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Abstract

This paper brings advances in weather data collection and modeling, and developments in

socioeconomic climate microsimulations to bear on the analysis of the implications of cli-

mate change (CC) in the design of public policies to combat food insecurity. It uses new

downscaled predictions of future climate in 2050, derived from three Earth System Models

calibrated with a new historical weather station dataset for Peru. This climate data is used in

a three-stage socioeconomic microsimulation model that includes climate risk, and deals

with the endogeneity of incomes and simultaneity of expected food consumption and its vari-

ability. We estimate the impact of CC on agricultural yields, and find results consistent and

fully bounded within what the global simulations literature has found, with yields falling up to

13% in some regions. However, we show that these drops (and increases) in yields translate

to much smaller changes in food consumption, and also surprisingly, to very minor impacts

on vulnerability to food insecurity. The document explores what explains this surprising

result, showing that in addition to characteristics that are specific to Peru, there are house-

hold and market mediating mechanisms that are available in all countries, which explain

how changes in yields, and corresponding farm incomes have a reduced impact in vulnera-

bility to food insecurity. Finally, in light of these findings, we explore which policies might

have greater impact in reducing food insecurity in contexts of hunger prevalence.

1. Introduction

In face of the growing and overwhelming evidence of large changes in global weather patterns,

science from different disciplines has been called to provide evidence of the impacts of these

global changes. A particular focus of attention for both scientist and funding institutions has

been agri-food systems that are believed to be most acutely impacted by these climate changes

(see for example, [1–3]). The present document is part of this fast-growing multidisciplinary

effort: it brings advances in weather data collection and modeling, and developments in socio-

economic climate microsimulations to discuss the implications of climate change in the design

of public policies that combat food insecurity.
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Most of the literature that studies the climate change (CC) food security (FS) links reports

the efforts of large-scale modeling [4–7]. These models generally predict future weather with

General Circulation Models, which impact agricultural yields through Global Gridded Crop

Models, which in turn affect Global Economic Models that make predictions about income

and food consumption [8]. A good summary of what we learn from these models is available

in [9]. However, a few highlights are important to stress here. Yields are expected to rise (par-

ticularly when carbon fertilization is included) in some global regions and fall in others, but

the overall global net (average) effect appears to be negative, as a result of the marginal effect of

CC. This is in spite of the fact that overall towards 2050, both area and yields are expected to

continue their historical trends of growth. Models tend to agree that the most serious impacts

on FS are expected to occur in low latitude areas of Sub-Saharan Africa and South Asia. Crop-

specific yields are predicted to fall as much as 30% [10], as a result of CC, however, after allow-

ing for these models to predict reallocation of area and crops, the overall net (marginal) impact

on yields is more centered around (negative) 7–10% [11].

These type of models have been criticized in the literature because beyond crop and area

selection, these models ignore adaptive and mitigating behavior [12], so perhaps they should

be understood as a ceiling for the negative impacts. For example, CC impacts would be lower

if one considers that agronomic adaptation is expected to increase yields by 15–18% [9]. We

also learn from these models that it would be a mistake to stop at the yields effects to predict

impacts on human welfare, because there are large predicted responses (adaptation) in pro-

duction and trade as a response to climate shocks [8]; an argument that is furthered in this

paper. In this respect, the large-scale gridded models proposed by [13] represent an important

improvement in the right direction, by using a Ricardian land-value based approach [14],

which assumes farmers adapt their best production strategy according to climate change.

These models predict a more moderate impact of CC as compared to global gridded models.

On the other hand, we learn from the Global Gridded Crop Models, that the weather data

derived from global circulation models (and other similar approaches) produce very poor pre-

dictions that are highly divergent from that obtained from control real weather data [15], ques-

tioning the reliability of the climate impacts in these models. The other criticism widely posed

against these global models relates to its scale of analysis, they are unable to disentangle what

are believed to be important sub-national variations in the impacts [4,7]. Hence, these models

cannot inform local policymaking in terms of identifying the types of households most at risk,

or the most successful adaptation practices on the ground. This is the type of microanalysis

carried by another (smaller) strand of the literature to which this paper contributes.

Micro studies, link with varying degrees of sophistication the impacts of climate on welfare

by fitting microeconomic models using household surveys and weather or climate informa-

tion, and mimic the impacts of climate change by simulating shocks on weather variables. In

Nicaragua, for example, a low-latitude country, additional warming of average temperatures

has a significant negative impact on household agricultural income, as well as food security

vulnerability [16]. In rural Mexico, [17] found that households, particularly in semi-arid

regions were vulnerable to negative precipitation shocks; and also, in a finding related to what

is argued in this paper, found that across regions, those with less assets were more vulnerable

to weather shocks. [18] study in Uganda the impact of weather shocks on welfare indicators,

like food consumption, and found very small to no impacts at all, attributing the result to con-

sumption smoothing by households. CC adaptation strategies are studied by [19] in Uganda.

They report that CC may hinder the viability of more modern and productive strategies (i.e.

use of high yielding varieties (HYV) with increased fertilizer use), which is consistent with

what was found in Ethiopia by [20].

Lessons from climate change micro-simulations in Peru
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The study presented in this paper is a step forward in improving ground-level micro simu-

lation of CC. First, instead of simulating temperature increases or declines in precipitation, it

uses a new climate dataset, which provides climate projections towards 2050, in a higher reso-

lution 10km grid for Peru. Obviously, this is a great improvement, because climate change is

complex, and in a large and agroecologically diverse country like Peru, changes in tempera-

tures and precipitation are expected to vary even in nearby areas. The micro-modeling pre-

sented in this work, also represents a step forward in the modeling of climate impacts on FS,

following the work of [16,21] we develop a three-stage model that includes climate risk, and

deals with endogeneity of incomes and simultaneity of expected consumption and its

variability.

On the other hand, Peru is a very interesting country to study the impacts of CC on FS, in

spite of the fact that it is not a poor country, but rather a low-middle-income country. Peru has

notorious social disparities, with a large portion of its population, most of it living in the

Andean region, suffering poverty, extreme poverty, and hunger. In addition, the country has

many agroecological zones, marked by the presence of an arid coast, the Andes, and the Ama-

zonian rainforest. In this context, we expect a priori heterogeneous impacts of CC that will

depend on socio-economic and agroecological contexts.

In the work presented below, we estimate the impact of CC on agricultural yields, and find

results consistent and fully bounded within what the literature that performs global simula-

tions has found (i.e. [10]), with yields falling up to 20% in some regions. However, we show

that these drops (and increases) in yields translate to much smaller changes in food consump-

tion, and also surprisingly, to very minor impacts on vulnerability to food insecurity. The doc-

ument explores what explains this surprising result, showing that characteristics that are

specific to Peru, but also household and market mediating mechanisms more generally,

explain how changes in yields, and corresponding farm incomes have a reduced impact in vul-

nerability to food insecurity.

The paper follows by presenting the methodology used to evaluate the impacts of CC on FS,

followed by a description of all data sources used. The fourth section of the paper presents a

brief summary of the results of the complete microsimulation model. Following the robust

results that climate driven changes in yields have a minor impact on vulnerability to food inse-

curity, the fifth section of this paper unravels the characteristics of Peru and the transmission

mechanisms that explain these low impacts; and; explore which policies could have a greater

impact in reducing food insecurity in contexts of hunger prevalence. The final section

concludes.

