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Abstract

In recent years, several high-dimensional, accurate, and effective classification methods

have been proposed for the automatic discrimination of the subject between Alzheimer’s

disease (AD) or its prodromal phase {i.e., mild cognitive impairment (MCI)} and healthy con-

trol (HC) persons based on T1-weighted structural magnetic resonance imaging (sMRI).

These methods emphasis only on using the individual feature from sMRI images for the

classification of AD, MCI, and HC subjects and their achieved classification accuracy is low.

However, latest multimodal studies have shown that combining multiple features from differ-

ent sMRI analysis techniques can improve the classification accuracy for these types of sub-

jects. In this paper, we propose a novel classification technique that precisely distinguishes

individuals with AD, aAD (stable MCI, who had not converted to AD within a 36-month time

period), and mAD (MCI caused by AD, who had converted to AD within a 36-month time

period) from HC individuals. The proposed method combines three different features

extracted from structural MR (sMR) images using voxel-based morphometry (VBM), hippo-

campal volume (HV), and cortical and subcortical segmented region techniques. Three clas-

sification experiments were performed (AD vs. HC, aAD vs. mAD, and HC vs. mAD) with

326 subjects (171 elderly controls and 81 AD, 35 aAD, and 39 mAD patients). For the devel-

opment and validation of the proposed classification method, we acquired the sMR images

from the dataset of the National Research Center for Dementia (NRCD). A five-fold cross-

validation technique was applied to find the optimal hyperparameters for the classifier, and

the classification performance was compared by using three well-known classifiers: K-near-

est neighbor, support vector machine, and random forest. Overall, the proposed model

with the SVM classifier achieved the best performance on the NRCD dataset. For the indi-

vidual feature, the VBM technique provided the best results followed by the HV technique.
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However, the use of combined features improved the classification accuracy and predictive

power for the early classification of AD compared to the use of individual features. The most

stable and reliable classification results were achieved when combining all extracted fea-

tures. Additionally, to analyze the efficiency of the proposed model, we used the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) dataset to compare the classification performance

of the proposed model with those of several state-of-the-art methods.

Introduction

Alzheimer’s disease (AD) is a growing or progressive neurodegenerative brain disorder dis-

ease. AD is considered to be the most common type of dementia (mental illness), accounting

for 50%–80% of dementia cases. It is a complex disease categorized by the accumulation of β-

amyloid A(β) plaques and neurofibrillary tangles [1], which are composed of tau amyloid

fibrils linked to synapse dysfunction loss and a progressive neurodegeneration, leading to

memory loss and other brain-related cognitive problems. The pathophysiological changes that

cause cognitive, functional and behavioral impairment in AD patients are thought to begin

several years or even decades prior to the beginning of clinical symptoms. AD is typically diag-

nosed in people above 65 years of age, and it has been stated that the number of the AD

patients tends to double every 5 years after the patient age is over 65 years [2]. It is believed

that one in every 85 peoples will be affected by the AD disease by the year 2050 [3]. The average

life expectancy of AD convalescent patients varies between 3 and 10 years, depending on the

age when they were diagnosed with AD. The median lifespan is as long as 7 to 10 years for AD

patients whose conditions were identified when they were in their 60s or early 70s. This num-

ber decreases to 3 years or less for AD patients who were diagnosed when they were in their

90s [4]. Recently, more specific research criteria have been proposed for the early and accurate

diagnosis of AD in the prodromal stage or mild cognitive impairment (MCI) of the disease [5],

which is of great importance for the timely treatment and possible delay of the disease.

MCI is often used to refer to patients with objective cognitive impairment who have normal

capabilities for the activities of daily living and do not meet the criteria for cognitive decline or

dementia [6,7]. Generally, two types of clinical changes are observed in MCI patients over

time. First, some MCI subjects will develop AD eventually (i.e., MCI caused by AD (mAD) or

MCI converters (MCIc)), whereas others will never develop AD (i.e., stable MCI (aAD) or

MCI non-converters). About 35% of MCI patients progress to AD or dementia within a 3-year

follow-up period, with a yearly conversion rate of 5%–10%. Predictors of this conversion

include whether the patients are carriers of ε4 alleles of the apolipoprotein E (APOE) gene,

brain atrophy, clinical severity, patterns of cerebrospinal fluid (CSF) biomarkers, cerebral glu-

cose metabolism, and A(β) deposition [8,9]. aAD and mAD subjects are distinguished by the

severity of amnestic impairment with aAD requiring memory loss test performance greater

than 1.5 SD (or greater below the age-adjusted mean) below standardized norms on memory

tests and mAD requiring memory loss test performance between 1.0 and 1.5 SD below stan-

dardized norms [10,11]. aAD patients have milder verbal memory impairment than mAD and

are thought to represent a very early stage of the disease that may be optimal for disease modi-

fication treatments. These subtypes of MCI difference may have implications for differences

in biomarker abnormalities, likely clinical course, and treatment response in patients with cog-

nitive impairment [10]. Because of the heterogeneity of the clinical presentation and underly-

ing etiologies within the MCI group, there is no documented treatment for MCI subjects.
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Furthermore, the clinical course of MCI is more heterogeneous than distinctive. However,

there are many causes of MCI and not all are related to progressive neurodegenerative disor-

ders. Therefore, diagnosing the underlying etiology is very challenging for individuals with

cognitive impairment and there is a need for more accurate diagnostic tests to identify MCI

patients in whom AD may be the underlying cause. As early as possible this diagnosis methods

should be performed in the course of the disease [12]. This problem is a qualitative prognosis

problem that can be solved via the classification between aAD and mAD. Because AD is a pro-

gressive neurodegenerative disease, there are continuous changes between previously mea-

sured and current clinical scores (e.g., AD Assessment Scale Cognitive Subscale (ADAS-Cog)

and Mini-Mental State Examination (MMSE)). Therefore, it is important to predict future

clinical scores based on data from earlier time points, which is particularly helpful for monitor-

ing disease progression. However, the classification between aAD and mAD is challenging and

benchmark results in [12,13] showed low accuracy which, according to the author, was likely

caused by the heterogeneity of cortical thinning patterns in aAD subjects. We can overcome

this limitation by increasing the number of training samples to cover all complex patterns or

by choosing only desirable features to reflect the differences between these two groups.

Over the past few years, many high-dimensional pattern-based classification methods have

been developed for AD and MCI. These methods have largely focused on the individual

modalities of biomarkers for the diagnosis of AD or MCI (e.g., structural brain atrophy can be

measured by structural magnetic resonance imaging (sMRI) [13–17], metabolic brain alter-

ations can be measured by fluorodeoxyglucose positron emission tomography (FDG-PET)

imaging [18,19], and pathological amyloid depositions can be measured from CSF [20,21]),

which may affect the overall classification performance because different modalities of bio-

markers provide different complementary information, which are useful for the diagnosis of

AD [20–23]. All the above criteria are based on clinical scores of early episodic memory

impairment with the presence of at least one extra supportive feature, including abnormal

sMRI results or abnormal CSF amyloid and tau biomarkers. Previous experiments have shown

that the use of multiple biomarkers yields promising results for the early diagnosis of AD or

MCI. Moreover, these studies have combined sMRI-based markers with biomarkers based on

FDG-PET [22,24], CSF [21,23,25], APOE [26] genotype, or combinations of these biomarkers

[27,28] to achieve promising results. However, the availability of all four biomarkers (CSF,

PET, sMRI, and APOE genotype) is limited in clinical practice because obtaining these mea-

surements is laborious for both patients and doctors. Moreover, measurements obtained from

CSF and FDG-PET are considered an invasive [29,30]. Recent studies focusing only on sMRI

modality have achieved a high classification accuracy of 80%-99% in identifying healthy con-

trols (HC) from AD subjects [14–16,29,31–33] and 70%-90% when predicting aAD vs. mAD

[13,29]. Methods in which features are extracted from sMR images for existing classification

approaches can be divided into three groups: voxel-based morphometry [34–36], cortical

thickness [27–30,35–39], and region of interest (ROI) (hippocampal volume) [40–43] meth-

ods. It has been shown that the most effective features for AD or MCI classification are

extracted from ROIs around the hippocampus, entorhinal cortex, parahippocampal gyrus,

amygdala, etc. [13,44–46]. This type of ROI features can improve the classification accuracy,

and it also helps to reduce the number of false positive diagnoses.

In this study, we used images from the National Research Center for Dementia (NRCD)

dataset to achieve the goals of our proposed method, and also to classify AD with other groups.

Here, three different feature extracted from sMRI images were combined into one as stated

above, namely, voxel-based morphometry (VBM), hippocampal volume (HV), and cortical

and subcortical segmented region (volume, thickness, meancurve, Foldcurv, Curvind, and

Gauscurv) (CSC) methods, for the early classification of AD or MCI. This paper shows the
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benefit of combining all three features into one for the early diagnosis of AD or MCI patients.

