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Abstract

Background

Exacerbations of chronic obstructive pulmonary disease (COPD) are debilitating events and

spur disease progression. Infectious causes are frequent; however, it is unknown to what

extent exacerbations are caused by larger shifts in the airways’ microbiota. The aim of the

current study was to analyse the changes in microbial composition between stable state and

during exacerbations, and the corresponding immune response.

Methods

The study sample included 36 COPD patients examined at stable state and exacerbation

from the Bergen COPD Cohort and Exacerbations studies, and one patient who delivered

sputum on 13 different occasions during the three-year study period. A physician examined

the patients at all time points, and sputum induction was performed by stringent protocol.

Only induced sputum samples were used in the current study, not spontaneously expecto-

rated sputum. Sputum inflammatory markers (IL-6, IL-8, IL-18, IP-10, MIG, TNF-α) and anti-

microbial peptides (AMPs, i.e. LL-37/hCAP-18, SLPI) were measured in supernatants,

whereas target gene sequencing (16S rRNA) was performed on corresponding cell pellets.

The microbiome bioinformatics platform QIIME2TM and the statistics environment R were

applied for bioinformatics analyses.

Results

Levels of IP-10, MIG, TNF-α and AMPs were significantly different between the two disease

states. Of 36 sample pairs, 24 had significant differences in the 12 most abundant genera

between disease states. The diversity was significantly different in several individuals, but

not when data was analysed on a group level. The one patient case study showed longitudi-

nal dynamics in microbiota unrelated to disease state.
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Conclusion

Changes in the sputum microbiota with changing COPD disease states are common, and

are accompanied by changes in inflammatory markers. However, the changes are highly

individual and heterogeneous events.

Introduction

A myriad of bacteria and other microorganisms, collectively called the human microbiota,

inhabits the human body. With modern marker-gene DNA-sequencing technology more

knowledge of how bacteria affect the human host is rapidly being acquired. It was long

believed that the lower airways were sterile, but recent studies have shown a present micro-

biota also in healthy subjects [1–3].

Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation

in the airways [4], and an increase in systemic inflammation [5, 6]. The cause of the inflamma-

tion has been unknown, but toxic effects of inhaled tobacco or other substances [7] and auto-

immunity has been suggested [8].

A dramatic manifestation of COPD, the acute exacerbations [9] with potentially life-threat-

ening airways obstruction, is most often seen in combination with symptoms of infection.

Indeed, bacteria and viruses are believed to trigger most exacerbations [10, 11]. Traditionally

this has been seen as single-agent infections, and one debate has been whether any such agent

was acquired by contagion or an upswing of pre-existing colonizing agents [12]. Although

most exacerbations are likely due to infections, it is suspected that environmental factors like

air-borne pollution and air-temperature can trigger these episodes [10]. Thus, single-agent

infections are unlikely explanations for all or the entire COPD exacerbation event.

We suggest that the chronic inflammation of COPD reflects a chronically distorted micro-

biota. And, that the COPD exacerbations may reflect an acutely imbalanced respiratory ecosys-

tem, with an accompanying inflammatory response to this imbalance.

However, little information exists to date on the dynamics of the airways microbiota in

COPD patients shifting from a steady state to a COPD exacerbation [13]. In the current study

we examined the microbiota in 36 COPD patients from whom we had induced sputum sam-

ples collected both during the stable state and during COPD exacerbations. And in one partic-

ular patient prone to experience frequent exacerbations we assessed the temporal changes of

the sputum microbiota over 36 months in six samples from stable state visits, and seven col-

lected during exacerbations.

Methods

Study population

The Bergen COPD Exacerbation Study (BCES) included all COPD patients from the Bergen

COPD Cohort Study (BCCS) that belonged to the Haukeland University Hospital district for

emergency care (356 out of 433 COPD patients in the BCCS). Detailed descriptions of study

design and inclusion for the BCCS and the BCES has been published [6, 14]. Only induced

sputum samples were used in the current study, not spontaneously expectorated sputum. A

flowchart depicting the selection of the study sample is presented in Fig 1. Of the 356 included

patients, 154 had one or more examined exacerbation events. Sputum induction was

attempted unless the patient declined or in some instances when we did not have available

technicians to process the sputum fresh after the induction. A total of 36 patients had induced
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sputum of acceptable quality available both from a stable state and an exacerbation visit, and

these 36 sputum pairs define the current study population (Fig 1).

