the long-term course of ED and LGI. In addition, with regard to kidney trans-

plantation, kidney function has stabilized at this point of time, whereas the effects of surgery
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are very likely to have been subdued. Third, the distribution of ESRD causes, with varying

prognosis, in this study may hamper comparisons between CKD5-ND and CKD5-D patients,

and may limit generalizability. For example, the prevalence of polycystic kidney disease was

high, whereas that of diabetic nephropathy was low. Fourth, incomparability of characteristics

of incident dialysis patients and kidney transplant recipients, which may be related to eligibil-

ity for kidney transplantation and, thus, selection bias, hampers a direct comparison between

both renal replacement therapies. Fifth, in this observational study, the immunosuppressive

regimen was protocolized but not fully standardized, which may hamper the interpretation of

results in kidney transplant recipients. Sixth, this study cannot examine whether ED and LGI

explain the increased CVD risk in uremia, after dialysis initiation and after kidney transplanta-

tion, as data on CVD events were lacking. Nevertheless, the results of this study suggest that it

is worthwhile to address this question in a study with data on clinical outcome.

In conclusion, levels of serum biomarkers of ED and LGI were higher in ESRD as compared

with controls. In addition, PD initiation and, less convincingly, HD initiation may increase

levels of selected serum biomarkers of ED and LGI on top of uremia per se. However, the find-

ing that this was not readily apparent for all examined serum biomarkers fits the hypothesis

that ED and LGI for a large part already develop in earlier CKD stages. In contrast to dialysis,

kidney transplantation led to a marked improvement of several serum biomarkers of ED and

LGI.
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B. van der Net, Casper G. Schalkwijk, Remy J. H. Martens.

Project administration: Natascha J. H. Broers, Maarten H. L. Christiaans, Tom Cornelis.

Resources: Maarten H. L. Christiaans, Tom Cornelis, Marc M. H. Hermans, Constantijn J. A.

M. Konings, Frank M. van der Sande, Casper G. Schalkwijk, Frank Stifft, Joris J. J. M.

Wirtz.
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