We used all 326 subjects and their corresponding T1-weighted 3-T MR images from the

NRCD dataset to differentiate AD, MCI, and HC individuals. To analyze the impact of com-

bined features compared to that of individual features on the given classification problems, we

used three different types of classifier, i.e., K-nearest neighbor (KNN), random forest (RF),

and support vector machine (SVM), to evaluate the area under the curve of the receiver operat-

ing characteristic curve (AUC-ROC), classification accuracy (ACC), sensitivity (SEN), speci-

ficity (SPE), precision (PRE), and F1-score (F1) in each experiment. We also measured the

Cohen’s kappa statistic and McNemar’s chi-squared test value for each classification group.

These were the statistical analysis tools. The obtained experimental result showed that the use

of combined features from the VBM, HV and CSC techniques yielded superior performance

in terms of AD or MCI classification compared to the use of individual features.

Materials and methods

Ethics statement

In this study, all procedures performed involving human contributors were in accordance

with the latest Declaration of Helsinki. Subjects were prospectively recruited from two centers:

Chonnam National University Hospital, and Chosun University Hospital including the

National Research Center for Dementia in Gwangju, Korea. All patients provided written

informed consent at the time of inclusion in the cohort for use of data, samples, and images

before the data collection. In the case of AD patients with the inability of consent, the family

member of subjects gave consent before the participation. Assessments or psychological tests

were not used to determine whether a patient were able to provide written informed consent.

The consent procedure and data acquisition were approved by the Institutional Review Board

(IRB number 2013-12-018-070) of Chonnam National University Hospital, and Chosun Uni-

versity Hospital, Gwangju, South Korea.

Subjects

In this study, the dataset was acquired from a pool of persons registered at the National

Research Center for Dementia in Gwangju, Korea, from January 2014 to March 2018. All sub-

jects were examined by skilled neurologists and received a full dementia screening test, which

included past history, neurological examination, laboratory and neuropsychological tests, and

brain MRI. All subjects were examined through clinical interview, which included an assess-

ment of the Clinical Dementia Rating (CDR) [47]. All HC subjects received a CDR score of 0.

This group had a normal range of cognitive function and good general health with no sign of

brain atrophy changes on sMRI scans, which were analyzed with the Analyze 11.0 software on

an iMac system running OS X Server. All aAD (stable MCI that did not convert to AD within

a 36-month time period) subjects received a CDR score of 1, and their neuropsychological

assessment z-scores were above -1.5 according to education-, age-, and gender-specific norms.

They had good health overall with no widespread multiple lacunae or other focal brain lesions

or brain atrophy other than supposed incipient AD on MRI scans. All the mAD (MCI that

converted to clinical AD within a 36-month time period) subjects met [47] and received a

CDR score of 2. Their neuropsychological assessment z-scores were below -1.5 on at least one

of the memory assessments according to the education-, age-, and gender-specific norms. We

did not consider MCI patients who had been followed for less than 36 months and had not

converted within this time frame. All the AD subjects received a CDR score of 3. This group

had an affected cognitive function, had severe memory loss, and also showed evidence of brain

atrophy changes in sMRI scans. The diagnosis of AD, aAD, mAD, and HC patients was made
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according to the clinical criteria proposed by the NIA-AA or IWG-2 on AD, MCI and HC [5–

7,9]. The patients were also unable to make judgments or solve given problems. The exclusion

criteria were (1) serve vision or hearing loss; (2) illiteracy; (3) sign of focal brain lesions on

sMRI including multiple lacunae and WM hyperintensity lesions of grade 2 or more according

to the Fazeka scale; (4) any other type of dementia; (5) any significant medical, neurological, or

psychiatric disorders that could disturb cognitive function; and (6) present use of psychoactive

medication. More detailed information about the participants had been reported before in

[48,49]. The subjects were between 49 and 87 years of age, spoke Korean, and had been studied

sufficiently to give a reasonable evaluation of functionality. As [5,6,50,51] suggest that for aAD

subject group the objective memory loss measured by education score-adjusted on Wechsler

Memory Scale Logical Memory II subscale: 9–11 for 16 or more years of education, 5–9 for

8–15 years of education, and 3–6 for 0–7 years of education. Whereas for the mAD subject

group the objective memory loss measured by education score-adjusted on Wechsler Memory

Scale Logical Memory II subscale:� 8 for 16 or more years of education,� 4 for 8–15 years of

education, and� 2 for 0–7 years of education. Therefore, we have followed above-mentioned

criteria to give an educational score to the patients. Here, means and standard deviations were

calculated to describe continuous variables. Table 1 shows the demographic information for

the 326 subjects. We selected all the patients for whom processed images were available. A

total of 326 subjects were selected with 81 subjects belonging to the AD group (42 females, 39

males; age ± SD = 71.86 ± 7.09 years, education level = 7.34 ± 4.88 years, range = 56–83 years;

range = 0–18 years), 171 subjects belonging to the HC group (88 females, 83 males; age ±
SD = 71.66 ± 5.43 years, range = 60–85 years; education level = 9.16 ± 5.54 years, range = 0–22

years), 39 subjects belonging to the mAD group (14 females, 25 males; age ± SD = 73.23 ± 7.09

years, range = 49–87 years; education level = 8.20 ± 5.19 years, range = 0–18 years), and 35

subjects belonging to the aAD group (20 females, 15 males; age ± SD = 72.74 ± 4.82 years,

range = 61–83 years; education level = 7.88 ± 6.30 years, range = 0–18 years).

From Table 1 we can see that aAD (stable MCI) patients ages were between 61–83 and their

education score was ranged from 7.88� 6.30 0–18], likewise, mAD (who had converted to AD

within a 36-month time period) patients ages were between 49–87 and their education score

was ranged from 8.20� 5.19 0–18], which show that mAD subject groups were more educated

then aAD subject groups and mAD subjects were young compared to aAD subject groups. Stu-

dent’s unpaired t-tests were applied to decide whether there were statistically significant differ-

ences between the demographics and the clinical characteristics, and a standard p-value (0.05)

was used as a significance threshold level. No significant differences were found in any group.

Except for the mAD group, all groups included a large number of female subjects. Compared

to the other groups, the mAD group had older subjects. As can be seen from Table 1, the AD

group had a much lower level of education compared to that of other groups. To obtain unbi-

ased estimations of the performance, we randomly split the dataset into two groups: a training

Table 1. Subject demographic information (from the NRCD dataset).

Diagnostics Number of Subjects Age

Mean ± SD (years)

Gender Education

Mean ± SD (years)F M

AD 81 71.96� 7.08 [56–83] 42 39 7.34� 4.86 [0–18]

aAD 35 72.72� 4.82 [61–83] 20 15 7.88� 6.30 0–18]

mAD 39 73.24� 7.44 [49–87] 14 25 8.20� 5.19 0–18]

HC 171 71.66� 5.43 [60–85] 88 83 9.16� 5.54 0–18]

�Values are shown as a mean ± standard deviation [range].

https://doi.org/10.1371/journal.pone.0222446.t001
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dataset and a testing dataset, at a ratio of 70:30, respectively. The classifiers were then trained

on the training dataset, and the measurements of the diagnostic AUC, ACC, SEN, SPE, PRE,

F1 and Cohen’s kappa were calculated independently using the testing data.

sMR image acquisition

The images used in this study were T1-weighted sMR images, which were acquired using a 3D

magnetization-prepared rapid the gradient-echo sequence with a resolution of (1 × 1 × 1) mil-

limeter voxel size. The 3-T T1-weighted axial images were obtained with the following parame-

ters: slice thickness, 5.0 mm; interslice thickness, 1 mm; repetition time, 2000 ms; echo time,

20 ms; flip angle, 90˚; matrix size, 324×244 pixels; and field of view, 183×220 mm2.

Image analysis

An image preprocessing step was applied to each sMR image. It is well known that strong bias

fields can cause serious mislabeling of voxel tissue types, which can compromise the accuracy

of the techniques that rely heavily on tissue density (e.g., registration) and, in particular, on

gray and white matter contrasts. Therefore, to minimize this effect, we applied an N4 bias field

correction method using the Advanced Normalization Tools (ANTs) [52] toolbox to correct

the inhomogeneity artifacts in each image. Then, feature extraction process and a feature selec-

tion (selection of high-level features) process were applied. These features contain the most

essential information for the early classification of AD or MCI. In this study, a 3D sMR input

image was fed into a feature extraction toolbox to extract the clinical features (volume, thick-

ness, etc.). Fig 1 shows a systematic block diagram for the proposed method. In this experi-

ment, we used two different types of toolboxes for the extraction of features: Statistical

Parametric Mapping (SPM version 12) and Freesurfer (version 6.0). Lastly, the extracted fea-

tures were passed to the classifier to measure the classification performance between different

groups.

Feature extraction

It is well known that ROI [45] features are the most effective features for the classification of

AD or MCI. In the proposed technique, we used SPM12 and Freesurfer to extract three well-

known features (VBM, CSC, and HV) from each sMR image. Both these tools are fully auto-

mated in nature. They were applied on the 3-T T1-weighted sMR images, which were acquired

from the NRCD dataset.