2. Methodology to calculate the vulnerability to undernourishment

due to climate change

In this work we address the potential impact of CC on social welfare by modeling and measur-

ing how changes in weather patterns alter agricultural productivity and how these impacts ulti-

mately affect food security. We study the impact of climate change through agriculture both

for the importance the sector has on the economies of rural households, 75% of which declare

agricultural incomes, and because it is expected to be one of the economic activities most

affected by CC. The impact of CC on agriculture will be strongly related to the characteristics

of each socioeconomic system, as well as the mitigation and adaptation capacity those systems

[22]. For example, a reduction in the amount of precipitation or a change in its distribution

will likely affect more those households which are more dependent on rainfed agriculture as

opposed to those who have access to irrigation infrastructure.

Lessons from climate change micro-simulations in Peru
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To measure the impacts of CC on wellbeing, we propose a measurement that adequately

reflects the consequences on food security due to the high prevalence of hunger in rural Peru.

Improved estimates prepared for this study show that 32% of the rural population in 2012 suf-

fered from food shortage or caloric deficit. A possible indicator is the prevalence of caloric def-

icit (also referred to as undernourishment), the percentage of people that are below the

minimum caloric requirements established for each sex/age group according to anthropome-

try. The caloric deficit measured at a certain point in time reveals the nutritional state in a

static form, which can be influenced by negative shocks, like a bad harvest or seasonal unem-

ployment, or positive shocks as well. The changes in climate, on the other hand, manifest

themselves over the mid and long term, for which we would want an indicator of wellbeing

that better reflects the reality of the household over the long-term. We choose the vulnerability

to undernourishment as a dependent variable, as this measurement eliminates the positive and

negative shocks of the households, to deliver the expected wellbeing of the household over the

long term, and captures the capacity of the household to resist and confront adverse circum-

stances, such as CC. Also, vulnerability better reflects the dynamic nature of food security,

unlike poverty food security is a dynamic concept, as its definition indicates: having enough

food at all times. Following [21], vulnerability of the household to undernourishment Vh is

defined as the probability (Pr) that the household will experience a caloric deficit in the future,

that is to say, the probability that the caloric consumption Ch will be below the minimum

required caloric consumption threshold κh, of that household h, given its anthropometric

characteristics and demographic composition.

Vh ¼ Pr½ðln kh � lnChÞ > 0� ð1Þ

CC affects agriculture through changes in patterns of precipitation, minimum and maxi-

mum temperatures, and the temporal or seasonal distribution of these meteorological vari-

ables. The changes in these parameters will have repercussions on crop yields, which are

transmitted directly to the farm (agricultural) income of the household (including own-con-

sumption). Moreover, the caloric consumption Ch depends, among other factors, on the

income of the household—agricultural and non-agricultural, as is observed in Fig 1, which has

a preponderant role in the household’s access to food, be it bought or from their own

production.

Based on this conceptual relation between climate change and vulnerability, we designed an

econometric strategy to estimate the impact. The calculation of the probability of being in a

condition of undernourishment implies information about the probability distribution func-

tion of caloric consumption of each household. In its projections of undernourishment, FAO

utilizes a lognormal distribution for caloric consumption [23], which has also been empirically

validated, for example [24]. Assuming the said distribution of caloric consumption, the vulner-

ability of each household is given by:

Vh ¼
Z lnkh

0

1
ffiffiffiffiffiffiffiffiffiffi
2pŝ2

h

p exp �
ðlnCh � ln ĈhÞ

2

2ŝ2
h

� �

dlnCh ð2Þ

To estimate the caloric consumption of household Ch, an explanatory model (in reduced

form) is presented whose main determinants are agricultural income yf (the production of the

household valued at market prices), and the non-agricultural income ynf. This model faces the

challenges of isolating the decision of agricultural production from the decision of consump-

tion, e.g. navigating the evident econometric problem of endogeneity between agricultural

income and caloric consumption and addressing the heteroscedasticity present in caloric con-

sumption, as by definition we know that less (more) vulnerable households present a lower

Lessons from climate change micro-simulations in Peru
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(higher) variability in their consumption. To face these different challenges the estimation of

vulnerability of each household is carried out in three main steps as illustrated in Fig 2. First,

yields are estimated as a function of climate and inputs; from yields we estimate farm income

and weather driven variability of yields which are used to estimate consumption and its vari-

ance in the second step, and; in a third step estimated consumption and its variance is used to

estimate household-level vulnerability.

In the first step, agricultural incomes (yf) are estimated and predicted through an econo-

metric model that explains agricultural yields. Step (I) is implicitly the first stage of an

Fig 1. Conceptual model of the impact of climate change on vulnerability to undernourishment.

https://doi.org/10.1371/journal.pone.0222483.g001

Fig 2. Model estimation of the impact of climate change on food insecurity of households.

https://doi.org/10.1371/journal.pone.0222483.g002

Lessons from climate change micro-simulations in Peru

PLOS ONE | https://doi.org/10.1371/journal.pone.0222483 September 27, 2019 5 / 24

https://doi.org/10.1371/journal.pone.0222483.g001
https://doi.org/10.1371/journal.pone.0222483.g002
https://doi.org/10.1371/journal.pone.0222483


instrumental variables (IV) approach to the estimation of consumption in the second step. The

IV model deals with endogeneity between caloric consumption and agricultural income. The

model includes, among other things, agricultural inputs, characteristics of the producer, geo-

graphic characteristics, and climatic variables. Climatic variables are the primary instruments

in predicting the agricultural income that is used in the second step. They represent good

instruments as climate is highly correlated to yields (and therefore agricultural income), but it

is not strongly correlated with consumption (criteria of exclusion). In addition to solving the

problem of endogeneity between consumption and agricultural income, this first model deliv-

ers the mechanism by which to simulate CC impacts on the caloric consumption of the house-

hold. The predicted agricultural income (ŷf ) can be treated as exogenous and allows us to

estimate the impact of agricultural income, and indirectly, of the climate, on caloric consump-

tion. This step also predicts climatic risk (ẑ), which is approximated by the variability of

agricultural yields that is due to climatic variables. As explained below with the case of con-

sumption, household-level yield variance can be estimated from the difference between

observed and predicted yields. To estimate climate-driven risk, we regress household-level

yield variance against climate variables, and use this predicted variance as a measure of cli-

mate-driven yield risk.

In the second step expected household food consumption and its variability is estimated. In

this case, heteroscedasticity of consumption is expected, i.e. variance is not constant, but rather

it reveals the level of vulnerability of a household due to the variability of expected consump-

tion, which instead of being constant, as traditional econometrics assumes, is specific to the

household. In the second step (II) we approach said heteroscedasticity utilizing Just and Pope’s

model, which estimates both equations i) Caloric consumption equation and ii) Variance of

caloric consumption equation in its log-linear form by generalized least squares, GLS (see Fig

2). In this work, we estimate both models jointly by maximum likelihood, which is equivalent

to iterating Just and Pope’s recursive model until the regression parameters converge, see

details in [25]. It is important to stress that this methodology not only deals with the problem

of heteroscedasticity, but also deals with the perhaps a more relevant problem, the endogeneity

of the variance of expected consumption.