All patients provided written informed consent, and the Norwegian Regional Ethical Com-

mittee approved the study (REK-Vest, case number 165.08).

Data collection

A trained study physician examined all patients both at regular BCCS-visits and during BCES-

exacerbation visits. Classification of airways obstruction was according to Global initiative for

Fig 1. Flowchart depicting selection of the 36 patients in the current study, from the Bergen COPD Exacerbation

Study (BCES) and the Bergen COPD Cohort Study (BCCS).

https://doi.org/10.1371/journal.pone.0222449.g001
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chronic obstructive lung disease (GOLD) guidelines [15]. Body composition was determined

with bioelectrical impedance measurements, and patients categorized as normal, obese or

cachectic [16]. COPD exacerbation history was taken by the study physician at the baseline

visit of the study, based on patient recall. An exacerbation was defined as a worsening of symp-

toms requiring treatment with either antibiotics or oral steroids. Induced sputum sampling

was performed depending on patients’ cooperation and availability of study technicians

trained in sputum processing.

Laboratory analyses

Sputum samples had to fulfill quality measures ensuring lower airway sampling. The details of

sputum induction and processing are previously published [14, 17].

Sputum processing was performed immediately after sampling. After the filtering step, sam-

ples were centrifuged at 4˚C for> 15 minutes at 450 g. The resulting supernatants and cell pel-

lets were frozen separately at -80˚C. DNA was extracted from cell pellets using the FastPrep-24

Instrument and reagents from the FastDNA Spin Kit (MP Biomedicals, LLC, Solon, OH, USA).

Amplicon PCR (45 cycles) and index PCR were run using primers from the Nextera XT Index

Kit (Illumina Inc., San Diego, CA, USA). Paired-end sequencing (2 x 300 cycles) of the V3-V4

region of the 16S rRNA gene followed the protocol for Metagenomic Sequencing Library Prepa-

ration for the Illumina Miseq System (Part # 15044223 Rev. B, MiSeq Reagent Kit v3).

The inflammatory markers interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-18 (IL-

18), interferon gamma-inducible protein-10 (IP-10), tumor necrosis factor-alpha (TNF-α) and

monokine induced by gamma interferon (MIG) in sputum supernatants were processed using

bead-based multiplex assays and the Luminex1 xMAP1 technology (Luminex Corporation,

Austin, Texas). The data on sputum levels of LL-37 (a cathelicidin peptide derived from

human hCAP-18) and secretory leucocyte protease inhibitor (SLPI) derived from previously

unfrozen, aliquots of the same sputum supernatants by enzyme immunoassays, were derived

from a previous analysis [18, 19].

Bioinformatics analyses

The amplicon sequences were quality and chimera filtered through the microbiota pipeline

Quantitative Insights Into Microbial Ecology 2 (QIIME2) (v.2017.9 – v.2018.11) [20], using

the Divisive Amplicon Denoising Algorithm 2 (DADA2) [21]. Laboratory-made sequences

(chimeras) were removed first through DADA2 [21] and then VSEARCH [22]. Negative con-

trols were unavailable, so to filter contaminants we used the total DNA-load measurements

(Quant-iT™ PicoGreen™, ThermoFisher Scientific Inc) and the Decontam algorithm in R [23].

Amplicon sequence variants (ASVs) created by DADA2 were assigned taxonomy, using a self-

trained Naïve Bayes classifier and the Silva database [24]. ASVs that could not be assigned tax-

onomy beyond kingdom level were omitted. After de-novo alignment, FastTree was used to

build a phylogenetic tree for diversity analyses [25].

