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Abstract

China’s transport sector is facing enormous challenges from soaring energy consumption

and greenhouse gas (GHG) emissions. Transport electrification has been viewed as a

major solution to transportation decarbonization, and electric vehicles (EVs) have attracted

considerable attention from policymakers. This paper analyzes the effects of the introduc-

tion of EVs in China. A system dynamics model is developed and applied to assess the

energy-saving and emission-reducing impacts of the projected penetration of EVs until the

year 2030. Five types of scenarios of various EV penetration rates, electricity generation

mixes, and the speed of technological improvement are discussed. Results confirm that

reductions in transport GHG emissions and gasoline and diesel consumption by 3.0%–

16.2%, 4.4%–16.1%, and 15.8%–34.3%, respectively, will be achieved by 2030 under

China’s projected EV penetration scenarios. Results also confirm that if EV penetration

is accompanied by decarbonized electricity generation, that is, the use of 55% coal by

2030, then total transport GHG emissions will be further reduced by 0.8%–4.4%.

Moreover, further reductions of GHG emissions of up to 5.6% could be achieved through

technological improvement. The promotion of EVs could substantially affect the reduction

of transport GHG emissions in China, despite the uncertainty of the influence intensity,

which is dependent on the penetration rate of EVs, the decarbonization of the power sector,

and the technological improvement efficiency of EVs and internal combustion engine

vehicles.

1 Introduction

The transport sector plays a key role in energy consumption and greenhouse gas (GHG) emis-

sions. Approximately 19% of energy consumption and 50% of oil consumption in the world

are related to transportation. Moreover, and 23% of CO2 emissions are likewise derived

from various modes of transportation [1]. In 2016, CO2 emissions from the transport sector

exceeded CO2 emissions from electricity generation for the first time in 38 years, thereby

becoming the largest source of carbon emissions [2–3]. Energy consumption in China’s trans-

port sector reached 396.5 million tons of coal equivalents in 2017 [3], which accounted for
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9.1% of the total energy consumption. However, in developed countries generally account for

25%–30%. In the same year, the GHG emissions in China’s transport sector accounted for

8.9% of total emissions (specifically, 31.7% and 17.9%in the United States and Japan, respec-

tively). China’ transport sector has seen a dramatic growth in recent years. Transportation

passengers and freight turnovers have increased nearly 10 times since 1980. In addition, the

motor vehicle stock has increased by 14% annually. However, vehicle ownership per thousand

people is only 15% of that in the United States (766 per 1,000 people) [4]. Given the develop-

ment of the economy, the continuous urbanization process, and the increase in per capita

income, China’s transport demand is expected to increase rapidly in the coming decades.

Compared with other sectors, the transport sector is facing enormous pressure from soaring

energy consumption and GHG emissions. In addition, the study [5] claimed that traffic GHG

emissions may be underestimated because GHG emissions from nontraffic social vehicles are

excluded. From 2000 to 2017, the intensity of China’s general energy and industrial energy

consumption decreased by 59%, and 53%, respectively. However, the intensity of transport

energy consumption decreased by only 34% [6]. Moreover, GHG emissions in the transporta-

tion process are difficult to capture and seal. Therefore, the state government has placed

considerable importance on the implementation of GHG emission reduction policies in the

transport sector.

Transport electrification has been viewed as a major solution to transportation decarboni-

zation [7–8]. Numerous governments have announced their desire to eventually ban cars

powered by internal combustion engines. China is likewise ambitious in promoting electric

vehicles (EVs). In 2009, the “Automobile Industry Adjustment and Revitalization Plan” was

put forward by the State Council with the strategy to promote new energy vehicles for the first

time. Only 7,200 new energy vehicles were sold in 2010. However, the new energy vehicle

industry completed the initial phase in the “The 12th Five-Year Plan,” with support from

national policies. By 2017, the sales volume of new energy vehicles reached 556,000, which

indicated an increase of nearly 77 times. Out of this volume, the sales of pure EVs reached

445,000, which accounted for 80% of the total sales. The International Energy Agency (IEA)

contended that China’s EV stock in 2016 surpassed that of the United States for the first time

[9]. In addition, China’s EV sales in 2017 accounted for more than 40% of the world’s total

sales, which was two times more than that of the United States, thereby accounting for approx-

imately one-third of the world’s total stock. Therefore, China is becoming the world’s largest

EV country. Consequently, further studies are required to investigate into the effects of EVs

on transport fuel saving and emission reduction owing to the increasing GHG emissions from

transport fuel consumption and the new trend in transport electrification in China.

The reminder of the paper is structured as follows: Section 2 presents the literature review

on existing studies of the environmental effects of EVs. Section 3 constructs the system dynam-

ics (SD) model of China’s transport energy consumption and the GHG emission reduction

system. Section 4 designs the business as usual (BAU) scenario and other hypothetical EV

replacement scenarios in terms of the electricity generation mix and the rate of technological

improvement. Sector 5 presents and discusses the simulation results of the various scenarios

and compares them with the results of other studies. Finally, Section 6 provides the key conclu-

sions and policy implications.

2 Literature review

Previous studies have been conducted on national or regional transport GHG emission reduc-

tion policies, in Europe [10–11], the United States [12], Malaysia [13–14], Thailand [15], and

China [16–17]. These policies mainly include fuel efficiency improvements, fuel switching,

Transport oil product consumption and GHG emission reduction potential in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0222448 September 16, 2019 2 / 26

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0222448


technological improvement, the removal of fuel price subsidy, and public transportation pro-

motion. According to previous research, technological improvement, alternative fuels for vehi-

cles and the removal of fuel price subsidies have the most remarkable effects on the reduction

of GHG emissions. However, Huo [16] and Yin et al. [17] claimed that compared with other

sectors, China’s transport sector is insensitive to carbon prices. Thus, finding a substitute for

high carbon intensive fuels is of considerable importance.

EVs include hybrid EVs (HEVs), plug-in hybrid EVs (PHEVs), and full battery EVs

(BEVs). BEVs do not consume gasoline or diesel and are generally verified to have low GHG

emissions. Ahmadi [18] proved that BEVs were the most environmentally friendly among EVs

in terms of GHG emissions. That is, BEVs released approximately half the amount of emis-

sions by internal combustion engine vehicles (ICEVs). Trost et al. [19] argued that in the

medium term, HEVs would dominate the electric powertrain. However, BEVs would domi-

nate in the long-term with the battery technology improvement. PHEVs were also viewed as

a promising alternative for reducing emissions owing to its battery packs, which are smaller,

compared with BEVs [18] and to improvements in fuel economy through proper energy man-

agement [20–23]. The selection of EVs is a complex issue that is dependent on factors such as

policy direction, infrastructures, and life cycle costs. Several studies have investigated the envi-

ronmental effects of the replacement of ICEVs with EVs in China, and the majority agreed

that EVs were capable of reducing GHG emissions [24–27].

However, the penetration rate of EVs and regional power generation structures are consid-

ered as the two most important factors in transport electrification. These two factors have a

considerable impact on the decarbonization of the transport sector [7, 28–29]. The reduction

potential of countries such as China, India, and Australia (which rely heavily on coal power)

is uncertain and dependent on the carbon intensity of the power generation mix [30–34]. In

addition, the technical progress of EVs will also affect the policy implementation of emission

reductions [29, 33, 35].