In a third step (III) the prior results, the expected (i.e. predicted by the above model) house-

hold caloric consumption Ĉh and the variance of caloric consumption Ŝh
2

, are used to calculate

the vulnerability indicator of each household Vh, as shown in Eq (2). The simulations of cli-

mate change are derived from global climatic models with national data, see details below.

With the simulated climate data, the predictions for variables of interest in steps (I) and (II)

from the prior models are recalculated to have new estimates for the caloric deficit as well as

the food vulnerability. In this way the methodology allows for the mapping of current food sit-

uation and vulnerability to undernourishment, versus the scenario with climate change. Addi-

tionally, it allows us to contrast the impact of climate change with the structural conditions

that determine vulnerability to undernourishment.

3. Data sources

The objective of this multidisciplinary study requires the compatible use of distinct informa-

tion sources, as is described here. The data used comes from four principal sources: 1) The

National Household Survey (ENAHO, INEI) (four rounds, between 2005 and 2012); 2) Special

anthropometric module (ENAHO 2012, INEI); 3) Historic climate data; multiple meteorologi-

cal seasons (SENAMHI, National Service of Meteorology and Hydrology), and; 4) Future cli-

mate scenarios from three different Global Climate Model (ESMs) projections, downscaled to

Peru in 10km grids.

Lessons from climate change micro-simulations in Peru
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The ENAHO (National Household Survey) allows us to satisfy the information require-

ments related to the measurement of: i) agricultural productivity, ii) food security, iii) factors

that determine vulnerability to food insecurity of rural households. Information is obtained

from the survey modules related to agricultural and livestock production (and related

incomes): agricultural, livestock, and forest production, the input costs, and related variables

(number, size, and use of parcels, tenure, and irrigation system, for example). Based on this

information, we construct the key variables for the agricultural productivity model: produc-

tion, yields, prices, and value of production indexes, using Törnqvist indexes. The reference

period for agricultural income is the last 12 months. Additionally, we use available information

about the socioeconomic, demographic, and cultural profiles of the rural household as explan-

atory factors of vulnerability to food insecurity.

Agricultural income had outliers removed, a procedure that consisted in analyzing income

per hectare by socioeconomic groups and sampling stratum with an algorithm that removes

extreme values that exceed three standard deviations from the median. A standard procedure

in the literature, cf. (Davis et al., 2010). The data is a cross-section from the period 2005 to

2012—to take into account the most recent developments, the data available from the ENAHO

are from 2005, 2007, 2010, and 2012, as Table 1 shows. Finally, all of the monetary values are

expressed in 2012 prices. The deflation is carried out using the CPI for Metropolitan Lima.

The survey is representative at the national level, for rural and urban zones and the 24 depart-

ments (regions) of the country.

To measure the level of food insecurity, the caloric consumption per person was calculated

using the detailed listing of food consumption inside and outside the home, which is converted

to calories using the CENAN (National Center for Food and Nutrition) Peruvian food conver-

sion tables [26].

ENAHO’s 2012 anthropometric measurements module was used to identify the height dis-

tribution by age in Peru. With this information the minimum dietary energy requirements

(MDER) were calculated by gender for each age group in Peru, methods in [27,28]. The con-

trast between the required minimums and the caloric consumption, both measured at the

household level, lead to one food security indicator—caloric deficit.

3.1 Climate modeling and simulations

The climate data used here is a new dataset of climate projections for Peru, derived from the

downscaling [29] of global climate projections of three Earth System Models (ESMs) from the

Fifth Assessment of the IPCC [1]. The statistical downscaling of climate projections for differ-

ent Green House Gases (GHG) emissions scenarios was carried out by the National Meteorol-

ogy and Hydrology Service of Peru (SENAMHI) for the purpose of this study [30]. Three

ESMs used are CanESM2 (Canadian Earth System Model), CNRM-CM5 (National Meteoro-

logical Research Center of France) and MPI-ESM-MR (Max Planck Institute for Meteorology).

The global temperature and precipitation projections on coarse grids through the year 2099 at

Table 1. National Household Survey (ENAHO) coverage for urban, rural, and agricultural households.

ENAHO Results 2005 2007 2010 2012

Total Households 19,895 22,204 21,496 25,091

Urban households 11,080 13,560 12,962 15,355

Rural households 8,815 8,644 8,534 9,736

Agricultural households 8,781 9,103 9,194 10,389

Source: Authors’ calculations

https://doi.org/10.1371/journal.pone.0222483.t001
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the daily scale under two GHG (greenhouse gases) concentration scenarios (Representative

Concentration Pathways—RCP4.5 and 8.5) were statistically downscaled to weather station

locations in Peru after calibration with historical meteorological data (1971–2010). The cali-

bration of statistical methods used 105 stations for maximum temperatures, 102 stations for

minimum temperatures, and 265 stations for precipitation. These stations were selected after

taking into account a percentage of lost, missing, or non-collected data in the period 1971–

2000 and 1981–2010 below 20%.

The downscaled climate projections on a daily scale were further temporally aggregated on

a monthly timescale, and then spatially interpolated by considering the proximity to the ocean,

and other geographic influences on climate to a spatial resolution of 10 x 10 km. The informa-

tion from the spatial interpolations was aggregated at the administrative unit (department and

province). To link the climatological information with the household information, average val-

ues at the province level were ultimately used. In the simulations of vulnerability with climate

change, average values for the 5 years centered around 2050 (2048–2052) were used to capture

climate trends and not inter-annual climate variability. Therefore, the correct interpretation of

the simulations is: What would the impact on food vulnerability be in Peru if it faces today the

climate that we expect to see towards 2050? In the exposition below, we present the tables of

modeling and simulations derived from the CanESM2 climate model and for the RCP 4.5 and

8.5 scenarios of moderate and high GHG emissions growth. However, all six models and their

related tables are available in supplementary tables (see S9, S10, S11, S12, S13, S14 and S15

Tables), and; also below, we present mean and inter-model variability, across the six climate

scenarios, for the main results discussed. Further, climate estimates towards 2050 for all three

ESMs are also available in the S6, S7 and S8 Tables.