Voxel-based morphometry. VBM is a neuroimaging analysis method that allows

researchers to investigate focal differences in brain anatomy using statistical tools. Morphome-

try analysis has become an important tool for performing quantitative measurements and

identifying structural differences throughout the brain. The significance of the VBM method is

that it is not partial to particular subjects and provides an unbiased and comprehensive score

that represent the anatomical differences between groups throughout the brain [53]. The MRI

data for VBM are provided as 3D volumetric T1-weighted images. VBM essentially uses statis-

tical tests on all voxels in the brain images to identify the volume differences between groups.

For example, to recognize the differences in the patterns of the regional anatomy between two

groups of subjects, one can perform a series of t-tests on each voxel in each image. Addition-

ally, sMRI measurements of brain atrophy are promising biomarkers for tracking disease pro-

gression in AD patients. Recently, VBM has been applied in a number of studies [54–56] for

the detection of AD. It can be used to study the volumetric atrophy of the gray matter (GM)

that exists in the neocortex of the brain, which can be used to distinguish AD patients from

HC individuals. There are many toolboxes available for performing VBM (SPM12, FSL, 3D
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Slicer, etc.); however, we select SPM12 and its extension called as Computational Anatomy

Toolbox (CAT version 12), which provides computational anatomy functions. These tools can

be downloaded from https://www.fil.ion.ucl.ac.uk/spm12/ and http://www.neuro.uni-jena.de/

cat/, respectively. CAT12 provides diverse morphometric methods, such as VBM, surface-

based morphometry, deformation-based morphometry, and ROI- or label-based morphome-

try. We chose the CAT12 VBM because it uses SPM12 segmentation by default. First, the

sMRI data were anatomically standardized using the 12-parameter affine transformation pro-

vided by the SPM template to compensate for the differences in brain size. We chose the East

Asian brains template and left all other parameters to their default settings. The sMR images

were then segmented into GM, white matter (WM), and CSF images by using a unified tissue

Fig 1. Block diagram of the proposed method. (a) VBM segmentation of GM, WM, and CSF; (b) cortical, subcortical, and Destrieux parcellation atlas; (c) (lh) and (rh)

hippocampus segmentation; (d) combined features; (e) cross validation (CV); (f) classifier; and (g) diagnosis output.

https://doi.org/10.1371/journal.pone.0222446.g001
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segmentation technique after image intensity non uniformity correction was performed. The

obtained linearly transformed and segmented images were then nonlinearly transformed

using diffeomorphic anatomical registration (DARTEL) techniques and modulated to create a

modified template for DARTEL based on the MNI152 template [57], followed by smoothing

using an 8 mm full breadth at half maximum kernel. The final step consists of voxel-wise statis-

tical tests. To construct a statistical parametric map, we computed contrast values based on a

general linear model estimated regression parameters. This technique implements a two-sam-

ple t-test approach to determine whether there are significant regional density differences

between two groups of GM images. We obtained regional information values representing sig-

nificant density differences between GM images after performing a false discovery rate (FDR)

and a family-wise error rate correction. Based on this information, cluster values can be

derived to create ROI binary masks, which were later used to acquire GM volumes from GM

images for use as morphometric features. Fig 2 shows the segmented brain tissue images gen-

erated using the CAT12 VBM methods.

Cortical and subcortical volumetric features. The 3D volumes from all 326 subjects [58–

60] (freely available online at http://surfer.nmr.mgh.harvard.edu/, which provides measurable

gray-level volume data for various brain structures. For preprocessing using Freesurfer, high-

quality T1-weighted MRI data, such as Siemens MPRAGE or General Electric spoiled gradient

recalled sequences with resolutions of approximately 1 mm3, are needed. We ran Freesurfer

without user intervention (using the command “recon-all–I file-name.nii–all”) because this is

the process mode that would be used in a preprogrammed pipeline for processing patient data.

Cortical and subcortical volumetric features were computed using the cross-sectional auto-

mated Freesurfer routine with the default parameters. Bilateral ROIs were joined during the

process. In the cortical surface stream, Freesurfer constructs a model of the boundary between

WM and cortical GM, as well as between pial surfaces. Once these surface values are known,

an array of anatomical calculations is enabled, including CTH, folding, curvature, surface area,

and surface normal calculations, for each part of the cortex. The cerebral cortex can be alien-

ated into four sections referred to as lobes. Measurements for all four lobes are extracted by

Freesurfer. In this study, we adopted the Desikan-Killiany atlas, which parcellates the entire

cortex into 68 labeled regions for each hemisphere. To reduce the size of each feature vector,

we combined the cortex regions into four lobes (discussed above) and a cingulate cortex

Fig 2. CAT12 VBM images showing segmented brain tissue: (a) original image, (b) normalized image with template, and (c) brain tissue segmented image.

https://doi.org/10.1371/journal.pone.0222446.g002
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according to the specifications on the Freesurfer website1. In this automated subcortical seg-

mentation process, each voxel (in the form of normalized brain volume) is assigned one of 40

labels representing 40 subcortical regions (e.g., amygdala, cerebellum, lateral, and thalamus). It

can take up to 11–14 h to complete the subcortical volume segmentation for one subject.

Table 2 lists the features extracted from sMRI images using the Freesurfer toolbox.

Hippocampus volume. Segmentation of the HV was performed using Freesurfer [61,62].

This study was inspired by the fact that HV is the most widely used sMRI biomarker for the

early detection of AD [63]. Additionally, because Freesurfer segments many ROIs for each sub-

ject, it is not restricted to a specific ROI. The left and right hippocampus were both segmented

using Freesurfer. This technique estimates the probability that each voxel belongs to a certain

structure based on a priori knowledge regarding spatial relationships, which is acquired by

using a training set. It uses the differences in voxel intensity to locate and parcellate subcortical

structures and to perform affine registration in the Talairach space. The Freesurfer processing

stages are detailed in [59], and Fig 3 shows the deep segmented regions of the hippocampus.

In Fig 3, CA1 is the first region along the hippocampal path. A major output path originates

from this region and travels to the fifth layer of the entorhinal cortex. From the granule cell of

mossy fibers, the CA3 region receives inputs in the dentate gyrus. It also receives inputs from

cell in the entorhinal cortex by following the perforant path. The CA3b region [64] occupies

the central region between the fimbria and the fornix connection. The CA3c region [64] is

located near the dentate and eventually inserts itself into the hilus. Much of the synchronous

fragment activity that is associated with interictal epileptiform movement appears to be gener-

ated in the CA3 region. The CA4 region is often referred to as a hilar region when considering

portions of the dentate gyrus. Unlike the pyramidal neurons in the CA1 and CA3 regions, the

neurons in the CA4 region contain mossy cells that receive inputs primarily for the dentate

gyrus from granule cells in the form of mossy fibers [61].

Feature selection

After the feature extraction stage, a normalization process is performed, where all features are

normalized to zero mean and unit variance to reduce data redundancy and improve data

Table 2. Overview of features extracted from sMRI images using the Freesurfer toolbox.

sMRI biomarkers Selected ROI Toolbox

Cortical Parcellation1 Frontal lobe Freesurfer

Parietal lobe

Temporal lobe

Occipital lobe

Cingulate lobe

Subcortical volumetric features Amygdala Freesurfer

Lateral

Choroid-plexus

Thalamus

Caudate nucleus

Hippocampus

Putamen

Entire brain

Hippocampus subfield Left hippocampus hemisphere Freesurfer

Right hippocampus hemisphere

1https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation

https://doi.org/10.1371/journal.pone.0222446.t002
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integrity between features, as shown in Fig 1. Specifically, given a data matrix X, where the

rows represent the subjects and the columns represent the features, the normalized matrix

Xnorm with a elements x(i,j) is calculated as

Xnorm ¼
xði;jÞ � meanðXjÞ

stdðXjÞ
; ð1Þ

where Xj is the jth column of matrix X. Next, the principal component analysis (PCA) [65]

method was applied to achieve dimensionality reduction. PCA simplifies complex high-

dimensional data while retaining important trends and patterns. It is a feature selection pro-

cess that creates new features from a linear combination of initial features. When performing

PCA, the main goal is to find an orthonormal set of axes that point in the direction of the max-

imum covariance matrix for the data. PCA maps d-dimensional space data into a new k-

dimensional subspace, where k< d. The new k variables are referred to as principal compo-

nents (PCs), where each PC has a maximum variance reflecting the variance that was

accounted for in all preceding components. PCA is an unsupervised learning method that

Fig 3. Deep (left and right) segmented regions of the hippocampus from the Freesurfer free-view application.

https://doi.org/10.1371/journal.pone.0222446.g003
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provides a very powerful and reliable tool for data analysis. As mentioned above, once specific

patterns in the data are identified, the data can be compressed into lower dimensions. Here,

the number of PCs was determined by maintaining a variance level greater than 99%. From

Fig 4, it can be seen that the first 61 PCs preserved 99% of the total variance. Therefore, the

first 61 features were extracted as PCs for AD vs. HC classification. The same procedure was

used for the other classification problems.