Statistical analyses

To compare inflammatory markers and antimicrobial peptides in sputum during the stable

state and during exacerbations, Wilcoxon signed rank test was used to account for the paired

design. To compare taxonomic composition between pairs of samples we calculated the Yue-

Clayton measure of dissimilarity (1-θYC) [26]. This was performed at the genus level, after

omitting ASVs containing < 1% of the total amount of sequences. Differential abundances of

taxa between disease states were analysed using an ANOVA-like differential expression proce-

dure (Aldex2) in R [27]. Diversity analyses were performed after sub-setting all samples at the
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number of sequences of the sparsest sample (rarefaction). Beta-diversity visualized as non-

metric multidimensional scaling plots (NMDS), were analysed with permutation tests of mul-

tivariate homogeneity of variances, permuted analysis of variance (PERMANOVA) and Pro-

crustes analyses in the Vegan package in R [28]. For analyses of clinical data relative to

measurements from biological samples StataSE (StataCorp LP. Release 14. College Station,

TX) was used. Further details on bioinformatics and statistical methods are available in the

online supplement S1 Text. More on bioinformatics and statistical methods.

Results

Table 1 shows the patient characteristics for the 36 included COPD patients.

Eleven patients had experienced two or more exacerbations the last 12 months before inclu-

sion. At inclusion 28 participants used inhaled corticosteroids. No patients used antibiotics or

oral corticosteroids at stable state, whereas at exacerbation visits, one patient used antibiotics,

one used oral corticosteroids, and one patient used both (Table 1). For 26 of the 36 sputum

pairs, the stable sputum was collected prior to an exacerbation event, and vice versa for the

other 10 pairs. The median number of days between the two collections were 257 days.

Inflammatory markers and antimicrobial peptides

Levels of the two AMPs and three of the measured inflammatory markers (IP-10, MIG, TNF-

α) differed significantly in sputum sampled between disease states (Fig 2), with levels of all

Table 1. Patient characteristics at inclusion in the Bergen COPD Cohort Study.

n (%)

Sex

Women 15 (42%)

Men 21 (58%)

Age

40–54 years 4 (11%)

55–64 years 21 (58%)

65–75 years 11 (31%)

Body composition

Normal 27 (75%)

Obese 6 (17%)

Cachectic 3 (8%)

Smoking

Ex 21 (58%)

Current 15 (42%)

GOLD COPD stage

II (FEV1 50–80%) 18 (50%)

III (FEV1 30–50%) 14 (39%)

IV (FEV1 <30%) 4 (11%)

Frequent exacerbator�

No 24 (67%)

Yes 11 (31%)

� >1 exacerbation last 12 months prior to inclusion. One patient missing information. GOLD: Global Initiative for

Chronic Obstructive Lunge Disease. COPD: Chronic obstructive lunge disease. FEV1: Forced expiratory volume 1st

second

https://doi.org/10.1371/journal.pone.0222449.t001

Microbiota and inflammation in COPD

PLOS ONE | https://doi.org/10.1371/journal.pone.0222449 September 17, 2019 5 / 18

https://doi.org/10.1371/journal.pone.0222449.t001
https://doi.org/10.1371/journal.pone.0222449


mediators being higher during exacerbation except for SLPI. One patient had no measurement

of inflammatory markers and two patients had no measurement of LL-37/hCAP.

Taxonomy

Of 15 phyla identified, Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the

most abundant, containing 97% of all sequences at both disease states. Proteobacteria was rela-

tively more dominating in samples collected during exacerbations compared to stable state.

Streptococcus, Rothia, Prevotella 7, Veillonella, and Haemophilus; which altogether contained

68% of all sequences at both disease states were the most abundant genera (Fig 3).

Fig 2. Inflammatory markers and antimicrobial peptides in induced sputum collected from a COPD cohort at

stable state and during exacerbation. Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-18 (IL-18), Interferon

Gamma-Induced Protein 10 (IP-10), Monokine induced by gamma interferon (MIG): n = 35. Secretory Leukocyte

Protease Inhibitor (SLPI): n = 36. LL-37/hCAP-18: n = 34. Boxes show the interquartile range (IQR = 75th percentile-

25th percentile), with medians marked by the horizontal line within each box. Samples collected from the same patient

at different disease states are connected by lines. Wilcoxon signed rank test was applied based on the paired, non-

parametric data.

https://doi.org/10.1371/journal.pone.0222449.g002
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The differential abundances of different taxa (often designated “features” in bioinformatics

analyses) between disease states were tested at Silva’s phyla and genus level, and for each ASV.