4. Results

4.1 Estimation of agricultural yields

Agricultural productivity is estimated through a model that represents a Cobb-Douglas pro-

duction function expanded to control for characteristics of the household, the farmer, geogra-

phy, and climate. In an abbreviated form the model is:

Y ¼ FðI; K; FC; HC; G; CI; FEÞ:

Where,

Y: Yields (index of production per hectare)

I: Agricultural inputs

K: Physical Capital

FC: Farmer characteristics

HC: Household characteristics

G: Geographic characteristics

CI: Weather variables

FE: Fixed effects (time and region)

The dependent variable Y provides the crop yields per hectare. When analyzing agricultural

productivity, we face the challenge of appropriately aggregating in an index the hundreds of

crops that exist in a country with the agro-climatic diversity of Peru. On the other hand, it is

necessary to consider that the choice of each crop is endogenous, which is to stay, determined

in the biophysical context, of prices and preferences, which implies that to analyze each crop

separately could distort the results of the impact of CC as the farmer optimizes the input

assignments in an optimum mix of distinct crops. We offer a solution to these problems

through the construction of a Törnqvist [31] production quantity index. This index was

Lessons from climate change micro-simulations in Peru
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chosen (and others rejected) as in its construction it considers each crop according to the

product’s share in the total value of production of a representative producer (we use the aver-

age of the quantities between producers as the representative producer), but also considering

the share of the same crop in the total production of each farmer. Thus, a better index is con-

structed in contexts such as the case of a particular crop that could be the only source of

income for a particular farmer, but irrelevant on the national scale. The index is also compara-

ble between years as prices were deflated, and the representative farmer is calculated between

farmers and years that the study covers. Table 2 shows the evolution of estimated output (e.g.

the Törnqvist quantity index).

While there is a long tradition in the agricultural economics literature of using household

surveys in econometric models that explain yields, since at least [32], there is much less litera-

ture using climate variables within this type of models. Hence, climate specification model

selection is based in minimizing the Bayesian Information Criterion (BIC), that punishes

more heavily parameter addition as compared to the also popular Akaike Information Crite-

rion. A table with a selection of climate model specifications considered, and how they fared

with different statistics with respect to the model presented here is included in S1 Table.

Including climate in these yield models presumes the tackling several challenges, among them:

i) given the agro-climatic heterogeneity of Peru, distinguishing climatic zones for area-specific

weather variable impacts, ii) deciding the cutoff month for the agricultural year, iii) including

variables that reflect the climatic variability without producing autocorrelation of errors.

The agro-climatic heterogeneity of Peru implies that the increase in frequency of an event

(for example precipitation) does not have the same impact in the different regions of Peru, i.e.

rain in the arid coast or the tropical rainforests. We considered climate variables having differ-

entiated impacts by eco-regions (coast, mountains, rainforests / selva) and by survey strata (i.e.

North Coast, Center Coast, etc.), but chose the former based on the BIC. Furthermore, climate

variables need to reflect 12 months of data, as the production information from the household

survey is annual. Ideally, we would like these 12 months to reflect the agricultural year accord-

ing to harvests, instead of the calendar year. Nevertheless, the agricultural calendar varies by

agro-climatic zone. Distinct alternatives such as different cut-off months by administrative

region, and eco-region were explored, but based on the goodness of fit a country-wide agricul-

tural year ending on July was chosen.

The climate projections dataset consists of monthly information on average minimum and

maximum temperatures and total precipitation, by department or province. The choice of

which climatic attributes to include, given this data, requires giving flexibility to the estimation

by including different climate measurements, but at the same time minimizing the potential

for autocorrelation of errors and multicollinearity. Additionally, the special nature of cross-

sectional and time series data was considered. The dataset allows the use of average climate

conditions over time, which would reflect impact of longer-term climate conditions; and each

Table 2. Evolution of agricultural output (Törnqvist index).

Year Average SD N

2005 1.50 0.82 7,622

2007 1.61 0.87 7,871

2010 1.78 0.93 8,003

2012 1.76 0.94 8,970

Total 1.66 0.90 32,466

Source: Authors’ calculations using ENAHO.

https://doi.org/10.1371/journal.pone.0222483.t002
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year’s meteorological conditions, which would capture the response of yields to the specific

year’s conditions. We use cumulative moving averages of each climate indicator (i.e. the aver-

age from 1970 to the year of the observation); and the annual deviation, that is the indicator,

say total precipitation, for that year t and province iminus the cumulative average of total

annual precipitation from 1970 to year t, for province i: ðxit � �xitÞ. Averages do not capture the

concentration or dispersion of climatic indicator within a year, which is of particular impor-

tance with precipitation, so in addition to total precipitation, we use indicators of intra annual

dispersion (the seasonality index of [33]). Given the original climate data, we settle for four

underlying indicators, maximum temperatures, average temperatures (using min. and max.

data), total precipitation, and precipitation seasonality. This information is expanded to a vec-

tor of 24 climate variables: each climate indicator as a cumulative moving average, and as an

annual deviation, and expanded to the three main eco-regions. Also, the impact on tempera-

ture on yields may vary with altitude, so in addition to controlling for altitude we explored the

interaction of altitude with the temperature indicators. Based on the BIC we limited this inter-

action to mean temperatures and only in the mountains / sierra ecoregion. A sensible out-

come, given that large altitude differentials are observed in this ecoregion and not on others.

The estimation of this agricultural productivity model is done through ordinary least

squares, and includes agricultural producers: 32,466 observations with complete information.

The impact of distinct groups of variables on productivity is briefly discussed. The agricultural

inputs, as expected, are key to crop yields, principally labor, variable inputs and physical capi-

tal; and, as expected diminishing returns to scale are estimated. All the continuous variables of

agricultural inputs of farming households are expressed per-unit (ha) of agricultural (operated)

land to indicate the intensity in the use of inputs. Spending on hired labor is positive and

significant, but not the number of household workers. Additionally, agricultural spending is

positive and significant, signaling the importance of variables inputs: fertilizers, and other

agrochemical products. Physical capital is approximated from variables such as, animals,

motorized vehicles and an (local area) infrastructure index. Both the infrastructure and house-

hold assets index, are principal components indices. The infrastructure index is composed of

indicators of connectivity and proximity to services, like distance to health center, telephone

and electricity connection, and public trash collection services. The presence of motorized

vehicles and the infrastructure index presents a positive effect on the yield per hectare, how-

ever no type of animal appears to be related to agricultural productivity.

In addition to the input variables normally included in a Cobb-Douglas function, in this

estimation characteristics of the farmers and households, as well as geographic variables and

location specific fixed-effects, are controlled for. The majority of relationships found are

within what was expected, highlighting the farmer’s dedication (share of agricultural income

in total income), the age that shows a quadratic relationship, and the altitude of the property,

negatively related to yields.

There are several ways to gauge the contribution of the climate variables to this yields

model. Here we focus in the contribution of the climate vector in explaining yield variability,

and the marginal contribution of each climate attribute to yields by eco-region. The model

explains 72% of yield variability, the R-squared. This statistic cannot be linearly decomposed,

because the order in which variables are entered to the model affect its contribution, which is

why researchers usually average the contribution of variables over all possible orderings, the

Lindeman, Merenda and Gold or Shapley decomposition, see [34]. The first column of Table 3

shows in parenthesis the contribution (in percentage) of each variable group to the total R-

squared. Not surprisingly, inputs (land, seeds, fertilizer, employment, etc.) is the most impor-

tant set of variables, accounting for 70% of explained variability. Climate accounts for 10% of

explained variability, and provides an equivalent contribution to all geographic, time and
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Table 3. Estimation results of agricultural productivity (yields).