Classification methods

In this study, we used three different popular classifiers to evaluate classification performance

based on single and combined features.

Support vector machine. SVM is a discriminative classifier that is formally defined by a

separating hyperplane [13,23,29]. In other words, it is a supervised learning method that uses a

training dataset to find an optimal separating hyperplane in an n-dimensional space. The opti-

mal hyperplane is one that best separates the two target subject groups. Test subjects are then

categorized according to their comparative position, which defines a hyperplane in the n-

dimensional feature space. In our study, we used the LIBSVM library, which is equipped with

Fig 4. Number of principal components (PCs) vs. No. of variance for AD vs. HC group comparison.

https://doi.org/10.1371/journal.pone.0222446.g004
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a radial basis function (RBF) kernel. An RBF kernel performs better than a linear kernel for a

small number of features. A regularization constant C and a set of kernel hyperparameters γ
are the hyperparameters required by the SVM. These parameters are optimized by using a

cross-validation (CV) method.

Random forest. The RF algorithm is a supervised method that uses an ensemble learning

technique for classification [66,67]. It operates by structuring a multitude of decision trees dur-

ing training and outputting the class that represents the average output of the individual trees

during testing. The RF algorithm is typically implemented using the methodology of classifica-

tion or regression trees (CARTs), where a binary splitting operation recursively partitions

trees into homogenous or near-homogenous terminal nodes. A desirable binary split pushes

data from a parent node to its child nodes such that the homogeneity in the child nodes is bet-

ter than that in the parent node. An RF is a group of 100 to 1000 of trees, where each tree is

constructed by using bootstrapped samples from the original data. RF trees are different from

traditional CARTs because they are constructed non-deterministically according to a two-

stage randomization method. The first randomization method is implemented by growing

trees using bootstrapped samples from the original data, and the second layer of randomiza-

tion is introduced at the node level when growing the tree. Rather than splitting a tree node

using all variables (for each node in each tree), RF selects a random subset of variables and

only those variables are used as predictors to determine the best split for the node. The purpose

of this twostep randomization technique is to de-correlate the nodes so that forest ensemble

will have low variance and manifest the bagging phenomenon. In our study, we used an RF

classifier from the Scikit-learn 0.19.2 Python library.

K-Nearest neighbor. KNN is a simple algorithm that belongs to the family of instance-

based, competitive learning, and lazy learning algorithms [68,69]. It stores all available labels

and classifies new labels according to a similarity measure. For real-valued data, Euclidean dis-

tance can be used as a similarity measure. For other types of data, such as categorical or binary

data, Hamming distance can be used. KNN makes predictions using a training dataset directly.

Predictions are made for a new sample x by searching through the entire training dataset for

the K most similar samples (neighbors) and taking the most common output label for those K
samples as the label for x. In other words, each instance votes for its class and the class with the

most votes is taken as the prediction. Class probabilities can be calculated as the normalized

frequencies of the samples that belong to each class in the set of the K most similar samples.

The Scikit-learn 0.19.2 KNN Python library was used in our experiments.

Statistical analysis

For each group (AD vs. HC, aAD vs. mAD, and HC vs. mAD), we calculated the Cohen’s

kappa [70] statistical value, which measures the inter-annotator (rater) agreement for these

classification groups. It is a metric unit that compares an experiential accuracy with an

expected accuracy (random chance). Cohen’s kappa statistic is used not only to evaluate an

individual classifier but also to evaluate classifiers between themselves. Moreover, it considers

random chance (agreement between random classifiers), which usually means that it is less

deceptive than simply using the accuracy as a metric unit. Classifiers built and assessed on the

datasets of a different classes of distributions can be compared more consistently through the

kappa statistic (as opposed to merely using the accuracy) because of the scaling technique that

is related to the expected accuracy. Cohen’s kappa statistic is also a better indicator of how well

a classifier performs across all the instances because a simple percent of accuracy can be tilted

if the class distribution is equally skewed. It is defined as

k ¼ ðp0 � peÞ=ð1 � peÞ ð2Þ
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where p0 is the empirical probability of agreement (or observed accuracy) on the label assigned

to any sample and pe is the expected agreement (expected accuracy) when both annotators

assign labels randomly. pe is estimated using a per-annotator empirical prior to the class labels.

The kappa statistic value lies between -1 and 1. The maximum value means a complete agree-

ment, whereas zero or lower means worse or chance agreement.

Experiments and results

In this section, the experiment results obtained through the combined and single features are

presented and shown in the tables below. In this study, four class of data were used: AD, aAD,

mAD, and HC. The idea of the proposed technique is to combine three extracted features,

namely, VBM, CSC, and HV, from SPM12 and Freesurfer to differentiate between AD and

other groups. Moreover, we validated our proposed method on three different types of classifi-

cation problem, i.e., three binary class problems (AD vs. HC, aAD vs. mAD, and HC vs. mAD)

as shown in Fig 1. Here, we used three individual features (VBM, CSC, and HV) and a combi-

nation of them to classify the three different types of the classification problem. For these

cases, we used the NRCD dataset, which is a private dataset. First, we extracted the voxel-based

features from each sMR image using SPM12 and then we used Freesurfer to extract the corti-

cal, subcortical, and hippocampus features from each sMR image. Here, we used an early

fusion scheme to concatenate the three features (VBM, CSC, and HV) into one. It is a simple

method that combines the different modalities of features into a single feature vector, and then

we train a classifier on that single feature vector. Moreover, we applied a feature selection tech-

nique using PCA, which will select the effective features from the original features and send

these selected features to a classifier, to measure the performance of each classification group.

In this study, we used three different types of classifier: KNN, SVM, and RF. To obtain unbi-

ased estimates of the performance, we randomly split the set of participants into two groups a

training dataset and a testing dataset, at a ratio of 70:30, respectively. In the training dataset, a

five-fold stratified cross-validation technique was applied to obtain the optimal hyperpara-

meter values for the cost function, C, and γ for SVM; Max_features, Criterion, Max_depth,

and optimal hyperparameter values for RF; and n_neighbors optimal hypermeter value for

KNN. These optimal hyperparameter values were calculated by using a grid-search CV library

function from Scikit-learn 0.19.2 and also by applying a five-fold stratified cross-validation

method on the training set. For each method, the obtained optimized hyperparameters value

was then used to train the classifier using the training data, and then the performance of each

resulting classifier was evaluated using 30% of the testing dataset. In this way, we achieved

unbiased estimates for each classification group. To evaluate whether each classification group

had an inter-annotator (rater) agreement or not, we calculated the Cohen’s kappa statistic

index. Moreover, we plotted the receiver operating characteristic (ROC) curves then calculated

the area under the curve value for each classification problem. The AUC was invariant to the

class distribution, which was an advantage since the number of control subjects was larger

than the number of AD patients. We also calculated the classification accuracy, sensitivity, pre-

cision, specificity, and F1 values for the classification groups. We repeated the cross-validation

procedure five times to obtain a more reliable cross-validation error and extracted the mean

AUC value for each classification group.

Our experiments were conducted in two stages. In the first stage, only individual features

were selected, such as VBM-extracted ROI volumes, CSC-extracted feature volumes, and HV-

extracted features. These features were then fed into the classifiers one at a time to measure the

individual feature performance. In the second stage, combinations of all features (also called

single feature vector) were applied to individual classifiers to measure the classification
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performance. Moreover, a 95% confidence interval for ACC was estimated according to multi-

ple classification runs. To evaluate whether each technique performed significantly better than

a random classifier, we used McNemar’s chi-squared test with a significance threshold of 0.05,

which is a typical benchmark value. This test analyzes the differences between proportions in

paired observations. It was used to assess the differences between the proportions of correctly

classified subjects (i.e., ACC). The corresponding contingency chart is provided in Table 3.

We also used McNemar’s chi-squared test to evaluate the differences between the proportions

of incorrectly classified subjects. All experiments were conducted on a computer running

Ubuntu Linux version 16.04 with Python version 3.6.