Differential abundances in features between the stable state-sample group and the exacerba-

tion-sample group were not found (FDR-corrected, effect size cut off 0.5. Wilcoxon p>0.05

for all taxa at all three levels, all data available in S1 Table.).

The taxonomic composition and 1-θYC of the 36 sputum pairs are shown in Fig 4. The Yue-

Clayton measure is 0 with perfect similarity and 1 with perfect dissimilarity. To evaluate the

similarity within each sputum pair, 0.2 was set as the Yue-Clayton limit for acceptable within-

pair similarity. With this cut-off, 26 patients had sputum pairs considered dissimilar.

The ten patients with low 1-θYC, and thus similar taxonomic composition across disease

states, did not differ significantly from the other participants with regards to sex, age, body com-

position, smoking status, COPD stage, exacerbation frequency or use of inhaled corticosteroids

(p>0.05, results not shown). Considering levels of inflammatory markers and AMPs at both

disease states, only levels of SLPI during exacerbations were significantly lower in patients with

dissimilar sputum pairs (Fig 5), whereas IL-8 trended towards higher levels in patients with dis-

similar sputum during exacerbations (1-θYC<0.2: Median IL-8 200.5 pg/ml, IQR (59.4–659.1)

1-θYC�0.2: Median IL-8 614.0 pg/ml, IQR (199.9–812.0), Kruskal Wallis p = 0.053).

Diversity

Rarefaction curves of alpha-diversity (within-sample diversity) showed asymptote at 1000

sequences/sample (Fig 1 in S1 Text. More on bioinformatics and statistical methods). Faith’s

phylogenetic diversity (PD) and Shannon’s non-phylogenetic diversity (non-PD) indices

showed no significant differences in alpha-diversity between the two disease states (Table 1 in

S1 Text. More on bioinformatics and statistical methods).

Changes in individual alpha-diversity between disease states are visualized in Fig 6. There

were inconsistent directionality and magnitude of alpha-diversity change between patients.

Faith’s PD was higher at stable state in 15 patients and for Shannon’s non-PD this was the case

in 17 patients (Fig 6A).

Fig 3. The four most abundant phylae and the five most abundant genera found in induced sputum samples from COPD patients during the stable state, and

during exacerbations.

https://doi.org/10.1371/journal.pone.0222449.g003

Microbiota and inflammation in COPD

PLOS ONE | https://doi.org/10.1371/journal.pone.0222449 September 17, 2019 7 / 18

https://doi.org/10.1371/journal.pone.0222449.g003
https://doi.org/10.1371/journal.pone.0222449


Changes in Faith’s PD by disease state were not related to levels of white blood cell counts

(WBC) or absolute neutrophil counts (ANC), while Shannon’s non-PD was lower at stable

state among patients whose ANC did not become elevated during exacerbations (Kruskal Wal-

lis, p = 0.04) (Fig 6B).

Fig 4. Comparison of bacterial composition in pairs of induced sputum samples (stable state and exacerbation)

from 36 patients suffering from chronic obstructive lung disease. Presenting level 6 taxonomy (genus) provided by

Silva database for amplicon sequence variants containing at least 1% of all sequences. �Yue-Clayton dissimilarity (1-

θYC) Range 0 to 1; 0 = perfect similarity, 1 = perfect dissimilarity. S: Stable state E: Exacerbation.

https://doi.org/10.1371/journal.pone.0222449.g004
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We did not find clustering by disease state when we examined different ordinance plots of

beta-diversity (between-sample diversity) (Fig 7). With the PERMANOVA test to compare the

average community value (centroid) between disease-states, significant differences were found

only for non-phylogenetic matrices (Bray-Curtis p = 0.017, and Sørensen p = 0.004), however

the corresponding R^2 values were only 0.02 for both.

To investigate beta-diversity within individuals, one distance matrix was created for each

disease state. Overlaying stable state and exacerbation ordinance plots after Procrustes trans-

formation showed ample distance within several sample pairs (Fig 8). M^2 values> 0.3 indi-

cate that the samples delivered at the different disease states have poor resemblance.