Dependent Variable ln (index of agricultural production/hectares of operated land) Coefficient t-stat

I: Agricultural Inputs (69.8) ln hectares of operated land -0.677��� 35.99

ln number of hh agricultural workers -0.00158 0.0905

ln spending on agricultural labor 0.0385��� 14.92

ln spending on agricultural variable inputs 0.202��� 31.17

ln spending on livestock variable inputs 0.0158��� 4.352

Irrigation dummies: drip, gravity-fed, wells yes

K: Physical Capital (3.9) Animal dummies: horses, cows and llamas yes

ln infrastructure index 0.101��� 9.082

Motorcycle dummy 0.0619�� 2.42

Car or truck dummy 0.155��� 5.294

FC: Farmer Characteristics (1) Male head of household dummy 0.0996��� 6.083

ln years of schooling of head of household 0.0257��� 4.034

ln age of head of household 1.313��� 3.69

ln age of head of household squared -0.179��� 3.856

Head of household speaks indigenous language dummy -0.0796��� 3.397

HC: Household Chars. (1.8) ln number of people in the household 0.224��� 10.64

Percentage of people in the household who do not work -0.201��� 5.154

Share of agricultural income in total income 0.0119��� 36.14

Cl: Climate Variables (10.3) Maximum temperature (cumulative moving average)—Coast -0.107 1.539

Maximum temperature (cumulative moving average)—Mountains -0.124��� 3.141

Maximum temperature (cumulative moving average)—Rainforest -0.0666 0.743

Maximum temperature deviation period—Coast 0.354��� 2.894

Maximum temperature deviation period—Mountains -0.0477 0.759

Maximum temperature deviation period—Rainforest -0.573��� 5.393

Average temperature (cumulative moving average)—Coast 0.162��� 2.704

Average temperature (cumulative moving average)—Mountains 0.139��� 3.858

Average temperature (cumulative moving average)—Rainforest 0.0835 1.081

Average temperature deviation period—Coast -0.320�� 2.558

Average temperature deviation period—Mountains 0.210� 1.816

Average temperature deviation period—Rainforest 0.820��� 9.037

Precipitation (cumulative moving average)—Coast -0.000202 0.704

Precipitation (cumulative moving average)—Mountains 0.000278��� 2.736

Precipitation (cumulative moving average)—Rainforest 0.000158��� 2.739

Precipitation deviation period—Coast 0.000336� 1.713

Precipitation deviation period—Mountains -0.000764��� 7.549

Precipitation deviation period—Rainforest -0.000209�� 2.273

Index of seasonal precipitation (cumulative moving average)—Coast -0.149 0.479

Index of seasonal precipitation (cumul. moving average)—Mountains 0.123 0.435

Index of seasonal precipitation (cumul. moving average)—Rainforest 2.779��� 3.719

Deviation period of index of seasonal precipitation—Coast 0.0911 0.463

Deviation period of index of seasonal precipitation—Mountains 0.568��� 3.417

Deviation period of index of seasonal precipitation—Rainforest 1.776��� 5.732

Average temperature (cumulative MA)–Mountains x Altitude -1.13E-06 0.552

Average temperature deviation period–Mountains x Altitude -9.37e-05��� 3.043

G, FE: Geographic chars. and fixed effects (13.1) Altitude -5.66e-05��� 2.715

Latitude� 0.0015 0.362

Year dummies: 2005, 2007, 2010, 2012 yes

Eco-region dummies: coast, mountains, forests yes

Department dummies yes

(Continued)
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location fixed effects variables (31 variables in total). Another way to assess the contribution of

the climate vector to the yields model is to look at the marginal contribution of each climate

attribute to yields. The results presented in Table 3 show that climate vector is not only highly

significant in explaining observed yields, but provides sensible results. The complete climate

vector, as well as each climate indicator (high and average temperatures, precipitation, and sea-

sonality) are all significant with p-val. < 0.001. It is not easy to see from Table 3, the marginal

impact of each climate attribute on yields. It can be shown that the marginal impact of, say

maximum temperature in the Coast, would be:
b½Max: temp: average� Coast�

T þ
ðT� 1Þb½Max: temp: dev:� Coast�

T ,

where T is 38, the years from 1970 to 2008 the year around which the data is centered. These

marginal impacts by variable and eco-region are summarized in Table 4. In the case of the

Coast region, where agriculture is almost exclusively irrigated (being extremely arid, off-river-

valleys agriculture is practically non-existent), precipitation impacts yields marginally, but

note that precipitation in the coast is negatively correlated with precipitation in the Mountains,

which is ultimately relevant for irrigation and yields in the coast (see correlation matrix in S2

Table). Higher temperatures are correlated with higher yields, given that the hotter Northern

Coast is more productive, while higher mean temperatures are consistent with lower yields,

likely due to heat stress. On the mountains, where there is both irrigated and rainfed agricul-

ture, province-level atmospheric temperature is not significant, because temperature changes

more drastically with altitude rather than climate. Rain is an important driver of yields, with

yields responding positively to well-marked rainy seasons, while years with excessive rain and

spread throughout the year negatively impacts yields.

Table 3. (Continued)

Dependent Variable ln (index of agricultural production/hectares of operated land) Coefficient t-stat

Observations 32,466

R-squared 0.717

Initial Log-likelihood -61027

Final Log-likelihood -40545

AIC 81250

BIC 81921

Notes: Robust t statistics in the fourth column.

��� p-value<0.01,

�� p-value <0.05,

� p-value <0.1

The effect of longitude is implicitly captured by the three eco-region dummies. Values in parentheses in the first column indicate the percentage added by the group of

variables to total R-squared according to the Shapley decomposition (see text). Also note that in this equation we use observed, historical climate data, which has been

downscaled. Full regression available in S3 Table.

https://doi.org/10.1371/journal.pone.0222483.t003

Table 4. Impact of climate variables by eco-region.

Max. Temp Mean Temp Precipitation Seasonality

Coast 0.342 ��� -0.307 �� 0.0003 � 0.085

Mountains -0.050 -0.060 -0.0007 ��� 0.556 ���

Rainforest -0.556 ��� 0.800 ��� -0.0002 �� 1.802 ���

Note: Calculated by authors with information from estimates presented in Table 3. Significance at 10%, 5%, and 1% marked with (�), (��), and (���), respectively.

https://doi.org/10.1371/journal.pone.0222483.t004
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Through the present model, the climatic variables affect the crops yields, which is how cli-

mate change influences household wellbeing. Agricultural yields can also be predicted under

different scenarios of CC, using the predicted climate for different ESMs and GHG emission

growth scenarios. Table 5 shows the percentage changes of agricultural yields under different

future emission scenarios. It is shown, in column 5, that the yield index increases, on average,

1.6% for the RCP 4.5 scenario of moderate GHG emission growth (0.1% inter model mean,

with a 4.5% standard deviation). However, these modest averages hide a pronounced heteroge-

neity, by geographic region the yields per hectare changes between -20% and 24.7%, the

southern mountain and the southern coast being the geographic regions most affected.

Additionally, it is possible to observe that the changes are sensitive to the intensity of CC, for

example, the impact changes from positive to negative in all of the mountain regions (column

6 and 8).