AD vs. HC

We calculated the statistical values that represent the significance levels of clusters in the acti-

vation map as shown in Table 4 after comparing the results of the statistical two-sample t-tests

for the AD vs. HC group. Table 4 specifies the main affected area distributed in the AD vs. HC

group, and an achieved voxel clusters with detailed information including its peak coordinates

in the form of Montreal Neurological Institute Space, cluster-level in p-value, and the peak

intensity in T-value of each cluster, which is given below. We used an uncorrelated threshold

value of Puncorrected� 0.001 at the voxel level, FDR value of PFDR = 0.05, and an FWER value of

PFWER = 0.05 at the cluster level to perform a bias correction for multiple comparisons. An

ROI binary mask was created from the five selected clusters and later GM volume was ex-

tracted from the two groups of images (AD and HC). The minimum cluster size in this study

was kept as 200 voxels because while applying two-sample t-test in this group, we find a large

number of differences in their GM region while comparing them. Here, each cluster contains

more than 200 adjacency voxels that show the significant variation of those diffusion parame-

ters. The selected significant voxels are displayed with their T-values. The ROI was defined by

comprising the suprathreshold intensity voxels. Moreover, the integral of suprathreshold

intensities within a cluster naturally combines both signal extent and signal intensity. Hence,

from Table 4, we can say that for AD vs HC group, both suprathreshold intensities (positive

and negative) has shown the significant affected region while overlapping AD subject images

over HC patient images for extracting GM difference region as a cluster which was shown

by their T-value. The ascending peak intensity (T-value) is shown from the darkness to

brightness.

Table 3. Contingency table for a McNemar’s test.

Group Group 2: Correctly classified Group2: Misclassified

Group 1: Correctly Classified AA BB

Group 1: Misclassified CC DD

https://doi.org/10.1371/journal.pone.0222446.t003

Table 4. Cluster information (AD vs. HC).

Cluster Number of voxels Peak MNI coordinates Peak MNI coordinate region Peak intensity

(T-Value)X Y Z

Cluster 1 2266 -25.5 -16.5 -35.5 Hippocampus_L 14.3469

Cluster 2 1757 16.5 24 18 Right Cerebrum -5.0396

Cluster 3 261 -21 -63 16.5 Frontal lobe -4.3777

Cluster 4 619 -28.5 -63 16.5 Left Cerebrum -4.9033

Cluster 5 337 31.5 -55.5 25.5 Occipital_Inf_R -4.1527

https://doi.org/10.1371/journal.pone.0222446.t004
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As shown in Fig 5, the left brain shows significant differences in GM probability between

the AD and the HC group. The dark region of positive correlation also shows differences in

the hippocampus region, including significant atrophy in the AD group as compared to the

HC group. Fig 5 also shows that the left hemisphere of the hippocampus (2266 voxels) region

has a significant GM volume loss when comparing the AD group with the HC group, and their

peak intensity (T-value) value is 14.3469.

aAD vs. mAD

Table 5 shows the main affected area distributed in the aAD vs. mAD group, and an achieved

voxel clusters with detailed information including its peak coordinates in the form of Montreal

Neurological Institute Space, cluster-level in p-value, and the peak intensity in T-value of each

cluster, which are given below. For the aAD vs. mAD group, we used an uncorrelated thresh-

old value of Puncorrected� 0.001 at the voxel level, FDR value of PFDR = 0.05, and an FWER

value of PFWER = 0.05 at the cluster level, to perform a bias correction for multiple compari-

sons. The minimum cluster size in this study was kept as 100 voxels because while applying

two-sample t-test in this group, we didn’t find much difference in their GM region while com-

paring them. The obtained cluster information is listed in Table 5. Here, each cluster contains

more than 100 adjacency voxels that show the significant variation of those diffusion parame-

ters. The selected significant voxels are displayed with their T-values. From Table 5, we can say

that for aAD and mAD group, only negative suprathreshold intensity has shown the significant

affected region while overlapping aAD subject images over mAD patient images for extracting

GM difference region as a cluster, which was shown by their T-value, whereas no significant

region is found on positive suprathreshold intensity. That is why there is no region for positive

Fig 5. Results showing significant GM differences between the AD and HC groups.

https://doi.org/10.1371/journal.pone.0222446.g005

Table 5. Cluster information (aAD vs. mAD).

Cluster Number of voxels Peak MNI coordinates Peak MNI coordinate region Peak intensity

(T-Value)X Y Z

Cluster 1 232 -33 -55.5 -40.5 Cerebellum Posterior Lobe -3.8098

Cluster 2 3560 34.5 -19.5 -4.5 Para_hippocampus_L -5.4652

Cluster 3 230 -60 -34.4 -22.5 Temporal_Pole_Sup_L -3.6969

Cluster 4 129 13.5 -82.5 -9 Lingual -4.2339

Cluster 5 191 21 -90 15 Occipital_Sup_R -4.788

Cluster 6 285 -9 -16.5 22.5 Cerebro-Spinal Fluid -4.2348

Cluster 7 151 -10.5 -57 30 Precuneus -4.1502

Cluster 8 306 -4.5 -28.5 37.5 Cingulum -4.3694

Cluster 9 117 -13.5 -3 49.5 Medial Frontal Gyrus -4.6933

https://doi.org/10.1371/journal.pone.0222446.t005
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peak intensity, and also because of small GM differences in this region, their peak intensity

value looks similar. The ascending peak intensity (T-value) is shown from the darkness to

brightness. We selected nine clusters to construct an ROI brain mask. Fig 6 shows that the left

hemisphere of the Para_hippocampus (3560 voxels) and occipital (191 voxels) regions has a

significant amount of GM volume loss when comparing the aAD group with the mAD group,

and their peak intensity (T-value) are -5.4652, and -4.788, respectively.

HC vs. mAD

Table 6 shows the on-line table for main affected area distributed in the HC vs. mAD group,

and an achieved voxel clusters with detailed information, including its peak coordinates in the

form of Montreal Neurological Institute Space, cluster-level in p-value, and the peak intensity

in T-value of each cluster are given below.

For the HC vs. mAD group, we applied uncorrected threshold value of Puncorrected� 0.001

at the voxel level, FDR value of PFDR = 0.05, and an FWER value of PFWER = 0.05 at the cluster

level to generate eight clusters. The obtained cluster information is listed in Table 6. The mini-

mum cluster size in this study was kept as 300 voxels because while applying two-sample t-test

in this group we found a large number of differences in their GM regions while comparing

them. Here, each cluster contains more than 300 adjacency voxels that show the significant

variation of those diffusion parameters. The selected significant voxels are displayed with their

t-values. From Table 6, we can say that for HC vs. mAD group, both suprathreshold intensities

(positive and negative) has shown the significant affected region while overlapping HC subject

images over mAD patient images for extracting GM difference region as a cluster which was

shown by their T-value. The ascending peak intensity (T-value) is shown from the darkness to

brightness. Fig 7 shows that the right hemisphere of the Cerebrum and hippocampus (4541

Fig 6. Results showing significant GM differences between the aAD and mAD groups.

https://doi.org/10.1371/journal.pone.0222446.g006

Table 6. Cluster information (HC vs. mAD).

Cluster Number of voxels Peak MNI coordinates Peak MNI coordinate region Peak intensity

(T-Value)X Y Z

Cluster 1 3337 -27 3 -21 Hippocampus_R -5.4644

Cluster 2 509 -48 -42 -10.5 Fusiform Gyrus -3.8461

Cluster 3 222 7.5 13.5 -12 Olfactory_R -3.5835

Cluster 4 331 21 49.5 12 Medial Frontal Gyrus -3.8868

Cluster 5 313 28.5 -19.5 21 Precentral Gyrus -4.1624

Cluster 6 4541 27 -54 22.5 Right Cerebrum 3.5911

Cluster 7 755 -9 -60 33 Precuneus_L -4.641

Cluster 8 765 -7.5 13.5 36 Sub-Gyral_L -4.2398

https://doi.org/10.1371/journal.pone.0222446.t006

Early diagnosis of Alzheimer’s disease using combined features

PLOS ONE | https://doi.org/10.1371/journal.pone.0222446 October 4, 2019 16 / 30

https://doi.org/10.1371/journal.pone.0222446.g006
https://doi.org/10.1371/journal.pone.0222446.t006
https://doi.org/10.1371/journal.pone.0222446


voxels, and 3337 voxels) region has a significant GM volume loss when comparing the HC

group with the mAD group, and their peak intensity (T-value) is 3.5911, and -5.4644, respec-

tively. Tables 7–9 and Figs 8–10 show the classification result for AD vs. HC, aAD vs. mAD,

and HC vs. mAD.

Fig 11 shows Cohen’s kappa statistic graph for three classification groups (AD vs. HC, aAD

vs. mAD, and HC vs. mAD). From this graph, we can see that our proposed method achieved

a good level of agreement within each group when classifying the AD vs. HC, aAD vs. mAD,

and HC vs. mAD groups using the combined features. In this study, the combined features

with the SVM classifier achieved Cohen’s kappa values of 0.9056, 0.7606, and 0.9468, which

are close to 1, for AD vs. HC, aAD vs. mAD, and HC vs. mAD, respectively. As can be seen

from Tables 7–9, the SVM classifier with the combined features achieved a higher level of the

agreement compared to that with individual features.