EVs are identified as “zero tailpipe emission” vehicles and gaining popularity around the

world. However, the total environmental impacts of EVs have not been fully researched in

China. This study intends to analyze the effects of the introduction of EVs in China. Moreover,

this study contributes to three main perspectives. First, a systematic framework is proposed to

assess the impacts of EVs on China’s transportation energy consumption and on the reduction

of GHG emissions. The comprehensive framework combines a macro-energy–economy–envi-

ronment system with micro-transport–technological selections. Second, the proposed frame-

work is employed to assess the environmental impact of the diffusion of EVs under projected

scenarios of various EV penetration rates. Finally, we simulate and discuss the role of China’s

electricity grid mix decarbonization as well as the technological improvement of ICEVs and

EVs on the reduction of transport GHG emissions.

3 Methods and data sources

3.1 SD model of CTEGER

The SD model is popular in the fields of energy system simulation and policy analysis because

of its merits in linking the macro-level energy system with the micro-level structure. Thus, the

China’s transportation energy consumption and GHG emission reduction (CTEGER) model

is constructed by using the SD method (Fig 1). This system depicts transport energy consump-

tion (e.g., gasoline, diesel, kerosene, natural gas and electricity), the influencing factors that

affect it, and GHG emissions. In this system, the quantitative feedback relationship between

every two variables is determined by mathematical equations. More than 90 equations exist in

this model to express the quantitative relationships between the parameters and the variables.

Transport oil product consumption and GHG emission reduction potential in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0222448 September 16, 2019 3 / 26

https://doi.org/10.1371/journal.pone.0222448


The S1 Appendix provides the specific equations. The simulation period of the SD model

ranges from 1985 to 2030 and is divided into two stages. The first stage is for the period of

1985 to 2016, which is used to debug and test the accuracy of the model. The second stage

is for the period of 2017 to 2030, which is used for the forecast and policy analysis. The SD

model of CTEGER includes two major subsystems, namely, transport oil products consump-

tion and GHG emission subsystem and EV and GHG emission reduction subsystems. The for-

mer is a macro-level system, and the latter a micro-level system.

3.1.1 Transport oil products consumption and GHG emission subsystem. The trans-

port oil products consumption and GHG emission subsystem describe the relationships

between the various influencing factors and the types of oil product consumption (Fig 2). Oil

products such as gasoline, diesel, and kerosene are the main sources of fuels used in transpor-

tation. In 2017, the consumption of these types of oil products accounted for 84% of the total

transport energy consumption. The remainder is mainly composed of natural gas (7.5%) and

electricity (3.4%) [36]. Several studies have revealed the influencing factors that affect transport

energy consumption [37–43], such as economic development, income growth, urbanization,

transport energy structure, and fuel efficiency. Referencing these analyses, long-term cointe-

gration relationships between the consumption of gasoline, diesel, and kerosene as well as its

influencing factors are established in Eqs (1)–(3) by using step regression. These equations

Fig 1. CTEGER.

https://doi.org/10.1371/journal.pone.0222448.g001
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serve as the main relationships among variables to build the subsystem, as shown in Fig 2.

ln TG ¼ 4:653 lnURþ 0:655 ln PCþ 3:836 ln EI � 17:498þ et ð1Þ

ln TD ¼ 0:877 ln EI þ 1:298 ln ESþ 1:283 ln TO � 8:754þ et ð2Þ

ln TK ¼ 1:322 lnAT þ 2:387 ln EI � 3:420þ et ð3Þ

where TG, TD, and TK are transport gasoline, diesel, and kerosene consumption, respectively

(104 tons); UR refers to the economic urbanization rate, which is the ratio of nonagricultural

output value to GDP (%); PC is private car ownership (104); EI is energy consumption inten-

sity (tce/104 yuan); ES represents the energy consumption structure, which is the proportion

of coal in primary energy consumption (%); TO is the transport output value (108 yuan); and

AT is the aeronautical passenger turnover (108 passenger kilometers). Table 1 summarizes the

coefficients of the cointegration equations and the results of the t-test. The stationary test also

shows that the residual sequences of the cointegration equations of gasoline, diesel, and kero-

sene remain stable. Thus, all equations are valid.

Fig 2. Transport oil product consumption and GHG emission subsystem.

https://doi.org/10.1371/journal.pone.0222448.g002
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The cointegration equation describes the long-term relationship between oil product con-

sumption and economic variables. However, it fails to reflect the characteristics of short-term

dynamic changes. We establish error correction models (ECMs) to describe the short-term

dynamic relationship among the variables. We use the residual error of the model as the non-

equilibrium error after combining the Akaike information and Schwarz criteria. Eqs (4)–(6)

show the ECM equations of three kinds of oil product consumption as well as their influencing

factors. The stability tests of the ECM models are performed, and the results confirm that the

reciprocal eigenvalues of the three equations are less than 1. This finding indicates the validity

of the ECMs. Eqs (4)–(6) serve as key causal relationships in the subsystem (see Fig 2). The

coefficients of the ECM equations and the result of the t-test are shown in Table 1.

D ln TGt ¼ � 0:065� ðln TGt� 1 � 3:836 ln EIt� 1 � 0:655 ln PCt� 1 � 4:653 lnURt� 1

þ17:498Þ � 0:264D ln TGt� 3 þ 0:726D ln EIt� 1 � 0:975D ln EIt� 2 þ 0:658D ln EIt� 3

� 0:209D ln TGt� 1 þ 0:419D ln PCt� 3 � 2:259D lnURt� 1 � 0:930D lnURt� 2 þ 0:218

ð4Þ

D ln TDt ¼ � 0:079� ðln TDt� 1 � 0:877 ln EIt� 1
� 1:298 ln ESt� 1

� 1:283 ln TOt� 1 þ 8:754Þ þ 0:452D ln TDt� 1 þ 0:285D ln TDt� 3

� 0:413D ln EIt� 3 � 0:404D ln TOt� 3 þ 1:167D ln ESt� 1 þ 0:047

ð5Þ

D ln TKt ¼ � 0:155� ðln TKt� 1 � 1:322 lnATt� 1
� 2:387 ln EIt� 1 þ 3:420Þ

� 0:207D ln TKt� 1 þ 0:200D lnATt� 1 � 0:420D ln EIt� 1 þ 0:204
ð6Þ

Table 1. Results of cointegration and ECM equations.

Gasoline Diesel Kerosene

Variables Coefficient Variables Coefficient Variables Coefficient

Cointegration Eqs (1)~(3) LnUR 4.653� b lnEI 0.877��� b lnAT 1.322���

lnPC 0.655��� lnES 1.298� lnEI 2.387���

lnEI 3.836��� lnTO 1.283���

c a -17.498�� b c -8.754�� c -3.420���

ECM Eqs (4)~(6) ⊿lnTGt-3 -0.264 ⊿lnTDt-1 0.452�� ⊿lnTKt-1 -0.207

⊿lnEIt-1 0.726 ⊿lnTDt-3 0.285 ⊿lnATt-1 0.200�

⊿lnEIt-2 -0.975 ⊿lnEIt-3 -0.413 ⊿lnEIt-1 -0.420

⊿lnEIt-3 0.658 ⊿lnTOt-3 0.404

⊿lnTGt-1 -0.209 ⊿lnESt-1 1.167�

⊿lnPCt-3 0.419

⊿lnURt-1 -2.259�

⊿lnURt-2 -0.930

ecm (-1)a -0.065�� ecm (-1) -0.079� ecm (-1) -0.155��

c 0.218�� c 0.047 c -0.204���

Note:
a ecm(-1) denotes the error correction coefficient;

c denotes the constant term.
b �denotes 10% significant level,

��denotes 5% significant level,

���denotes 1% significant level.

https://doi.org/10.1371/journal.pone.0222448.t001
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3.1.2 EV and GHG emission reduction subsystem. Although EVs do not generate direct

GHG emissions, they are responsible for indirect emissions discharged from electricity genera-

tion. Thus, the EV and GHG emission reduction subsystem (Fig 3) is built to simulate the

replacement of ICEVs with BEVs and PHEVs (which are the main research focus in China).