Information on which pairs have the least similar samples is given in Fig 2 in S1 Text. More on

bioinformatics and statistical methods.

Longitudinal case study

One patient (NN) delivered induced sputum samples from six stable state visits and seven

exacerbations. NN was a 66-year old ex-smoker, diagnosed with COPD stage IV at inclusion.

NN continued being a frequent exacerbator the three years the study lasted.

The taxonomic composition (including ASVs consisting of � 1% of all sequences) for

each of the 13 samples are shown in Fig 9A. Of the six dominating genera, Streptococcus,

Fig 5. Comparing Secretory Leukocyte Protease Inhibitor (SLPI) measured in induced sputum in exacerbated

COPD patients with regards to microbial composition alterations between disease states. Unaltered = Yue-Clayton

dissimilarity index<0.2 (n = 10), Altered = Yue-Clayton dissimilarity index>0.2 (n = 26). Boxes show the

interquartile range (IQR = 75th percentile-25th percentile), with medians marked by the horizontal line within each

box. Kruskal Wallis test used due to non-parametric data.

https://doi.org/10.1371/journal.pone.0222449.g005
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Fig 6. Alpha-diversity in induced sputum collected from 36 COPD patients. A: Comparison of phylogenetic (Faith

PD) and non-phylogenetic (Shannon non-PD) alpha-diversity in sputum collected at stable state and during

exacerbation. Lines connect samples from the same individual. Wilcoxon signed rank test was applied based on the

paired, non-parametric data. B: Relations between Shannon’s alpha-diversity at stable state and serum inflammatory

markers during exacerbations. WBC: White Blood Cell counts high>11.3 109/L (n = 8) ANC: Absolute Neutrophil

Count high>8.4 109/L (n = 7). Kruskal Wallis test used due to non-parametric data. Boxes show the interquartile

range (IQR = 75th percentile-25th percentile), with medians marked by the horizontal line within each box.

https://doi.org/10.1371/journal.pone.0222449.g006
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Ralstonia and Comamonadaceae were seen in all samples. Rothia, Moraxella and Gemella
were the other genera found to dominate, though not consistently seen at each sampling

occasion.

Variability in phylogenetic diversity measures are displayed in Fig 9B. Alpha-diversity

changed between sampling time points, but there was no consistent pattern in directionality

between the stable state samples and the samples collected during exacerbations. When com-

paring beta-diversity, there was a trending increase in distances over time with unweighted

UniFrac. However, this could not be seen for weighted UniFrac distances, which also varied

over time unrelated to disease state.

Fig 7. Beta-diversity in induced sputum collected from 36 chronic obstructive pulmonary disease sufferers both at

stable state and during exacerbations, presented with non-metric multidimensional scaling (NMDS) ordinations.

The X- and Y-axes display the first and second NMDS dimension respectively. Distance matrices: Sørensen and Bray

Curtis: Both non-phylogenetic; qualitative and quantitative information respectively. Unweighted and weighted

UniFrac: Both phylogenetic; qualitative and quantitative information respectively. Aitchison: Compositional

interpretation of sequence counts.

https://doi.org/10.1371/journal.pone.0222449.g007
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Discussion

This study has shown that individual COPD patients had evident changes in the sputum

microbiota from stable state to exacerbation, in parallel with significant changes in sputum

inflammatory markers. The individual’s changes in microbiota were to some extent camou-

flaged when analyses were run on groups of patients. Considerable shifts in bacterial composi-

tion were seen in the case study over 13 repeated stable state/exacerbation samples, but

without a consistent stable state equilibrium.

COPD exacerbations are heterogeneous events, differing in length, symptom burden and

need for treatment. In the current study, only patients who met the clinical criteria for an

exacerbation, defined by the Wedzicha and Donaldsons’ definition [29] and the judgment of

Fig 8. Non-metric multidimensional scaling plots after symmetric Procrustes transformation, illustrating

differences in microbiota as distance between paired samples collected at stable state and during exacerbations of

COPD. Distance matrices: Sørensen and Bray Curtis: Both non-phylogenetic; qualitative and quantitative information

respectively. Unweighted and weighted UniFrac: Both phylogenetic; qualitative and quantitative information

respectively. Aitchison: Compositional interpretation of sequencing data. M^2 = Summed squares of distances. The

significance of M^2 was tested for all comparisons, with p<0.05 for all but WUF (PROTEST p = 0.25).

https://doi.org/10.1371/journal.pone.0222449.g008
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an experienced study physician were included. All patients came to the outpatient clinic by

themselves, and only those patients deemed not in need for hospitalization were considered

for induced sputum sampling. Thus, all exacerbations were moderate at the time of sampling.