4.2 Consumption and volatility of consumption estimate

To estimate the caloric consumption of households, a model that simultaneously estimates

caloric consumption and variance of said consumption is used. This model assumes endo-

geneity of farm income, as explained above. We apply a log-linear model based on the

empirical observation that the consumption of dietary energy follows the lognormal distribu-

tion:

lnðCalÞ ¼ FðHHC;HC;CE;G; FEÞ

lnðVCÞ ¼ FðHHC;HC;CE;G; FEÞ

with:

Cal: calories per capita per household

VC: variance of calories per capita per household

HHC: Characteristics of the head of household

HC: Characteristics of the household

CE: Characteristics of the locality where the household is located

G: Geography

FE: Fixed effects (time and region)

As described above, the model is estimated by maximum likelihood, which is equivalent to

reiterating the recursive model of both, consumption and variance, in their log-linear form by

GLS following the steps proposed by Just and Pope in their stochastic production model

Table 5. Effect of the climate change on yields, 2050 vs. 2012.

Region Yield per hectare (index) Climate simulations

No. hh Base Line Prediction CanES 4.5 dif % CanES 8.5 dif %

N. coast 105,954 6.645 6.586 6.688 10.2 6.752 16.6

Central coast 24,522 7.180 7.332 7.430 9.8 7.515 18.3

S. Coast 10,629 6.519 6.615 6.789 17.5 6.862 24.7

N. sierra 327,174 5.303 5.304 5.435 13.1 5.266 -3.8

Center sierra 461,774 5.840 5.840 5.868 2.8 5.748 -9.2

S. sierra 488,793 5.431 5.563 5.568 0.5 5.364 -19.9

Rainforest 453,161 5.179 5.150 5.023 -12.7 5.030 -11.9

Total 1,931,197 5.566 5.593 5.609 1.6 5.497 -9.6%

Source: Authors’ calculations

https://doi.org/10.1371/journal.pone.0222483.t005
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[25,35]. This design implies that climate change affects caloric consumption, both via agricul-

tural income and climatic risk. The principal determinants of consumption are agricultural

and non-agricultural income, and additionally characteristics of the household and head of

household are included. To control the effects of non-observable time invariant characteristics

we use geographic characteristics and fixed effects at the department level, as well as time fixed

effects to control for country-wide temporal shocks.

It is expected that the caloric consumption is positively related to attributes that increase

the access to food, like incomes and education, and negatively related to those that reduce it,

like unemployment. With respect to the variance in caloric consumption, it is expected that it

is positively related to attributes that increase the vulnerability of a household, like household

economic dependency, household size, and also variables that increase caloric consumption,

but are simultaneously sources of dispersion, like agricultural income which by its nature is

more variable. In contrast, the variables that should be negatively related to variance of caloric

consumption are those which diminish the vulnerability of the household, acting as support in

situations of need, variables such as the assets of the household, the social capital (including

marriage), and some public assistance policies.

First, observe in Table 6 that, being an agricultural income-earning household contributes

to the increase in calories per capita consumed, and at the same time decreases their vulnera-

bility. This finding allows one to understand that subsistence agriculture, from a nutritional

perspective, plays a role beyond generation of income, contributing in a significant way to the

food security of its members (it is also a likely signal of market failures, see below). But at the

same time, the greater the percentage of household income coming from agriculture, the lower

the caloric consumption; that is to say, those households highly dependent on agricultural

activity are the most vulnerable. It is this group that faces the highest food security risks in the

face of CC, given that their income depends to a greater extent on the success of agricultural

activities. As expected, agricultural income as well as non-agricultural income increase caloric

consumption, and at the same time, both increase the volatility of consumption (we find that

the elasticity of consumption with respect to non-agricultural income is greater than agricul-

tural income).

As expected, both the infrastructure index and the assets index are factors that unequivo-

cally diminish the vulnerability of the household, they are associated with a higher caloric con-

sumption and unlike income they are associated with a lower variance of caloric consumption

as well. Besides indicating relative wealth, assets can act as an economic buffer for bad times,

for example, being sold to buy food.

With respect to other relevant variables, the percentage of people in the household who do

not work increase vulnerability. The number of adults in the household as well as the number

of women diminish the caloric consumption per capita, but also diminishes the volatility of

said consumption. Of the characteristics of the head of household, being a man, having a

higher education level, reduce the vulnerability of the household, while the age shows an

expected quadratic relationship, increases the consumption during youth, but reduces it dur-

ing old age. Participation in the Vaso de Leche (glass of milk) program does not increase caloric

consumption, probably because these are the households already vulnerable, but it does

accomplish diminishing the volatility of caloric consumption, diminishing vulnerability. On

the other hand, participating in soup kitchens unequivocally diminishes the vulnerability of

the household. Note however, that this model cannot be interpreted as an evaluation of public

policies. Here the participation in programs is used only as a control variable. To adequately

evaluate the programs one must deal with the self-selection bias of these programs, which is

not done here.
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Table 6. Estimated results of determinants of caloric consumption and the variance of caloric consumption.

Name of variables Caloric Consumption Consumption Variance

Climatic Risk -0.00434��� -0.0117���

(4.723) (4.050)

Dummy agricultural household 0.115��� -0.468���

(9.662) (13.440)

Dummy male head of household 0.00777 -0.122���

(0.850) (4.200)

ln schooling years of the head of household 0.00208��� -0.00541��

(3.286) (2.450)

ln age of the head of household 0.0123��� -0.0310���

(11.200) (10.120)

ln age of the head of household squared -0.000134��� 0.000326���

(12.800) (11.290)

dummy head of household married or cohabitating -0.0115�� -0.0949���

(2.084) (4.982)

dummy head of household widowed 0.00506 0.108���

(0.491) (3.826)

dummy head of household speaks an indigenous tongue language -0.00761 -0.00543

(0.968) (0.221)

Percent of people in the household who do not work -0.231��� 0.165���

(20.800) (5.323)

ln household size -0.0813��� -0.0813���

(43.420) (14.270)

ln no. women in the household -0.0977��� -0.314���

(8.171) (8.748)

Average schooling years of the household -0.00226�� 0.00858���

(2.246) (2.692)

Infrastructure index 0.0473��� -0.172���

(10.220) (11.270)

Assets index 0.0167��� -0.107���

(2.974) (5.432)

School dropout member dummy -0.0415��� 0.0737���

(6.232) (3.152)

Participates in Vaso de Leche program -0.0256��� -0.132���

(4.957) (7.475)

Participates in soup kitchens 0.0784��� -0.158���

(8.465) (4.794)

Share of agricultural income in total income -0.000155�� 0.000178

(2.396) (0.842)

Index of value of agricultural production (agricultural Income—predicted) 0.0261��� 0.0298���

(14.670) (8.330)

Non-agricultural income 2.68e-05��� 1.99e-05���

(21.470) (8.536)

Sierra–Mountain Region -0.104��� 0.352���

(8.390) (9.249)

Selva–Rainforest Region -0.0487��� 0.0714

(3.264) (1.497)

(Continued)
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4.3 Impacts on vulnerability

In analyzing food security under the effect of climate change we are implicitly referring to the

future. The concept of vulnerability best reflects the most chronic characteristics of food inse-

curity. While the caloric deficit accounts for the scarcity or abundance of food in a current sit-

uation, vulnerability accounts for the probability of being in a situation of undernourishment

be it in the present or the future [21] and it is this variable that indicates the nutritional wellbe-

ing of the household in the most stable form.