Moreover, the subsystem simulates oil product consumption and the reduction of GHG emis-

sions in the transport sector under different scenarios. The GHG emission reduction effect of

BEVs and PHEVs is dependent on the difference between the energy consumed per mileage

and the GHG emission coefficients of different energy sources.

GHG emissions from the consumption of oil products are obtained on the basis of the life

cycle emission coefficient in this subsystem. Two methods are used to measure GHG emis-

sions from fossil fuel consumption according to the Intergovernmental Panel on Climate

Change (IPCC) [44], namely, the top-down and bottom-up models. The top-down model cal-

culates GHG emissions based on energy consumption and conversion factors. The bottom-up

model differentiates between travel modes and vehicle types and uses travel distance and unit

fuel consumption to calculate GHG emissions. The bottom-up model of GHG emission analy-

sis is considered suitable only for small regional research [45]. The present study uses the top-

Fig 3. EV and GHG emission reduction subsystem.

https://doi.org/10.1371/journal.pone.0222448.g003
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down method because it is capable of calculating transport energy subtypes such as gasoline,

diesel, and kerosene.

Following the well-to-wheel (WTW) method, this study derives the life cycle GHG emission

coefficients (LCGEC) of gasoline, diesel, and kerosene from four processes, namely, extraction,

refining, pipeline transportation, and usage, with reference to [44] and [46]. In summary, we

obtain the LCGEC of gasoline, diesel, and kerosene at 2,781.57 gCO2e/L, 3,827.94 gCO2e/L,

and 3,448.80 gCO2e/L, respectively. The LCGEC of electricity is also deduced based on the

complete life cycle, considering various power generation modes, as shown in Eq (7).

C ¼
Xn

i¼1

liyi ð7Þ

whereC represents the average LCGEC of electricity generation in China, λi represents the

proportion of power generation from the i-th fuel, and θi represents the LCGEC of the i-th

fuel. The range of LCGEC of different power-generating sources in China and the LCGEC

values used in this study are shown in Table 2. According to [6], in 2016, coal-fired power

accounts for 68.2% of the electricity generation mix, as shown in Table 2.

3.2 Data sources and model test

3.2.1 Data sources. Data on the oil product consumption of gasoline, diesel, and kerosene

as well as other variables are collected from Refs. [3, 6]. However, the definition and coverage

of transport oil product consumption differ among bodies of research. For example, in Refs.

[3, 6], oil products consumed by the transportation, storage, and post sectors only cover the

fuel consumption of commercial vehicles. However, the consumption of other transportation

oil products is assigned to the residential, commercial, and industrial sectors. We use the

allocation method by Wang (2010) [56] to estimate total transport oil product consumption,

which is currently widely referred to by various scholars [17]. Wang suggests that in addition

to oil products consumed by the transportation, storage, and post sectors, 95% of gasoline and

35% of diesel used in the industry and commercial sectors as well as all gasoline and 95% of

diesel used in the residential and agricultural sectors are allocated to transportation.

GHGs emitted during the production and consumption of oil products and electricity are

expressed as CO2 equivalent, according to the global warming potential (GWP) from the IPCC

Assessment Report [44]. For instance, 1 gCH4 has a GWP value of 25 gCO2e, whereas 1 gN2O

has a GWP value of 298 gCO2e.

3.2.2 Model test. Variables in the CTEGER SD model are evaluated in this paper by his-

torical and operating tests.

The historical test refers to the evaluation of the fitting degree between the simulated results

of the model and original data to verify the validity of the system model. That is, the smaller

Table 2. LCGEC of different power-generating sources.

Share in the electricity generation mix

(in year 2016)

Range of LCGEC in China

(gCO2e/kWh)

LCGEC used in this study

(gCO2e/kWh)

Coal-fired power 68.2% 900–1342 (Refs. [46–50]) 1133

Natural gas-fired power 4% 573–973 (Refs. [49–51]) 773

Photovoltaic Power 1% 20–240 (Refs. [49–51]) 140

Hydropower 19.4% 1–50 (Refs. [49–53]) 17

Nuclear power 3.5% 6.2–11.9 (Refs. [49–51, 54]) 9

Wind power 3.9% 6.5 −68 (Refs. [49–51, 55]) 32

https://doi.org/10.1371/journal.pone.0222448.t002
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the relative error between the simulated and original data, the better the simulation effect of

the system model and the more convincing the prediction value. Variables in the model are

verified by using the historical test to determine if the CTEGER model is consistent with

reality. This test involves the TO, UR, PC, AT, TG, TD, and TK variables. The historical tests

show the following results (Table 3 and Fig 4): 1) For TO and UR, more than 95% of the errors

between the simulated and actual values can be controlled within 5%. 2) For TG, TK, AT, and

PC, more than 90% of the errors between the simulated and actual values can be controlled

within 10%. 3) For TD, more than 90% of the errors between the simulated and actual values

can be controlled within 5%. These results indicate that the CTEGER model can meet the

requirements of the historical test and is consistent with reality. Fig 4(a)–4(c) show the original

and simulated series of gasoline, diesel, and kerosene consumption, which are the key variables

in CTEGER.

The operating test is used to verify the correctness of the simulation model as well as to

determine its rationality and stability. The simulation step (denoted as DT, which represents

Table 3. Summary of historical and operating test errors.

Variable Error confidence Range of relative error

Historical test error Operating test error

(DT = 1/DT = 0.5)

Operating test error

(DT = 1/DT = 0.25)

TG 100%–95% ≦3% ≦5%

95%–90% ≦10%

TD 100%–95% ≦5% ≦5%

95%–90% ≦5%

TK 100%–95% ≦5% ≦5%

95%–90% ≦10%

TO 100%–95% ≦5% ≦1% ≦1%

95%–90%

AT 100%–95% ≦10% ≦10%

95%–90% ≦10%

UR 100%–95% ≦3% ≦1% ≦1%

95%–90%

PC 100%–95% ≦1% ≦1%

95%–90% ≦10%

https://doi.org/10.1371/journal.pone.0222448.t003

Fig 4. Results of historical tests. (a) gasoline consumption and (b) diesel consumption and (c) kerosene consumption.

https://doi.org/10.1371/journal.pone.0222448.g004
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the time interval of data) in the original model is 1 (i.e., 1 year as the interval). Then, the model

is tested on the condition of DT = 0.5 and DT = 0.25. The simulation results (Fig 5) show that

the three curves of DT = 1, DT = 0.5, and DT = 0.25 are basically coincident with one another.

This finding implies that the system is stable. Table 4 presents the relative errors of the operat-

ing test results, which show the error between DT = 1 and DT = 0.5 as well as between DT = 1

and DT = 0.25.

4 Scenario design

Five types of scenarios and their underlying assumptions are developed and presented in

Table 4. Section 4.1 introduces the BAU scenario as a reference for comparison. Section 4.2

defines six EV replacement scenarios to explore energy conservation and GHG emission miti-

gation potentials for the transport sector. Section 4.3 defines six EV and ICEV technological

improvement scenarios to explore possible additional GHG emission reduction from techno-

logical improvement.