Here, Fig 12 shows the AUC curve for the AD vs. HC, aAD vs. mAD, and HC vs. mAD clas-

sification groups. Moreover, for the AD vs. HC group, our proposed model achieved an AUC

of 93.93%, which indicates that it performed very well when distinguishing AD subjects from

HC subjects using combined features. Moreover, for the aAD vs. mAD group, our proposed

model correctly classified the converted patients when compared to the stable patients, with an

AUC of 87.08%. Likewise, our proposed model achieved an AUC of 95.83% for the HC vs.

mAD group. Overall, for all classification methods, our proposed model performed well and

its probabilities from the positive classes were well separated from the negative classes. From

Tables 7–9, we can see that the SVM classifier with a combined features achieved better AUC

result compared to that with individual features.

Fig 7. Results showing significant GM differences between the HC and mAD groups.

https://doi.org/10.1371/journal.pone.0222446.g007

Table 7. Classification results for AD vs. HC.

Groups Classifier Performance measure McNemar’s test

AUC ACC SEN SPE PRE F1 Cohen’s

HV KNN 85.87 85.52 72 92.15 81.81 76.59 0.6812 P<0.000001

RF 87.19 86.84 73.07 94 86.36 79.16 0.7077 P<0.000001

SVM 88.67 88.15 80.95 90.9 77.27 79.06 0.7123 P<0.000001

CSC KNN 80.26 81.57 84.21 80.7 59.25 69.56 0.6694 P<0.000001

RF 78.15 78.94 62.5 86.53 68.18 65.21 0.6245 P<0.000001

SVM 86.10 85.52 78.94 87.71 68.81 73.17 0.6894 P<0.000001

VBM KNN 87.19 86.84 84 88.23 77.77 80.26 0.7202 P<0.000001

RF 86.77 86.84 90 85.71 69.23 78.26 0.6973 P<0.000001

SVM 89.56 88.15 82.14 91.66 85.15 83.63 0.7367 P<0.000001

Combined (ALL) KNN 90.54 89.47 93.75 88.33 77.77 78.94 0.7565 P<0.000001

RF 90.43 88.15 78.26 92.45 81.81 80 0.7237 P<0.000001

SVM 93.93 93.06 87.87 95.58 90.62 89.23 0.9056 P<0.000001

https://doi.org/10.1371/journal.pone.0222446.t007
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Comparison to State-of-the-Art methods

The NRCD dataset is not available publicly for research purposes. Therefore, to compare our

method with other state-of-the-art methods, we applied our proposed method on the ADNI

public dataset, which can be downloaded from http://adni.loni.usc.edu/. The ADNI data cen-

ter was established in 2003 as a public-private corporation with aid from several groups within

the organization, including the National Institute of Aging and National Institute of Biomedi-

cal Imaging and Bioengineering, as well as several non-profit organizations and private phar-

maceutical companies. The primary objective of the ADNI dataset has is to determine whether

serial MRI, PET, various biological biomarkers, and clinical and neuropsychological tests can

be combined to assess the progression of MCI and early AD symptoms. For up-to-date infor-

mation, please visit www.adni-info.org.

For this study, a total of 163 sMR images (belonging to one of the AD, MCIc (MCI con-

verted to AD, who had converted to AD within a 24-month time period), MCIs (stable MCI,

who had not converted to AD within a 24-month time period), and HC groups) were acquired

from the ADNI dataset. Patients with MCI and HC subjects were chosen randomly from a

Table 8. Classification results for aAD vs. mAD.

Groups Classifier Performance measure McNemar’s test

AUC ACC SEN SPE PRE F1 Cohen’s

HV KNN 70.55 69.56 68.75 71.42 84.61 75.86 0.6155 P = 0.22

RF 73.29 73.91 76.92 70 76.92 76.92 0.6202 P = 0.17

SVM 79.45 78.26 66.66 85.71 75 70.58 0.7078 P = 0.0064

CSC KNN 61.27 60.86 64.28 55.55 69.23 66.66 0.5589 P = 0.5

RF 67.24 65.21 64.7 66.66 84.61 73.34 0.5645 P = 0.34

SVM 65.42 65.21 70 61.53 58.33 63.63 0.5483 P = 0.29

VBM KNN 66.47 65.21 60 75 81.81 69.23 0.5888 P = 0.14

RF 70.44 69.56 54.54 83.33 75 63.15 0.6345 P = 0.019

SVM 83.82 82.6 80 84.61 80 87.48 0.7154 P = 0.011

Combined (ALL) KNN 74.69 73.91 70.58 83.33 92.3 80 0.6988 P = 0.10

RF 79.99 78.26 76.92 80 83.33 80 0.7244 P = 0.054

SVM 87.08 86.95 77.77 92.85 87.5 77.77 0.7606 P = 0.0009

https://doi.org/10.1371/journal.pone.0222446.t008

Table 9. Classification results for HC vs. mAD.

Groups Classifier Performance measure McNemar’s test

AUC ACC SEN SPE PRE F1 Cohen’s

HV KNN 87.87 85.71 90.56 60 92.3 91.42 0.7746 P = 0.37

RF 83.21 84.12 85.96 66.66 96.07 90.74 0.7477 P = 0.34

SVM 87.12 87.3 90.56 70 94.11 92.3 0.7881 P = 0.17

CSC KNN 83.37 82.52 89.09 77.5 90.74 89.9 0.7699 P = 0.36

RF 83.45 80.95 81.96 50 98.03 89.28 0.7041 P = 0.18

SVM 86.99 85.71 88.88 66.66 94.11 91.42 0.7237 P = 0.25

VBM KNN 89.47 87.3 90.38 72.72 94 92.15 0.7745 P = 0.11

RF 86.54 85.71 92.45 50 90.74 91.58 0.7345 P = 0.5

SVM 81.45 90.47 95.91 71.42 92.15 94 0.8214 P = 0.089

Combined (ALL) KNN 89.57 88.88 94.11 66.66 92.3 93.2 0.7645 P = 0.19

RF 88.56 87.3 93.87 64.28 90.19 92 0.7589 P = 0.21

SVM 95.83 95.23 95.77 92.30 98.50 97.14 0.9468 P = 0.016

https://doi.org/10.1371/journal.pone.0222446.t009
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database of participants in longitudinal studies who were monitored for at least 24 months. All

subjects underwent several neuropsychological examinations to produce several clinical char-

acteristic indicators in combination with MMSE results, functional assessment questionnaire

scores, and clinical dementia ratios. Table 10 shows the demographic information for all

subjects.

Both male and female subjects were included in our experiments. All sMRI scans used in

this study were acquired from 1.5-T MRI scanners. First, we extracted voxel-based features

using SPM12 and then we extracted cortical, subcortical, and left and right hemisphere

Fig 8. Classification results for AD vs. HC.

https://doi.org/10.1371/journal.pone.0222446.g008

Fig 9. Classification results for aAD vs. mAD.

https://doi.org/10.1371/journal.pone.0222446.g009
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hippocampus features from each sMR image using Freesurfer. Here, we followed the same

procedures as those for the NRCD dataset. For the classification between different groups, we

chose the same classifier as that for the NRCD dataset. Table 11 shows the obtained result for

the AD vs. HC group. It can be seen from below table that our proposed method achieved a

significantly better p-value than the conventional p-value threshold of 0.05. Likewise, Tables

12 and 13 show the results for the MCIc vs. MCIs and the HC vs. MCIc classification, where

some groups yielded a significantly better p-value than the conventional p-value of 0.05.

The proposed method achieved better result for all three classification groups. For the AD

vs. HC group, the combined features with the SVM classifier achieved an AUC of 97.56%, and

an ACC of 96.42% compared to the best individual feature output, which was obtained by HV

features using the SVM classifier, and the obtained Cohen’s kappa value for this group was

0.9465, which is close to 1, and also showed a high level of agreement between these two

groups. Moreover, for the MCIs vs. MCIc group, our proposed method with combined fea-

tures achieved better results (AUC of 96.89%, and ACC of 97.36%) and the obtained Cohen’s

kappa value for this group was around 0.9345, which is close to 1, and demonstrate a high-

level of concurrence between the MCIs and the MCIc group. Likewise, for the HC vs. MCIc

group, our proposed technique with combined features obtained better results (AUC of

95.43%, and ACC of 94.73%) and the obtained Cohen’s kappa value for this group was 0.9260,

which is close to 1, and demonstrate a high-level of concurrence between the HC and the

MCIc group.