Empirically, the caloric deficit differs considerably from the vulnerability as can be observed

in Table 7. The groups that present caloric deficit or vulnerability, but not both at the same

time, represent 14.8% and 16.3% of the population respectively. While the proportion of vul-

nerable households and those that suffer caloric deficits are a similar quantity +/- 33% of the

population, they are distinct groups as almost half of the vulnerable population did not experi-

ence caloric deficit in 2012.

To measure the effect of climate on vulnerability the predicted climate from the climatic

simulation models was used (see details above). The climate affects food consumption through

agricultural yields, agricultural income, and production for own-consumption. The climatic

model presented throughout this section is CanES in the two GHG emission scenarios, moder-

ate climate change 4.5 and greater than expected climate change 8.5.

Table 6. (Continued)

Name of variables Caloric Consumption Consumption Variance

Year 2007 0.0157�� -0.113���

(2.344) (5.060)

Year 2010 -0.0784��� 0.00254

(10.550) (0.108)

Year 2012 -0.0288��� 0.0479�

(3.727) (1.950)

Constant 7.860��� -0.0997

(229.2) (1.006)

Observations 35,358 35,358

Note: Significance at 10%, 5%, and 1% marked with (�), (��), and (���), respectively. Full regression available in S4 Table.

https://doi.org/10.1371/journal.pone.0222483.t006

Table 7. Relationship between caloric deficit and vulnerability of households in 2012.

Vulnerability

Caloric Deficit Not vulnerable Vulnerable Total

Not calorically deficient People 3,959,854 1,249,4446 5,209,301

Percentage 51.76% 16.33% 68.10%

Calories 3,085 2,742 3,002

Calorically deficient People 1,134,552 1,305,995 2,440,546

Percentage 14.83% 17.07% 31.90%

Calories 1,406 1,368 1,386

Total People 5,094,406 2,555,441 7,649,847

Percentage 66.59% 33.41% 100%

Calories 2,710 2,042 2,487

Source: Authors’ calculations

https://doi.org/10.1371/journal.pone.0222483.t007
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Here we focus on the vulnerability results, but it is important to note that the impacts on

caloric deficits are more pronounced. In the base line, as shown in Table 8, the sierra (Andes

region) presents the highest average probabilities of being undernourished (30–40%), in

contrast with the coast, where the probability ranges between 22 and 25%. On the coast, the

lower vulnerability is explained by the fact that the population is located closer to urban cen-

ters and enjoys higher public infrastructure development, among other factors that diminish

vulnerability.

Table 8 shows that the observed changes in vulnerability as a result of the climate simula-

tions, both nationally, and at the regional levels are very small. Under the moderate 4.5 sce-

nario countrywide vulnerability hardly changes on average, -0.09% (0.03% inter climate model

mean, with 0.1% standard deviation). However, opening the average to geographic regions, a

decrease in vulnerability is observed on the coast and the mountains—both zones experience

an increase in agricultural yields under this model. Likewise, the selva / jungle region shows an

increase in the observed vulnerability, a result in line with the fact that the rainforest is the

only region where there is a predicted decrease in yields in the moderate emissions growth

scenario.

For the 8.5 scenario of greater climate change, the vulnerability of the overall population

increases by 0.2%, less than a percentage point. Said increase is small, but diverse between

geographic regions, differentiating the coast which is the only region where vulnerability

decreased, while it increased in the sierra and the rainforest.

The results of the impacts of CC on vulnerability are not univocal; the impacts depend on

how the climate affects the crops typical to the area (see Table 5). However, the result that cli-

mate change has a very moderate effect on vulnerability to food insecurity is one of the most

robust and relevant result presented in this study. This result of moderate impact is robust

across climate models as can be checked in S14 and S15 Tables. Nevertheless, this result should

not be interpreted as climate change not having a considerable impact on agricultural yields

(and their corresponding incomes, as shown above), but rather that the transmission to food

consumption of this impact is lessened by a series of factors that mediate the relationship

between agricultural productivity and food security, as is discussed in the next section.

5. Climate change and vulnerability: The main lessons

In the following section we reconcile two seemingly contradictory results observed in this

study: the considerable impact of CC on yields, but the moderate impact on vulnerability to

food insecurity. This exercise involves identifying the factors that mediate the relationship

Table 8. Simulated changes in vulnerability, 2012.

Region N˚ people Base Line Probability of vulnerability

CanES 4.5 Change 4.5 CanES 8.5 Change 8.5

N. coast 577,462 23.91% 23.68% -0.96% 23.54% -1.55%

Central. coast 201,227 23.30% 23.12% -0.77% 22.99% -1.33%

S. coast 69,564 24.85% 24.48% -1.49% 24.34% -2.05%

N. sierra 1,435,993 40.55% 40.41% -0.35% 40.56% 0.02%

Central sierra 2,024,206 37.81% 37.75% -0.16% 37.87% 0.16%

S. sierra 1,664,126 30.87% 30.83% -0.13% 31.07% 0.65%

Rainforest 1,677,269 31.76% 32.00% 0.76% 31.95% 0.60%

Total 7,649,847 33.94% 33.91% -0.09% 34.01% 0.21%

Source: Authors’ calculations.

https://doi.org/10.1371/journal.pone.0222483.t008
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between climate change and food security vulnerability. First, we discuss characteristics (bio-

physical and socioeconomic) that impact the results observed and are exclusive to Peru; and

second, we identify characteristics that are specific to the way in which the impacts of CC are

generally transmitted to vulnerability to hunger.

Peru possesses fundamental characteristics that strengthen its resilience when facing cli-

mate change: the agro-climatic heterogeneity and the diversification of income generating

activities. First, the agro-climatic heterogeneity of Peru means that the changes in climatic var-

iables do not imply a univocal relationship between climate and agricultural productivity. To

the contrary, it implies the coexistence of gaining and losing eco-regions in terms of agricul-

tural yields (see Table 5), these gains and losses countervail each other giving way to a moder-

ate mean national impact, the same occurs at the department level of each eco-region.

Additionally, this agro-climatic heterogeneity occurs within small geographic areas, which

offers high potential for adaptation. In realizing the simulation, we assume that the farmers

produce the same crops that they produced before, ignoring the potential for adaptation of

their farming strategies. However, this assumption is not realistic, it is highly likely that an

adaptive response to changes in climate exists for crops, either through intensified use of land

for crops benefited by the climate or by changing the choice of crops produced, by altering the

timing of agricultural activities, among other adaptive agricultural practices, [19].

Secondly, the diversification of income generating activities at the household level favors, at

the same time, the capacity of the households to confront scarcity of agricultural income due

to climate change. Although the economy of rural Peru has a strong agricultural component in

comparison to other similarly developed economies (see comparisons in [36]), the percentage

of household income from own-agricultural production is only 28%, and around 65% of the

households’ incomes come from sources not related to agriculture. The development of a non-

agricultural rural economy allows climatic and other shocks to be mitigated, so reductions in

agricultural income can be dealt with a greater dedication to the rural non-farm economy,

which is fairly developed in Peru.