4.1 BAU scenario

The BAU scenario is defined according to the current trend without further policy measures

to promote the development of EVs during the scenario period. This section presents the

assumptions and prediction methods of certain key parameters under the BAU scenario.

4.1.1 Energy consumption structure. Two energy consumption structure scenarios are

defined according to China’s “13th Five-year Plan” and Ref. [57], namely, the high- and low-

carbon scenarios. Under the high-carbon scenario, the ratio of coal in China’s total energy

consumption is 59% and 53% in 2020 and 2030, respectively. Under the low-carbon scenario,

the ratio of coal in the total energy consumption is 57% and 43% in 2020 and 2030, respec-

tively. The BAU scenario is the average of the high- and low-carbon scenarios.

4.1.2 Transport output value and aeronautical passenger turnover. The transport out-

put value (TO) is an economic time series. Given the inertia of economic activity, the psycho-

logical habits of people’s transport demand, and investments in fixed assets in transportation,

the previous trend of TO is expected to continue in the coming years, thereby leading to the

change in the TO in relation to its past. Therefore, the autoregressive distributed lag (ADL)

model is used in this study to project the TO. The ADL equation of the relationship between

Fig 5. Results of operating tests. (a) gasoline consumption and (b) diesel consumption and (c) kerosene consumption.

https://doi.org/10.1371/journal.pone.0222448.g005
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the TO and GDP, with a lag period of 1, is built, tested, and shown in Eq (8).

ln TOt ¼ 0:931 ln TOt� 1 þ 0:278 lnGDPt � 0:223 lnGDPt� 1

ð0:0000Þ ð0:0111Þ ð0:0488Þ
ð8Þ

The p value of each coefficient is shown in brackets. The adjusted coefficient of determina-

tion (R2) is 0.989, and the Durbin–Watson (DW) value is 1.782, which indicates that no auto-

correlation exists. The White test also proves that no heteroscedasticity exists.

Similarly, the ADL method is used to predict aeronautical passenger turnover (AT). Eq (9)

shows the ADL equation of AT and GDP with R2 = 0.997, in which no autocorrelation or het-

eroscedasticity is found.

lnATt ¼ � 5:835þ 0:406 lnATt� 1 þ 2:996 lnGDPt � 2:174 lnGDPt� 1

ð0:0005Þ ð0:0083Þ ð0:0001Þ ð0:0007Þ
ð9Þ

Table 4. Descriptions and assumptions of scenarios.

Scenario Type Scenario

Name

Descriptions and Assumptions

BAU BAU Oil product consumption and GHG emissions are predicted based

on Eqs (4)–(6) without further policy measures to promote the

development of EVs.

EV replacement EVH EV high (EVH) replacement scenario assumes that EV ownership

will increase to 80 million in 2030.

EVL EV low (EVL) replacement scenario assumes that EV ownership

will increase to 15 million in 2030.

EVB EV baseline (EVB) replacement scenario assumes that EV

ownership will increase to 47.5 million in 2030.

Decarbonized electricity

generation

EVHS EVH scenario combined with decarbonized electricity generation

scenario, which assumes the use of 55% coal in 2030.

EVLS EVL scenario combined with decarbonized electricity generation

scenario, which assumes the use of 55% coal in 2030.

EVBS EVB scenario combined with decarbonized electricity generation

scenario, which assumes the use of 55% coal in 2030.

Technological improvement in

EVs

EVB+HT

(EVBS+HT)

EVB (EVBS) scenario combined with high technological

improvement speed of EV, that is, electricity consumption rate of

EVs will be reduced by 10% every 5 years until 2030.

EVB+LT

(EVBS+LT)

EVB (EVBS) scenario combined with low technological

improvement speed of EV, that is, electricity consumption rate of

EVs will be reduced by 5% every 5 years until 2030.

EVB+BT

(EVBS+BT)

EVB (EVBS) scenario combined with moderate technological

improvement speed of EV, that is, electricity consumption rate of

EVs will be reduced by 7.5% every 5 years until 2030.

Technological improvement in

EVs and ICEVs

EVB (EVBS)

+HT+ICEV

EVB (EVBS)+HT scenario combined with technological

improvement of ICEV, that is, the average fuel consumption rate of

gasoline cars and diesel buses will be reduced to 5.5 L/100 km and

29.1 L/100 km, respectively, in 2030.

EVB (EVBS)

+LT+ICEV

EVB (EVBS)+LT scenario combined with technological

improvement of ICEV, that is, the average fuel consumption rate of

gasoline cars and diesel buses will be reduced to 5.5 L/100 km and

29.1 L/100 km, respectively, in 2030.

EVB (EVBS)

+BT+ICEV

EVB (EVBS)+BT scenario combined with technological

improvement of ICEV, that is, the average fuel consumption rate of

gasoline cars and diesel buses will be reduced to 5.5 L/100 km and

29.1 L/100 km, respectively, in 2030.

https://doi.org/10.1371/journal.pone.0222448.t004

Transport oil product consumption and GHG emission reduction potential in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0222448 September 16, 2019 11 / 26

https://doi.org/10.1371/journal.pone.0222448.t004
https://doi.org/10.1371/journal.pone.0222448


4.1.3 Economic growth. There is a close relationship between economic development

and oil consumption in China [58]. The present study also proves that economic growth

will affect transportation output value and aeronautical passenger turnover (Eqs (8) and (9)),

thus affecting the consumptions of oil products (Eqs (2) and (3)). The Chinese economy is

currently shifting from a high-speed boom to a sustainable development, with the growth

rate declining over time. The present study defines two GDP growth scenarios according to

China’s “13th Five-year Plan” and Ref. [59] in which the BAU scenario is deduced according

to the GDP. The first is the optimistic scenario of GDP growth under which the GDP growth

rate falls by 0.1% per year from 6.9% in 2017 to 2030. The second is the pessimistic scenario

of GDP growth under which the GDP growth rate falls by 0.2% per year in the same period.

The GDP growth rate under the BAU scenario is the average of the optimistic and pessimis-

tic scenarios.

4.1.4 Urbanization rate and private car ownership. The growth curve model is widely

employed for middle- and long-term predictions of limited monotonous growth processes.

According to the experiences of developed countries, the urbanization rate (UR) and private

car ownership (PC) undergo a process of beginning, rapid growth, slow growth, and eventually

plateau. This process is consistent with the growth curve rule [60–61]. Commonly used growth

curves include the logistic curve, the simple S curve, and the Compertz curve. The present

study uses the logistic curve (Eq (10)) to project the UR and PC in China.

y ¼
k

1þ Ae� Bt
ð10Þ

where y represents the predicted UR or PC, t denotes different years, A and B are parameters,

and k represents the saturation level. In estimating China’s UR, the initial value of k is assumed

to be 95%, with the constraint of the UR at less than 100%. The parameters in Eq (10) for the

UR are deduced as A = 0.365 and B = 0.678 by using the nonlinear programming method. In

this study, we assume that China’s PC peaks at 380 million. The A and B parameters for the

logistic curve of PC are 2,216 and −0.232, respectively.

4.1.5 Energy intensity. In Section 2.1.1, ΔlnEI is proven as a stable time series with the

trailing autocorrelation coefficient, which conforms to the law of auto regression (AR). In

addition, its partial correlation coefficient is truncated after the two orders. Eq (11) shows the

AR model for ΔlnEI.