Still, the sputum inflammatory markers confirmed an altered local immune state during these

events, showing both that the exacerbation state was truly different from the stable state, and

also that microbiota likely was affecting, or affected by, the airways inflammation.

We observed significantly higher levels of TNF-α, IP-10 and MIG during exacerbations.

TNF-α is an upstream inflammatory cytokine with a wide range of effects. It has an important

role in Th1-mediated immune responses, augmenting both IP-10 and MIG signaling down-

stream [30]. These are cytokines induced by interferon-gamma (IFN-γ) as part of a

Fig 9. Taxonomic composition and diversity in 13 induced sputum samples collected from the same patient

(chronic obstructive pulmonary disease) at different consultations. A: Presenting taxonomic composition at level 6

taxonomy (genus), provided by Silva database for amplicon sequence variants containing at least 1% of all sequences.

Numbers are given as relative abundances per sample. B: Phylogenetic alpha- and beta-diversity. Alpha-diversity

measured by Faith phylogenetic diversity (right y-axis). Non-quantitative and quantitative beta-diversity measured by

UniFrac (UWUF, WUF respectively, left y-axis). Except from the first sampling time point beta diversity is calculated

between consecutive samples. A+B: Disease state given in A by S = Stable state, E = Exacerbations. Samples are ordered

chronologically and collection dates are given in B.

https://doi.org/10.1371/journal.pone.0222449.g009
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Th1-mediated immune response [30]. All three cytokines have been shown to play a role

against viral infections, intracellular bacteria and to some extracellular bacteria [31–33].

The AMPs are part of the innate immune response against a wide variety of microbes

including bacteria, fungi and viruses. In a previous study from the BCCS and BCES, we have

shown the same disease state related pattern of change as found in the current study [18]. In

patients where the composition of the taxa in sputum changed with disease state, SLPI was sig-

nificantly lower during exacerbations compared to those patients where the sputum composi-

tion was unchanged. Presumably this is a response to the microbial shift, for instance by

degradation of SLPI by host and microbial proteases. However, in theory it could also be oppo-

site; that during an exacerbation the immune response leads to changes in taxonomic compo-

sitions. In vitro studies are likely necessary to elucidate specific mechanisms. For the other

markers, we could not find an association with shifts in taxonomic composition. Low sample

size is perhaps the most likely explanation for this, in addition to the inherent heterogeneity of

the COPD exacerbations.

The four most abundant phyla in our samples were coherent with previous studies on

COPD sputum microbiota [34, 35]. It was the same four phyla dominating the samples inde-

pendently of disease state, though we did see a shift involving increases in Proteobacteria dur-

ing exacerbations, and a parallel decrease in Bacteroidetes. In the previous study by Mayhew

et al [34], it was further shown that the fraction of Proteobacteria increased with increasing

exacerbation severity, something the current study did not have power to examine. However,

the current study adds to the other studies by showing an accompanied immune response with

the shifts in microbial profiles.

Another important difference between our study and previous studies is that the current

study only included induced sputum samples. We have previously shown that induced and

spontaneous sputum collected during the same visits will not be sufficiently similar in micro-

bial composition to allow them to be used interchangeably [17].

The most abundant genus belonging to the Proteobacteria phylum in our cohort was Hae-
mophilus. This was the case for both stable state and exacerbation, and there were no signifi-

cant changes in its abundance across disease states. Even though several studies have found

Haemophilus to be of importance related to inflammation and exacerbation risk [36, 37], we

could not find that Haemophilus discriminated between disease states when measured in

induced sputum. This could reflect the sample size in the current study, and should not be

interpreted as changes in Haemophilus being without importance. An imperative consider-

ation when evaluating taxonomic composition is that increasing levels of one taxon invariably

will result in decreases in others, since the sum total is 100%. We have used the Yue-Clayton

index (1-θYC) in an attempt to quantify the difference, but the cut-off value of 0.2 is arbitrary

and no established consensus on what constitutes a biologically meaningful cut-off value exist.