Moreover, in Peru and elsewhere in the world, the impact of changes in agricultural yields

on welfare are mediated by the markets and mitigating activities the households perform. CC,

as modeled in this study, impacts household incomes through the value of agricultural produc-

tion that can increase or diminish as a result of climate driven changes in agricultural produc-

tivity. This means that the impact that climate change could have on salaries (agricultural) are

ignored, but at the rural level only 8% of income is derived from agricultural salaries, which

shows that at the aggregated level (not necessarily locally), the impact of changes in agricultural

salaries on vulnerability would be greatly reduced. However, as shown in Fig 3, there are many

mediators between these impacts on agricultural productivity and the final welfare outcome.

First are agricultural markets. When the agricultural supply expands or contracts due to

changes in productivity, the changes in demand are mediated by prices. For example, if supply

falls 20%, prices should increase, moderating the negative impact of the fall in production on

incomes. Later, if a crop shows a permanent reduction in its yield, the rational response of the

farmer is to change the crop. It is for that reason that the selection of an optimum bundle of

crops is another mediating mechanism on the impact of changes in productivity of crops. If

agriculture in general has lost competitiveness due to negative impacts on its productivity, the

natural response of a household is to change employment decisions and to increase the effort

spent on non-agricultural activities, to the detriment of time spent on agricultural activities.

Finally, if we look specifically at impacts on undernourishment, households have another

mechanism to mitigate negative impacts, which is to alter their diets by consuming cheaper

calories (generally cereals) and less expensive calories (fruits, vegetables, and animal proteins).
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On the other hand, all of these mechanisms that mitigate the impact of climate on wellbe-

ing, those of the market and of individual choice, transpire in a socioeconomic context in

which there are factors that reduce and increase vulnerability. We know, for example, that the

ownership of economic assets helps reduce vulnerability as they act as financial buffers that

cushion negative shocks, be them climatic or of a different nature.

This paper has established that CC has a moderate impact on vulnerability to food insecu-

rity. Given that we have all the information, we close this analysis by opening the discussion of

what are therefore, the main drivers of vulnerability in this context of CC. We open this ques-

tion with an estimation of the determinants of vulnerability with a probit model of the binary

outcome, vulnerable or not, against the same set of household-head characteristics, household

characteristics, and location features used to estimate the caloric consumption model above

(see Table 6). The full model is presented in S5 Table, while Table 9, summarizes the variables

with the highest marginal impact on vulnerability. It is important know which factors are most

important in determining vulnerability to hunger, as some of these characteristics can be

impacted with public policy, to support vulnerable families in dealing with CC as well as other

shocks that rural families face each season.

The table of the main determinants of vulnerability offers some clear policy access-points.

The two primary characteristics, rate of economic dependence of the household and agricul-

tural household (the rate of economic dependence is the ratio of household members that do

not work over to the total number of people in the household), are the result of rural markets

that are not completely developed. If the labor markets and agricultural products markets

functioned perfectly (instead of working imperfectly due to communication, information,

and/or infrastructure failures), it should not be significant whether the household was or was

not agricultural, but only the quantity of perceived income (monetary and non-monetary)

Fig 3. Mediators between vulnerability and climate change.

https://doi.org/10.1371/journal.pone.0222483.g003
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would matter. In this case as we are controlling for income sources (farm and non-farm), in

the probit model, the large impact of being an agricultural household is larger than the value of

all the agricultural income generated. If labor markets worked perfectly farmers would assign

effort to farm and non-farm activities such as to equate marginal returns, and it would not

matter the source of income. The economic dependence (proportion of the members of the

household who don’t earn income) is an indicator of a lack of employment, which could be

due to little job creation or poor integration of labor markets, for example due to poor infra-

structure and communications, and the stage of the demographic transition of Peru. House-

hold size is more difficult to interpret, it can be an indication that rural households prefer to

have larger households, or that they do not have access to family planning services. There is an

extensive discussion of this in the literature, see for example, (López and Valdés 2000). Infra-

structure availability (index), living in the rainforest, and sierra regions, reinforces the message

about the importance of infrastructure and where it is most needed: in the Andes and the

Amazonian rainforest. The public policies of social protection are also important, when they

are well targeted (e.g. soup kitchens), and education is important but requires a focalized inter-

vention on the most vulnerable which many times respond with school absenteeism as a

household strategy (to supplement labor shortages in the household).

This final exploratory analysis is perhaps the most important message of this study: as it

aims to study the impact of climate change on wellbeing, it concludes that we must continue

emphasizing the policy lessons that have been highlighted in the literature before global inter-

est in CC emerged. With or without climate change, to fight hunger in Peru the focus must

continue on increasing investment on rural public goods (infrastructure and education) with a

focalized effort on the most lagging places (especially in the sierra region), and continue with

the improved targeting of social protection programs.

6. Conclusions

Perhaps one of the main findings of this study is that impacts on yields, even large ones, pro-

duced by changing climate patterns do not necessarily translate to large impacts in population

suffering food insecurity. This result has a direct implication for food security policies in the

context of climate change. Advances in crop sciences, like improvements in heat and drought

tolerance of major crops represent a very important contribution to the resilience of global

agri-food systems. These scientific advances should also help in the expansion of the agricul-

tural frontier as both yields and area continue to contribute to the required increases of food

production towards 2050 and beyond [37]. However, our findings suggest that these policies

Table 9. Marginal effects of selected indicators on vulnerability.

Characteristic Marginal Prob. Impact

Economic Dependence 24.9

Agricultural household binary -24.4

Mountains 18.1

Number of people in the household 12.3

Participate in soup kitchens -11.5

Infrastructure index -7.9

Rainforest 7.5

School dropout 7.2

Note: All effects significant at p-value < .001.

Source: Summary of main results of a full probit model available in S5 Table.

https://doi.org/10.1371/journal.pone.0222483.t009
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are not very efficient in improving food security at the household-level. This research shows

that the best way to reduce poor households’ vulnerability to climate change is to affect those

variables that reduce vulnerability more broadly. In the case of Peru, these policies are those

that have been generally emphasized in the literature before the rise in CC awareness, like

investment in public goods (education and infrastructure) as a way to alleviate market imper-

fections, while supporting the most vulnerable population with well-targeted social protection

schemes. In other word, CC does not appear to change the best strategies to combat vulnerabil-

ity to hunger, and these strategies are country/context specific.

In thinking about policies that combat food insecurity in the context of CC it is important

to note the limitations of the modeling efforts, like the one presented here that link climate

information with agricultural production from household surveys. On the one hand there are

climate modeling limitations, which are highly relevant for modeling agricultural response.

Climate change models, like ESM used in this report, do not consider changes in extreme

events patterns (like hurricanes, El Niño events, or other). These extreme events may revert

estimated impacts on yields, and likely require different policy responses than those consid-

ered here. The way that climate impacts household-level agricultural productivity can also be

made more precise. For example, in the case of Peru, crops can be divided by eco-region-spe-

cific crops, and separate yield equations could be estimated. Finally, it is important to consider

the effects of CC downstream from agriculture. The model presented here does not consider

sector-wide employment impacts of CC, effects on employment and wages in the non-agricul-

tural sectors. The latter could be significant, specifically through agricultural growth multiplier

effects in less developed countries where agriculture is a large sector of GDP.
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