D ln EIt ¼ � 0:035þ 1:060D ln EIt� 1 � 0:436D ln EIt� 2

ð0:0056Þ ð0:0000Þ ð0:0265Þ
ð11Þ

The reciprocal root of the formula is 0.53 + 0.39i, which is within the unit circle. The DW

value of the equation is 2.025, which indicates that no autocorrelation exists. Moreover, the

residual is a white noise sequence. Thus, the model is valid.

4.2 EV replacement scenarios

In 2015, the Chinese National Development and Reform Commission issued the “Guide for

the Development of Electric Vehicle Charging Infrastructure 2015–2020” [62]. A development

target of more than five million EVs in China in 2020 was proposed. Toward the end of 2017,

the Society of Automotive Engineers, as entrusted by the Ministry of Industry and Information

Technology of China, issued the “Energy Saving and New Energy Vehicle Technology Road-

map 2017” [63]. This report proposed that the volume of EVs in 2030 would be in the range of

15–80 million. Therefore, we design three EV replacement scenarios to assess their influence

on oil product consumption and GHG emissions. The EVL scenario assumes that EV
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ownership will increase to 15 million in 2030, whereas the EVH scenario assumes that EV

ownership will increase to 80 million in 2030. The EVB is the average of the low and high sce-

narios. This scenario assumes an EV ownership of 47.5 million in 2030. We assume in each

scenario that no changes or upgrades will occur in China’s electricity generating mix and that

68.2% (the current share) of electricity will continue to be generated by coal in 2030. However,

the decarbonization of the electricity sector, that is, the reduction of the coal-fired electricity

shares, will be further discussed in Section 5 under the EVHS, EVLS, and EVBS scenarios

(Table 4).

BEVs accounted for 76% of the total sales of EVs from 2011 to 2017. Therefore, we sup-

pose that BEVs and PHEVs will retain the ratio of 3:1 in the future. The main usages of

EVs are private cars, taxis, buses, and special vehicles for sanitation and logistics purposes.

According to our investigation and estimation, the ratio of electric private cars, taxis, buses,

and special vehicles for sanitation and logistics purposes will be approximately 43:3:2:2 in

the near future. In this study, the annual mileage of private cars, taxis, buses, and special

vehicles for sanitation and logistics purposes is assumed to be 18,000, 120,000, 60,000

and 60,000 km, respectively. The fuel consumption rate of private gasoline cars is 7.82 L/100

km and that of diesel buses is 36.39 L/100 km [64]. According to the recent data from the

Ministry of Industry and Information Technology of the People’s Republic of China, we cal-

culate that the average power consumption of BEV private cars and buses is 18.73 kWh/100

km and 98 kWh/100 km, respectively. The energy consumption of PHEV private cars and

buses is 4.3 L/100 km + 9 kWh/100 km and 17.7 L/100km + 37.1 kWh/100 km, respectively

[65].

Geng et al. [66] proved that compressed natural gas vehicles (CNGVs) can perform well in

terms of emission reduction where the power grid is mainly coal based. The present study also

considers the replacement of ICEVs with CNGVs to comprehensively evaluate oil product

consumption and the potential reduction of GHG emissions in the transport sector. We

assume that CNGVs in China have a fixed growth rate and will reach 10 and 14 million in

2020 and 2030, respectively. CNGVs are mainly composed of taxis and buses. According to

our investigation, the natural gas consumption rate of CNGV taxis and buses is 9 m3/100 km

and 37.3 m3/100 km, respectively. Guo et al. [67] proved that the ratio of CNGV taxis to buses

is currently 67 to 33 in China. Therefore, we also use this ratio in this study.

4.3 Technological improvement scenarios

We define three scenarios of EV technological improvement according to Ref. [63]. The high

technological improvement scenario of EV (EVB+HT) is defined as the reduction of electricity

consumption per 100 km by 10% every 5 years until 2030. The low technological improvement

scenario of EV (EVB+LT) is defined as the reduction of electricity consumption per 100 km by

5% every 5 years until 2030.

We assume another scenario under which the fuel economy of ICEVs will also be techno-

logically improved. According to Ref. [63], one of the milestones in the future development

of China’s ICEV technology is that the fuel consumption of new passenger fuel vehicles will

drop to 3.2 L/100 km by 2030 and that of new commercial vehicles will be reduced by 20%.

Considering actual driving conditions and the vehicle replacement rate, we assume that

the average fuel consumption rate of ICEV gasoline cars and diesel buses will be reduced to

5.5 L/100 km (which is also used in Ref. [31]) and 29.1 L/100 km, respectively, by 2030. The

combined technological improvement scenarios of EVs and ICEVs will be further discussed

in Section 5 under the EVB+HT+ICEV, EVB+BT+ICEV, and EVB+LT+ICEV scenarios

(Table 4).
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5 Results and discussion

5.1 Influencing factors of transport oil product consumption

The present study analyzes the influencing factors that affect the consumption of various oil

products in China’s transport sector. Three cointegration equations are employed to establish

long-term relationships and elasticity among the variables. According to the long-term equilib-

rium (Eq (1)), the UR increases by 1%, TG increases by 4.65%; EI increases by 1%, TG increases

by 3.84%; PC increases by 1%, and TG increases by 0.66%, from 1985 to 2016, given that other

influencing factors remained constant. The UR and EI are the dominant influencing factors on

transport gasoline consumption in China. This result reveals that urbanization has greatly pro-

moted the transport demand and has caused a rapid growth in transport gasoline consumption.

China is still in the stage of urbanization. Thus, the process of urbanization and the growth of

private car stocks will drive a further increase in gasoline consumption. However, the decline in

EI will play a role in lowering gasoline consumption if no policy measures are implemented.

According to Eq (2), the ratio of coal in total energy consumption increases by 1%, TD
increases by 1.30%; the TO increases by 1%, TD increases by 1.28%; EI decreases by 1%, and

TD decreases by 0.88%, given that other influencing factors remain constant. The long-term

equilibrium among diesel consumption and its influencing factors shows that ES is a signifi-

cant influencing factor on China’s diesel consumption. The transportation of coal in China is

largely dependent on diesel trucks. For example, 84.4% of the annual freight transportation in

the Jing-Jin-Ji region (Refer to the Beijing–Tianjin–Hebei urban agglomeration, which is the

political and cultural center of China and an important core area of North China’s economy)

relies on diesel trucks, among which trucks for coal transportation account for 85% [68]. The

adjustment of the ES and the control of coal consumption growth will contribute to the decline

of diesel consumption growth in the future.

According to Eq (3), a 1% increase in AT will lead to a 1.32% increase in TK, whereas a 1%

decrease in EI will lead to a 2.39% decrease in TK, given that other influencing factors remain

constant.

The absolute value of the error correction coefficients reflects the adjustment to the devia-

tion of the long-term equilibrium. According to the error correction coefficient of −0.065

from Eq (4), the non-equilibrium state of gasoline consumption can be adjusted back to the

equilibrium state by 6.5% when the short-term fluctuation deviates from the long-term equi-

librium. The error correction coefficients from Eqs (5) and (6) show that when the short-term

volatility of diesel and kerosene consumption deviates from the long-term equilibrium, the

imbalance can be adjusted to the equilibrium state by 7.9% and 15.5%, respectively. The short-

term fluctuation of TG, TD, and TK consumption comes from two sources. The first is the

future development trend of the UR, PC, EI, ES, and other endogenous variables. The second

is the influence of the deviation from the long-term equilibrium.