If the entire ecological content of a sample, or the overabundance of one low-abundant patho-

gen is more relevant to exacerbation risk, then a cut-off of 0.2 may be too high.

With that caveat, a very important finding in the current study was that there appeared to

be significant changes in taxonomic composition when we examined individual (paired-sam-

ples) changes (1-θYC>0.2, n = 26) again confirming findings by Mayhew et al. However, we

did not find significant changes in composition when all samples were pooled by disease state

(Aldex2 analyses p>0.05). Thus, paired analyses are necessary to evaluate changes in taxo-

nomic compositions, and they confirm heterogeneity among patients.

With an infectious exacerbation, where the compositional taxonomy changes, one would

imagine that the diversity would change as well. If one pathogenic organism dominated, it

would presumably displace others completely (leading to a loss in richness) or skew the distri-

bution significantly (leading to a loss of evenness).
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In this study, we could not find a significant difference in alpha diversity between disease

states on the group level with either non-phylogenetic or phylogenetic indices. However, we

did detect higher diversity at stable state in patients with elevated ANC during exacerbations,

indicating that reduced diversity can impair systemic immune responses. The plot showing

individual changes revealed that alpha-diversity takes on all directionalities with changing dis-

ease states, thus larger numbers would be needed to look at sub-types in more detail.

For beta diversity, using several indices we again saw no convincing change in diversity

from stable state to exacerbation with group comparisons, while such changes were supported

when looking at diversity with paired analyses. Further, the larger change detected with

weighted UniFrac than unweighted, could imply that we see predominately a change in pre-

existing bacteria rather than addition or loss of new species.

Some methodological shortcomings need to be considered. First, we lack negative controls

of the fluids used in the sputum induction in our study. We used the Decontam algorithm in R

to identify likely contaminants, which were then excluded from the study. However, the lack of

negative controls remains a weakness, as that could possibly have led to a more precise identifi-

cation of contaminants. Second, over the three years of the study, two different technicians per-

formed the initial processing of the samples, although with the same protocol. And, although

the same study personnel later analyzed all samples with the same protocol, all paired samples

were not always analyzed on the same laboratory runs. Analyses of taxonomy and beta diversity

did not reveal clear differences in relative abundance between runs or significant differences in

beta-diversity, and thus no adjustment for runs were used. However, some laboratory induced

inter-pair variation cannot be excluded. Third, since the study compares pairs both where the

stable state comes prior to the exacerbation and vice versa, the study is a comparison between

disease states, and no chronological sequence of events can be assumed. Fourth, the sample size

of the study is too small to make inferences about whether some subgroups like patients with

different disease severity have larger variations in their microbiota than other subgroups. Fifth,

variability between consecutive samples could not be addressed as participants delivered only

one sample at each visit. Sixth, sputum was examined and discarded if the number of cells

was< 1 million/mL or number of epithelial cells> 20%. However, even if deemed representa-

tive of the lower airways, sputum will invariably contain some microbial contamination from

the relatively high-biomass oral cavity. For less contamination prone sampling of the lower air-

ways, bronchoscopy is preferred, however, that is not feasible during COPD exacerbations. Sev-

enth, the true stability of the airways’ microbiome is yet unknown, thus some of the change

between the stable state and the exacerbations, may just reflect the fluctuating nature of the

microbiome. Finally, amplicon sequencing only tells us which bacteria are present and their rel-

ative abundance based on the amplicon sequenced (in our case 16S rDNA).

This study not only confirms that there are considerable changes in the respiratory micro-

biota between disease states in COPD patients, it further shows an important heterogeneity

between patient’s microbiota. This is indicative of future challenges in development of applica-

ble anti/pro-biotic treatment for groups of COPD patients. At the same time local inflamma-

tion is associated with the changes in microbiota, indicating the microbiota has significant

implications for respiratory health. Further mechanistic studies are needed to examine the

interaction between the microbiota and local inflammation.
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