Recently, several studies have reported their classification results for distinguishing AD

patients from HC individuals according to the MRI dataset. Zhang et al. [23] performed a mul-

timodal classification of AD based on a combination of MRI, CSF, and PET data. By using

MRI data, they achieved an ACC of 86.2% for the AD vs. HC classification. By combining all

the aforementioned biomarkers, they achieved a higher ACC of 93.2%. Westman et al. [27]

reported an ACC of 87% when using MRI data and an increased ACC to 91% when combining

MRI data with CSF measures. Lama et al. [32] adopted Freesurfer to compute the CTH and

volumetric measurements. Using an extreme learning machine classifier, they achieved an

ACC of 77.88%. Cuingnet et al. [13] compared 10 widely used methods using the ADNI data-

set. They used three different techniques to extract features from the brain: VBM, CTH, and

HV. They reported an SEN of 81% and an SPE of 95% as the best performance measures when

Fig 10. Classification results for HC vs. mAD.

https://doi.org/10.1371/journal.pone.0222446.g010
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using the Voxel-Direct-D-gm method. Wolz et al. [29] used a multi-method technique for the

early detection of AD. They considered four types of features, namely, HV, CTH, TBM, and

manifold-based learning, which they combined together to achieve an ACC of 89% using lin-

ear discriminant analysis and 86% using an SVM classifier. Jha et al. [71] proposed a technique

Fig 11. Cohen’s kappa score graph for (a) AD vs. HC, (b) aAD vs. mAD, (c) HC vs. mAD using SVM classifier.

https://doi.org/10.1371/journal.pone.0222446.g011
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using complex dual-tree wavelet PC features and an extreme learning machine as a classifier.

For the ADNI dataset, their method achieved an ACC of 90.26%. Beheshti et al. [72] proposed

a CAD system composed of four systematic stages for analyzing global and local differences in

the GM of AD patients compared to that of HC individuals using a VBM technique. They used

seven different feature ranking methods, and with their Fisher’s criterion as a stopping crite-

rion method they achieved an ACC of 92.48% for the AD vs. HC classification. Comparison

results of the proposed technique with other published classification methods (using different

biomarkers) on the ADNI dataset are provided in Table 14. The table shows that the perfor-

mance of the proposed method using combined features from sMRI data (VBM+CSC+HV) is

superior or comparable to that of other methods reported in the literature.

Discussion

In this experiment, we evaluated the automatic diagnostic capabilities of three structural MRI

features (VBM, CSC, and HV), both individually and using combined features, for 326 subjects

from the NRCD dataset. To the best of our knowledge, this is the first study wherein VBM out-

puts had been combined with CSC and HV for the classification of AD or MCI. From Tables

7–9, we can be seen that, the VBM individual feature achieved better result than those of other

individual features. However, combining all features into one improved the classification per-

formance for all classification groups. These results show that using a combination of various

sMRI-based features can improve classification accuracy compared to using only a single fea-

ture and can produce a more powerful and steady classifier. To assess and compare the perfor-

mances of each technique, we performed three classification tests: AD vs. HC, aAD vs. mAD,

and HC vs. mAD. Here, we applied three different types of classifier: KNN, SVM, and RF. To

Fig 12. AUC graph for (a) AD vs. HC, (b) aAD vs. mAD, (c) HC vs. mAD groups using SVM classifier.

https://doi.org/10.1371/journal.pone.0222446.g012

Table 10. Subjects demographics information.

Group AD MCIc MCIs HC

No. of subjects 30 50 43 40

Male/Female 13/17 33/17 25/18 21/19

Age (SD) 77.4 (6.31) 76.92 (7.35) 73.023 (6.14) 78.525 (5.30)

MMSE (SD) 18.97� (5.64) 25.60� (3.61) 26.27� (2.93) 28.99� (1.52)

FAQ (SD) 20.30� (6.75) 7.52� (6.78) 6.09� (6.44) 0.50� (1.78)

�Indicates a statistically significant difference from all other groups

https://doi.org/10.1371/journal.pone.0222446.t010
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obtain unbiased estimates of the performance, we randomly split the set of participants into

two groups a training dataset and testing dataset, at a ratio of 70:30, respectively. In the train-

ing set, a five-fold stratified CV method was applied to obtain optimal optimized hyperpara-

meter values for the cost function, C, and γ for SVM; Max_features, Criterion, Max_depth,

and optimal hyperparameter values for RF; and n_neighbors optimal hypermeter value for

KNN. These optimal hyperparameter values were decided by using a gridsearch CV library

function from Scikit-learn 0.19.2 and also by applying a five-fold stratified cross-validation

method on the training set. For each method, the obtained optimized hyperparameter value

was then used to train the classifier using the training dataset and then the performance of

each resulting classifier was evaluated using the remaining 30% of the testing dataset. In this

way, we obtained unbiased estimates for each classification group.

AD vs. HC

The classification results for an AD vs. HC are summarized in Table 7 and are presented in Fig

8. For each case, the dataset was separated into two subsets with a 70:30 ratio. All methods

obtained a significantly better p-value than the conventional p-value of 0.05. The underlying

Table 11. Classification results for an AD vs. HC.

Groups Classifier Performance measure McNemar’s test

AUC ACC SEN SPE PRE F1 Cohen’s

HV KNN 94.44 90.47 75 100 100 85.71 0.9114 P = 0.00012

RF 90.47 92.85 88.88 94.73 90.9 89.01 0.8995 P = 0.00003

SVM 96.97 96.42 100 92.85 93.33 96.55 0.9245 P = 0.00007

CSC KNN 91.67 89.28 100 85 72.72 84.21 0.8775 P = 0.00012

RF 87.65 85.71 72.72 94.11 88.88 79.99 0.7956 P = 0.00117

SVM 93.45 92.85 100 89.47 81.81 90 0.8563 P = 0.00036

VBM KNN 93.33 82.14 75 85 66.66 70.58 0.7879 P = 0.00128

RF 88.57 89.28 90 88.88 81.72 82.25 0.8134 P = 0.00065

SVM 95.78 95.23 100 92.85 87.5 93.33 0.8987 P = 0.00091

Combined (ALL) KNN 95.83 95.23 100 93.75 83.83 90.9 0.9041 P = 0.00025

RF 91.37 92.85 90.9 94.11 89.41 85.71 0.8978 P = 0.00013

SVM 97.56 96.42 93.8 100 100 96.77 0.9465 P = 0.00001

https://doi.org/10.1371/journal.pone.0222446.t011

Table 12. Classification results for MCIc vs. MCIs.

Groups Classifier Performance measure McNemar’s test

AUC ACC SEN SPE PRE F1 Cohen’s

HV KNN 86.15 86.48 85 88.23 89.47 87.17 0.7157 P = 0.0022

RF 93.57 94.59 100 90 89.47 94.44 0.8679 P = 0.0002

SVM 91.58 91.89 94.44 91.66 89.47 91.89 0.8235 P = 0.0036

CSC KNN 82.38 81.08 90.47 68.75 79.16 84.44 0.6345 P = 0.1050

RF 80.54 78.37 94.44 63.15 70.83 80.95 0.6834 P = 0.0351

SVM 87.47 86.48 88.88 84.21 87.78 86.78 0.7857 P = 0.0384

VBM KNN 84.38 86.84 79.16 100 100 88.37 0.7535 P = 0.00006

RF 92.54 92.1 91.3 93.33 95.45 93.33 0.8988 P = 0.00003

SVM 89.88 89.47 86.2 100 100 92.59 0.8545 P = 0.00012

Combined (ALL) KNN 96.15 96.42 100 92.3 93.75 96.77 0.9278 P = 0.00317

RF 82.78 81.89 85.71 100 100 92.3 0.7453 P = 0.00001

SVM 96.89 97.36 96.15 100 100 98.03 0.9345 P = 0.000001

https://doi.org/10.1371/journal.pone.0222446.t012
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assumption was that there were a significant dissimilarities between these two groups. In our

study, the SVM classifier achieved the best results with an AUC of 93.93%, ACC of 93.06%,

SEN of 87.87%, SPE of 95.58%, PRE of 90.62%, and F1 of 89.23% for this classification group.

Moreover, the obtained Cohen’s kappa value for this group was 0.9056, which is close to 1.

This shows that, our proposed model using combined features achieved a high level of agree-

ment between these two groups.

aAD vs. mAD

The classification results for aAD vs. mAD are summarized in Table 8 and are presented in Fig

9. The SVM classifier with combined features obtained a significantly better p-value (0.0009)

than the conventional p-value of 0.05. It also achieved an AUC of 87.08%, ACC of 86.95%,

SEN of 77.77%, SPE of 92.85%, PRE of 87.5%, and F1 of 77.77% for this classification group.

Moreover, the obtained Cohen’s kappa value for this group was 0.7606, which is close to 1.

This shows that our proposed model achieved a high level of agreement between these two

groups.

HC vs. mAD

The classification results for a HC vs. mAD are summarized in a Table 9 and are presented in

Fig 10. The SVM classifier with combined features obtained a significantly better p-value

Table 13. Classification results for HC vs. MCIc.