At present, the ratio of transport oil product consumption to total crude oil consumption is

46%. We assume that this ratio will remain unchanged until 2030. The replacement of ICEVs

with EVs will reduce crude oil demand by 9%–23%, which will play an important role in

reducing the pressure on China to import crude oil. Conversely, China’s refineries to date are

in the stage of overcapacity. High-cost refineries may be eliminated because of the decreasing

growth rate of oil product consumption.

5.2 Transport oil product consumption and GHG emissions under the

BAU scenario

Figs 6 and 7 present oil product consumption and GHG emissions from China’s transport sector

under the BAU scenario. The simulation results confirm that transport gasoline consumption
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Fig 6. Transport oil product consumption under the BAU scenario.

https://doi.org/10.1371/journal.pone.0222448.g006

Fig 7. Transport GHG emissions from oil product consumption under the BAU scenario.

https://doi.org/10.1371/journal.pone.0222448.g007
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will maintain an increasing trend, thereby reaching 118.44 Mt and 183.57 Mt in 2020 and 2030,

respectively. Transport diesel consumption will increase from 154.74 Mt in 2020 to 185.19 Mt

by 2030. However, the annual growth rate of gasoline consumption will decrease from 7.1% in

2020 to 1.1% by 2030. Moreover, the annual growth rate of diesel consumption will decrease

from 2.0% in 2020 to 1.2% by 2030. Transport kerosene consumption will increase to 37.66 Mt

and 57.48 Mt in 2020 and 2030, respectively. The diesel to gasoline ratio in China’s transport

sector will continue to decrease in the simulated time period. According to the experiences of

developed countries, when a country enters the late stage of industrialization, the diesel to gaso-

line ratio declines continuously. China is expected to enter the late stage of industrialization dur-

ing the “13th Five-Year Plan” period. The ratio reached two peak points, namely, 2.89 and 2.15

in 2006 and 2012, respectively. Thereafter, the present study predicts that the ratio will decrease

to 1.35 and 1.00 in 2020 and 2030, respectively, which is in accordance with the development

process of developed countries.

GHG emissions from the consumption of gasoline, diesel, and kerosene in the transport

sector will increase from 454.41 MtCO2e, 717.98 MtCO2e, and 167.61 MtCO2e in 2020 to

704.30 MtCO2e, 859.28 MtCO2e, and 255.81 MtCO2e in 2030, respectively, as presented in Fig

7. GHG emissions from diesel consumption comprise the dominant share all the way through

2030. However, the share will decrease from 56.6% to 47.2% during the simulation period.

5.3 GHG emission reduction under various EV replacement scenarios

5.3.1 GHG emission reduction effect of EV under different electricity generation

mixes. The CTEGER model is used to simulate the reduction of GHG emissions from the

replacement of gasoline and diesel vehicles with BEVs and PHEVs. Column 3 in Table 5 shows

the GHG emission coefficient 100-kilometer of ICEVs, EVs, and CNGVs under the present

electricity generation mix (68.2% of electricity is generated by coal). The results indicate

that the per 100-kilometer GHG emissions of BEV, PHEV, and CNGV private cars is 27.2%,

10.7%, and 8.1%, respectively, less than that of current gasoline cars. The GHG emissions of

BEV, PHEV, and CNGV buses are 40.5%, 17.6%, and 40.2%, respectively, less than that of

current diesel buses. However, if the share of coal-fired electricity is reduced to 60%, then the

per 100-kilometer GHG emissions of BEV cars and buses will decrease by 37.6% and 49.0%,

respectively, and that of PHEV cars and buses will decrease by 15.6% and 22.2%, respectively

(Column 4 in Table 5). If the share of coal-fired electricity is reduced to 55%, then the per

100-kilometer GHG emissions of BEV cars and buses will decrease by 46.9% and 56.6%,

Table 5. Emission coefficient of various types of vehicles.

Vehicle types Vehicle usages Emission coefficient (gCO2e/100 km)

(68.2% coal fired) (60% coal fired) (55% coal fired)

Gasoline vehicles Private cars and taxis 21,752 – –

Diesel vehicles Buses 139,299 – –

BEVs Private cars and taxis 15,842 13,583 11,541

Buses 82,891 71,072 60,387

PHEVs Private cars and taxis 19,434 18,349 17,367

Buses 114,838 108,407 102,550

CNGVs Taxis 19,988 – –

Buses 83,282 – –

Data source: Refs. [64–65]

https://doi.org/10.1371/journal.pone.0222448.t005

Transport oil product consumption and GHG emission reduction potential in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0222448 September 16, 2019 16 / 26

https://doi.org/10.1371/journal.pone.0222448.t005
https://doi.org/10.1371/journal.pone.0222448


respectively, and that of PHEV cars and buses will decrease by 20.2% and 26.4%, respectively

(Column 5 in Table 5).

5.3.2 GHG emission reduction from EV replacement. Reduction in oil product

consumption. The simulation results under the BAU scenario show that total gasoline con-

sumption will be 118.43 Mt in 2020. Gasoline consumption under the EVH, EVB, and EVL

scenarios will be 113.92 Mt, 115.05 Mt, and 116.18 Mt, respectively, in 2020. In essence, gaso-

line consumption will decrease by 3.8%, 2.8%, and 1.9% of the BAU scenario. Total gasoline

consumption under the BAU scenario will be 183.57 Mt in 2030. In the same year, gasoline

consumption under the EVH, EVB, and EVL scenarios will be 154.01 Mt, 164.71 Mt, and

175.42 Mt, respectively. Thus, gasoline consumption is reduced by 16.1%, 10.3%, and 4.4% of

the BAU scenario. In addition, the increase in gasoline consumption will slow down after 2029

under the BAU, EVL, and EVB scenarios. In contrast, gasoline consumption will peak in 2029

under the EVH scenario (Fig 8).

The simulation results under the BAU scenario indicate that total diesel consumption will

be 154.74 Mt in 2020. The diesel consumption under the EVH, EVB, and EVL scenarios are

138.53 Mt, 140.32 Mt, and 142.13 Mt, respectively. Therefore, diesel consumption is reduced

by 10.5%, 9.3%, and 8.1% of the BAU scenario. Total diesel consumption under the BAU sce-

nario will be 185.19 Mt in 2030. In the same year, diesel consumption under the EVH, EVB,

and EVL scenarios will be 121.69 Mt, 138.82 Mt, and 155.95 Mt, respectively. Thus, diesel

consumption will be reduced by 34.3%, 25.0%, and 15.8% of the BAU scenario (Fig 9). Diesel

consumption will slowly increase under the EVL scenario, will remain stable under the EVB

scenario, and will steadily decline under the EVH scenario during the simulation period.

Reduction in GHG emissions. According to Section 5.2, GHG emissions from oil product

consumption under the BAU scenario will be 1,340 MtCO2e in 2020. In the same year, with

the increase in BEV ownership, GHG emission reduction from the replacement of ICEVs with

BEVs under the EVH, EVB, and EVL scenarios will be 26.42 MtCO2e, 15.25 MtCO2e, and 4.08

MtCO2e, respectively. Therefore, GHG emissions are reduced by 2.0%, 1.1%, and 0.3% of the

Fig 8. Simulation results of gasoline consumption under different scenarios of EV replacement.

https://doi.org/10.1371/journal.pone.0222448.g008

Transport oil product consumption and GHG emission reduction potential in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0222448 September 16, 2019 17 / 26

https://doi.org/10.1371/journal.pone.0222448.g008
https://doi.org/10.1371/journal.pone.0222448


BAU scenario. GHG emissions from oil product consumption under the BAU scenario will be

1,819.38 MtCO2e in 2030. In the same year, GHG emission reduction from the replacement

of ICEVs with BEVs under the EVH, EVB, and EVL scenarios will be 260.22 MtCO2e, 154.06

MtCO2e, and 47.91 MtCO2e, respectively. Thus, GHG emissions are reduced by 14.3%, 8.47%,

and 2.6% of the BAU scenario.

In 2020, GHG emission reduction from the replacement of ICEVs with PHEVs under the

EVH, EVB, and EVL scenarios will be 3.58 MtCO2e, 2.07 MtCO2e, and 0.55 MtCO2e, respec-

tively. Therefore, GHG emissions are reduced by 0.27%, 0.15%, and 0.19% of the BAU sce-

nario. In 2030, GHG emission reduction from the replacement of ICEVs with PHEVs under

the EVH, EVB, and EVL scenarios will be 35.25 MtCO2e, 20.87 MtCO2e, and 6.49 MtCO2e,

respectively. Thus, GHG emissions are reduced by 1.94%, 1.15%, and 0.36% of the BAU

scenario.

GHG emission reduction from the replacement of ICEVs with EVs (BEVs+PHEVs) under

various EV penetration scenarios will reach 0.5%–2.3% and 3.0%–16.2%, respectively, in

2020 and 2030. Furthermore, GHG emission reduction from the replacement of ICEVs with

CNGVs will be 62.55 MtCO2e in 2020, which is a 4.7% reduction of the BAU scenario. In 2030,

the GHG emission reduction will be 112.59 MtCO2e, which achieves a 6.19% emission reduc-

tion of the BAU scenario. Fig 10 depicts the total amount of GHG emissions under different

EV replacement scenarios. In 2020, total GHG emissions will decrease by 6.9%, 5.9%, and

5.0% under the EVH, EVB, and EVL scenarios, respectively (including reduction from the

replacement of ICEVs with CNGVs). However, total GHG emissions will decrease by 22.4%,

15.8%, and 9.2% under the three scenarios in 2030. In summary, BEVs will play a prominent

role in terms of the mitigation of the effects of GHG emissions.

We also define three alternative scenarios of decarbonized electricity generation according

to the IEA’s new policy scenario [26], namely, the EVHS, the EVBS, and the EVLS under

which the share of coal-fired electricity generation will gradually be reduced to 60% and 55%

Fig 9. Simulation results of diesel consumption under different scenarios of EV replacement.

https://doi.org/10.1371/journal.pone.0222448.g009
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in 2025 and 2030, respectively. The EVHS scenario combines the EVH scenario with the

abovementioned decarbonized electricity generation. The same is true for the EVBS and EVLS

scenarios (Table 4). The simulation results show that GHG emissions from the replacement of

ICEVs with EVs will decrease by 20.6%, 12.2%, and 3.8% under the EVHS, EVBS, and EVLS

scenarios, respectively, in 2030. Thereafter, the total GHG emission reduction will decrease

by 26.8%, 18.4%, and 9.9% under the EVHS, EVBS, and EVLS scenarios, respectively, in 2030.

The results confirm that if the replacement of ICEVs with EVs is accompanied by the decarbo-

nization of the electricity generation mix to 55% coal-fired electricity in 2030, then total trans-

port GHG emissions will be reduced by an additional of 0.8%–4.4%.

5.3.3 GHG emission reduction from technological improvement. The simulation

results of the reduction of GHG emissions from the replacement of ICEVs with EVs under the

technological improvement scenarios of EVB+HT, EVB+BT, and EVB+LT are presented in

Fig 11. The abovementioned three scenarios assume that EV ownership will increase to 47.5

million in 2030 (as assumed in the EVB scenario). However, the rate of technological improve-

ment differs in each scenario. Moreover, Fig 11(a) and 11(b) show GHG emission reduction

from the replacement of ICEVs with BEVs and PHEVs, respectively, provided that the power

generation sector remains unchanged, with electricity generated by 68.2% coal. Fig 11(c) and

11(d) show GHG emission reduction under scenarios, with the decarbonized electricity gener-

ation mix using 60% and 55% coal in electricity generation in 2025 and 2030, respectively. In

each figure, we compare emission reduction from the replacement of ICEVs with EVs under

different technological improvement scenarios.

Under the EVB scenario with electricity generated by 68.2% coal, the replacement of ICEVs

with BEVs and PHEVs will reduce GHG emissions in China’s transport sector by 154.06

MtCO2e and 20.87 MtCO2e, respectively, in 2030 (see EVB in Fig 11(a) and 11(b)). The

Fig 10. Total GHG emissions under various EV scenarios.

https://doi.org/10.1371/journal.pone.0222448.g010
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reduction of total GHG emissions is 9.6% of the BAU scenario. If we only consider the techno-

logical improvement of EVs without regarding that of ICEVs, then GHG emissions will be

reduced by 13.9%–16.3% of the BAU scenario in 2030. Among them, GHG emissions from

the replacement of ICEVs with BEVs and PHEVs will decrease by 228.84 MtCO2e and 46.54

MtCO2e, respectively, in 2030 under the EVB+BT scenario (see Fig 11(a) and 11(b)). The

reduction of GHG emissions from the replacement of ICEVs with EVs is 15.2% of the BAU

scenario. An additional amount of GHG emissions of approximately 5.6% could be reduced

with the technological improvement of EVs.

Fig 11(a)–11(d) illustrate the simulation results of the combined scenarios of EV technolog-

ical improvement (e.g., EVB+HT, EVB+BT, and EVB+LT) with ICEV technological improve-

ment (ICEV). Take the EVB+BT+ICEV scenario as an example. The emissions reduced by the

replacement of ICEVs with BEVs will be 106.93 MtCO2 in 2030, which is a 69% of GHG emis-

sion reduction from BEVs under the EVB scenario. Meanwhile, emission reduction from the

replacement of ICEVs with PHEVs under the EVB+BT+ ICEV scenario will be 5.90 MtCO2e

in 2030, which is approximately 28% of emission reduction from PHEV under the EVB

Fig 11. GHG emission reduction of BEVs and PHEVs. GHG emission reduction of (a) BEVs and (b) PHEVs under the current

power generation mix and (c) BEVs and (d) PHEVs under the decarbonized power generation mix.

https://doi.org/10.1371/journal.pone.0222448.g011
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scenario. In summary, GHG emission reduction from the replacement of ICEVs with EVs will

be 6.2% of the BAU scenario. In addition, PHEVs will have no positive effect on the overall

GHG emission reduction after 2030 under the EVB+LT+ICEV scenario.

If the decarbonization of the electricity sector can be carried out by reducing the share

of coal in the electricity generation mix to 55% in 2030, then the replacement of ICEVs with

BEVs and PHEVs will reduce GHG emissions by 197.98 MtCO2e and 24.21 MtCO2e, respec-

tively, under the EVBS scenario (see EVBS in Fig 11(c) and 11(d)). The GHG emission reduc-

tion accounts for 12.2% of emissions of the BAU scenario. The combined scenarios of the

technological improvement of EVs and ICEVs are also investigated under the decarbonized

electricity generation condition. Take the EVBS+BT+IECV scenario as an example. Emission

reduction from the replacement of ICEVs with BEVs will be 120.09 MtCO2e in 2030, which is

approximately 61% of GHG emission reduction from BEVs of the EVBS scenario. Conversely,

emission reduction from the replacement of ICEVs with PHEVs under the EVBS+BT+IECV

scenario will be 6.90 MtCO2e in 2030, which is approximately 29% of the GHG emission

reduction of PHEVs of the EVBS scenario. We also confirm that even with aggressive electric-

ity sector decarbonization, PHEVs only have marginal or negative effects on GHG emission

reduction when ICEVs experience a dramatic technological improvement.

Fig 12 presents GHG emission reduction from the replacement of ICEVs with BEVs and

PHEVs under various scenarios. The decarbonization of the power sector and the technologi-

cal improvement of EVs are important factors that contribute to the additional reduction of

GHG emissions. Meanwhile, the technological improvement of ICEVs should not be ignored.

The simulation results in Fig 10 show that without further technological measures, the GHG

emission reduction effect of EVs will be reduced by 35%–43% owing to the projected techno-

logical improvement of ICEVs. Policy makers in China should focus on the combining policies

for technological improvement of both ICVEs and EVs. However, despite the limited room for

fuel economy improvement of ICEVs, the technological improvement of ICEVs is effective in

reducing GHG emissions in the short term [69]. The reduction of GHG emissions in the long

term will increasingly rely on EVs in the transport sector.

5.4 Results comparison with other researches

Table 6 provides a comparative analysis between our results and those of published studies.

Divergent results have been reported in the literature to discuss the use of EVs instead of

Fig 12. GHG emission reduction of EVs under various scenarios.

https://doi.org/10.1371/journal.pone.0222448.g012
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ICEVs. However, previous studies have shown that the planning scenario of EVs will account

for approximately 10% to 60% emission reduction in 2030. Research shows that areas with a

high proportion of renewable energy in the electricity grid will generate increased energy-

saving benefits. Such areas include France [7], Sweden [7] and California [35] in the United

States. In addition, the differences in each study also reflect the following aspects. 1) Scenario

parameters are set differently, which are mainly reflected in the differences in EV market

share, electricity generation mix, technological improvement efficiency, and policy support for

EV promotion. 2) The variability in methodological approaches for emission calculation leads

to different evaluation ranges of the GHG emission reduction effect. For example, in Table 6,

WTW refers to the research boundary covering only the life cycle of energy consumed by

vehicles. WTW is subdivided into two stages, namely, well-to-tank (WTT) and tank-to-wheel

(TTW). Complete LCA is a WTW with a cradle-to-grave life cycle of vehicles [70]. Wolfram &

Wiedmann [33] observed that specific vehicle carbon footprints differ by up to 17% depending

on whether life cycle analysis or hybrid life cycle is used. 3) The policy directions of EV promo-

tion differ. For example, Watabe et al. [71] argued that high carbon taxes and accelerated infra-

structure construction are required to promote the use of EVs in Japan; otherwise, consumers

will tend to use fuel vehicles. Wolfram and Wiedmann [33] emphasized that policies for the

electricity and vehicle markets should be regarded as inseparable. Furthermore, Dhar et al.

[32] argued that policies to support the EV market are required on the supply and demand

sides owing to India’s resource shortage in the domestic battery industry.

6 Conclusion and policy implications

This study investigates the potential reduction of GHG emissions in China’s transport sector.

The CTEGER SD simulation model is established to simulate transport energy consumption

and the reduction of GHG emissions from the replacement of ICEVs with EVs. The main

conclusions are as follows. First, reductions in transport gasoline and diesel consumption by

4.4%–16.1% and 15.8%–34.3%, respectively, will be achieved by 2030 under China’s projected

EV penetration scenarios. Second, GHG emission reduction from the replacement of ICEVs

with EVs under various EV penetration scenarios will reach 3.0%–16.2% by 2030. Third, if the

Table 6. Comparison between the present study and established literature.

Country or

region

Scenario

year

Method Emission reduction considering the use

of EVs instead of ICEVs

Scenario description Reference

India 2030 WTW −10% compared with BAU Significant policy support for EV, technological improvement,

and cost reduction

[32]

Australia 2030 Hybrid LCA −32% compared with BAU 94% EV shares and 96% renewable energy shares compared with

18% EV shares and 36% renewable energy shares under BAU

[33]

America 2025 WTW −65% in California and in the NPCC; –

25% in Midwestern states.

California has 9% coal-based electricity; the three Midwestern

states have 54%

[35]

Japan 2030 Complete

LCA

−25.4% of the BAU scenario Infrastructure development, high carbon tax, and high oil price [71]

2050 TTW and

WTW

−86.9% of TTW and −69.6% of WTW

compared with the baseline scenario

Market share of BEVs accounts for 99.5% of new vehicle sales in

2050

[72]

Greece

(Athens City)

2020 WTW −21% compared with baseline scenario 50% gasoline, 20% diesel, 10% electricity, 10% biodiesel, and 10%

natural gas in the energy mix

[73]

Brail 2030 WTW −30% emission reduction Over 70% of electricity by hydroelectric power [74]

China 2030 WTW − (3.0~16.2)% compared with BAU Projected EV penetration Present

study− (3.8%~20.6)% compared with BAU Projected EV penetration with 55% coal-based electricity

−(5.8%~17.1)% compared with BAU Projected EV penetration, 55% coal-based electricity, and EV

technological improvement

https://doi.org/10.1371/journal.pone.0222448.t006
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decarbonization of the electricity generation sector can be achieved by reducing coal-fired

electricity generation to 55% in 2030, then total transport GHG emissions will be further

reduced by 0.8%–4.4%. Fourth, under the combined technological improvement scenarios of

EVs and ICEVs, GHG emission reduction will be approximately 5.8%–17.1% by 2030. This

study shows that the replacement of ICEVs with EVs could generate a considerable effect on

transport oil product consumption and on the reduction of GHG emissions. This scenario is

possible despite the uncertainty in the influence intensity, which depends on the penetration

rate of EVs, the decarbonization of the power sector, and the technological improvement of

EVs and ICEVs.

EVs are satisfactory alternatives to ICEVs, especially in cities with serious air pollution

issues. EVs should be actively and rationally developed to achieve ambitious development sce-

narios. The state must formulate policies to develop the related industrial chain of new EVs

and strengthen the construction of relevant infrastructures given their cost disadvantage. Local

policymakers can develop incentives for EVs by issuing highly strict emission standards, pro-

viding parking and toll fee discounts for EVs, and giving traffic priority for EVs. Policies that

encourage the generation of considerably clean power in the electricity mix should also be

enhanced. Moreover, policies for the electricity market and EVs should be combined. Policy-

makers should consider the additional demand of electricity from EVs and plan capacity

expansions of renewable electricity to meet this need. If the charging of EVs is properly

designed, then they may serve as distributed electricity storage capacities, which is beneficial

for the balance of electricity supply–demand. Additional policies should focus on incentives

for off-peak and time-division charging of EVs, which could further reduce the GHG emis-

sions of electricity.

The results show that GHG emissions will be reduced by 14.0%–17.1% in 2030 if only

the technological improvement of EVs is considered and that of ICEVs is ignored. However,

under the combined technological improvement scenarios of EVs and ICEVs, the GHG emis-

sion reduction effect of EVs will be reduced by 35%–43% owing to the projected technological

improvement of ICEVs. The results highlight the importance of the technological improve-

ment of EVs to maximize GHG emission reductions. EVs will undergo substantial technologi-

cal improvement in the long term and hold a promising future in terms of energy-saving

efficiency and emission reduction. Nevertheless, room for ICEV technological improvement

remains limited. The gap in GHG emissions between EVs and ICEVs is expected to widen.

Thus, increasing investments in EV scientific research and guiding enterprises and research

institutions to participate in the research and development of key technologies are necessary to

increase the popularity of EVs.
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