Groups Classifier Performance measure McNemar’s test

AUC ACC SEN SPE PRE F1 Cohen’s

HV KNN 71.98 72.22 66.66 80 82.35 73.68 0.6345 P = 0.0192

RF 91.53 90.90 88.88 93.33 94.11 91.42 0.8878 P = 0.0004

SVM 92.45 91.89 88.88 94.73 94.11 91.42 0.8723 P = 0.0033

CSC KNN 73.21 74.07 61.11 100 100 75.86 0.6544 P = 0.0019

RF 80.88 80.55 70.58 89.47 85.71 77.41 0.7252 P = 0.0036

SVM 84.45 83.33 70 100 100 82.35 0.7945 P = 0.0045

VBM KNN 81.98 81.48 71.42 92.3 90.9 80 0.7216 P = 0.0063

RF 87.65 88.88 85.71 90.9 85.71 82.67 0.8144 P = 0.0011

SVM 91.45 89.47 85.71 91.66 82.23 88.88 0.8365 P = 0.0038

Combined (ALL) KNN 72.16 70.37 64.7 80 84.61 73.33 0.6456 P = 0.0546

RF 87.67 86.11 73.68 100 100 84.84 0.8465 P = 0.0046

SVM 95.43 94.73 90.90 100 100 95.23 0.9260 P = 0.000015

https://doi.org/10.1371/journal.pone.0222446.t013

Table 14. Comparison between the proposed method and existing methods.

Approach Year Dataset Modalities AD/HC ACC SEN SPE

Zhang at al. [23] 2011 ADNI MRI 51/52 86.2 86 86.3

Westman et al. [27] 2012 ADNI MRI 96/111 87 83.30 90.10

Lama et al. [32] 2011 ADNI MRI 70/70 77.88 77.88 68.85

Cuingnet et al. [13] 2011 ADNI MRI 162/137 - 81 95

Wolz et al. [29] 2011 ADNI MRI 198/231 89 93 85

Jha et al. [71] 2017 ADNI MRI 86/86 90.26 90.26 90.27

Beheshti and Demirel et al. [72] 2016 ADNI MRI 130/130 92.48 91.07 93.89

Proposed Method 2019 ADNI MRI 30/40 96.42 93.8 100

2019 NRCD MRI 81/171 93.06 87.87 95.58

https://doi.org/10.1371/journal.pone.0222446.t014
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(0.016) than the conventional p-value of 0.05. It also achieved an AUC of 95.83%, ACC of

95.23%, SEN of 95.27%, SPE of 92.30%, PRE of 98.50%, and F1 of 97.14% for this classification

group. Moreover, the obtained Cohen’s kappa value for this group was 0.9468, which is close

to 1. This shows that our proposed model achieved a high level of agreement between these

two groups.

From Tables 7–9 and Figs 8–10, it can be seen that the AUC and ACC values improved sig-

nificantly when applying multiple features, compared to using individual features. All the clas-

sification methods in this study achieved good AUC and ACC values, and the SVM classifier

performed significantly better than the KNN and RF classifiers for distinguishing AD or mAD

patients from HC individuals. Still, our study should be considered as a preliminary proof-of-

concept study. It proposes a promising approach for the future translation of neuroimaging

into patient benefit. This approach requires replication and validation in larger samples; how-

ever, it provides initial evidence of a rapid and accessible methodology that could potentially

aid clinical decisions.

Conclusions

In this paper, a novel feature fusion technique was proposed to improve the classification accu-

racy of the AD, aAD, mAD, and HC groups. First, we preprocessed sMR images and used

CAT12, which is integrated with the SPM12 software, for the extraction of specific ROIs. We

then used Freesurfer to extract CSC and HV features from 326 subjects. Finally, we merged

these three types of features linearly and used the combined features for the early prediction of

AD. We found that the combination of morphometric features with cortical and HV features

performed better than any individual features. Additionally, the proposed method achieved an

AUC and ACC of 87.08% and 86.95%, respectively, for the aAD vs. mAD classification group

(NRCD dataset) and 96.89% and 97.36%, respectively, for the MCIc vs. MCIs classification

(ADNI dataset). The p-value obtained by McNemar’s chi-squared test for aAD vs. mAD and

MCIs vs. MCIc group was less than the conventional p-value threshold of 0.05. The obtained

Cohen’s kappa value for aAD vs. mAD was 0.7606 for the NRCD dataset and for MCI vs MCIc

was 0.9345 for the ADNI dataset, which is close to 1. We can say that this classification group

achieved a high level of agreement with each other. The proposed method main advantages

are as follows. First, it uses combined features that can be extracted from a sMRI modality. Sec-

ond, it uses three different classifiers to achieve the best possible AUC and ACC values. We

performed several evaluation experiments on the private NRCD dataset using optimized

hyperparameters. The test results were analyzed and presented in this paper, and they showed

the efficiency of the proposed model for improving classification performance.

The method proposed in this study performed better in every classification group. How-

ever, it still has some drawbacks as it was only tested on a relatively small dataset. In the future,

we will apply the proposed model to a large publicly available datasets. Additionally, we also

plan to examine different imaging modalities, such as PET and functional MRI, for the early

detection of AD.
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55. Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M, et al. An evaluation of vol-

ume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. Neuro-

Image: Clinical. 2015; 7: 7–17. https://doi.org/10.1016/j.nicl.2014.11.001 PMID: 25429357

56. Xiao Z, Ding Y, Lan T, Zhang C, Luo C, Qin Z. Brain MR Image Classification for Alzheimer’s Disease

Diagnosis Based on Multifeature Fusion. Computational and Mathematical Methods in Medicine. 2017;

2017: 1–13. https://doi.org/10.1155/2017/1952373 PMID: 28611848

57. Maintz JBA, Viergever MA. A survey of medical image registration. Med Image Anal. 1998; 2: 1–36.

https://doi.org/10.1016/S1361-8415(01)80026-8 PMID: 10638851

58. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole Brain Segmentation. Neu-

ron. 2002; 33: 341–355. https://doi.org/10.1016/s0896-6273(02)00569-x PMID: 11832223

59. Fischl B. FreeSurfer. NeuroImage. 2012; 62: 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.

021 PMID: 22248573

Early diagnosis of Alzheimer’s disease using combined features

PLOS ONE | https://doi.org/10.1371/journal.pone.0222446 October 4, 2019 29 / 30

https://doi.org/10.1002/hipo.20626
http://www.ncbi.nlm.nih.gov/pubmed/19437497
https://doi.org/10.1016/j.nicl.2014.07.011
http://www.ncbi.nlm.nih.gov/pubmed/25161900
https://doi.org/10.1007/s11042-014-2123-y
https://doi.org/10.1002/hbm.23091
http://www.ncbi.nlm.nih.gov/pubmed/26686837
https://doi.org/10.1371/journal.pone.0138866
https://doi.org/10.1371/journal.pone.0138866
http://www.ncbi.nlm.nih.gov/pubmed/26901338
https://doi.org/10.3389/fnagi.2017.00009
https://doi.org/10.1371/journal.pone.0173372
http://www.ncbi.nlm.nih.gov/pubmed/28264071
https://doi.org/10.1212/WNL.43.11.2412-a
http://www.ncbi.nlm.nih.gov/pubmed/8232972
https://doi.org/10.3233/JAD-160052
http://www.ncbi.nlm.nih.gov/pubmed/27567814
https://doi.org/10.1016/j.jad.2017.03.062
https://doi.org/10.1016/j.jad.2017.03.062
http://www.ncbi.nlm.nih.gov/pubmed/28380342
https://doi.org/10.1007/BF01109053
http://www.ncbi.nlm.nih.gov/pubmed/1844708
https://doi.org/10.1212/wnl.34.7.939
https://doi.org/10.1212/wnl.34.7.939
http://www.ncbi.nlm.nih.gov/pubmed/6610841
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
http://www.ncbi.nlm.nih.gov/pubmed/20378467
https://doi.org/10.1006/nimg.2001.0961
http://www.ncbi.nlm.nih.gov/pubmed/11707080
https://doi.org/10.1523/JNEUROSCI.2160-09.2009
https://doi.org/10.1523/JNEUROSCI.2160-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19657018
https://doi.org/10.1016/j.nicl.2014.11.001
http://www.ncbi.nlm.nih.gov/pubmed/25429357
https://doi.org/10.1155/2017/1952373
http://www.ncbi.nlm.nih.gov/pubmed/28611848
https://doi.org/10.1016/S1361-8415(01)80026-8
http://www.ncbi.nlm.nih.gov/pubmed/10638851
https://doi.org/10.1016/s0896-6273(02)00569-x
http://www.ncbi.nlm.nih.gov/pubmed/11832223
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
http://www.ncbi.nlm.nih.gov/pubmed/22248573
https://doi.org/10.1371/journal.pone.0222446


60. Dale AM, Fischl B, Sereno MI. Cortical Surface-Based Analysis. Neuroimage. 1999; 9: 179–194.

https://doi.org/10.1006/nimg.1998.0395 PMID: 9931268

61. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al. A computational atlas of

the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmenta-

tion of in vivo MRI. NeuroImage. 2015; 115: 117–137. https://doi.org/10.1016/j.neuroimage.2015.04.

042 PMID: 25936807

62. Saygin ZM, Kliemann D, Iglesias JE, van der Kouwe AJW, Boyd E, Reuter M, et al. High-resolution

magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic

atlas. NeuroImage. 2017; 155: 370–382. https://doi.org/10.1016/j.neuroimage.2017.04.046 PMID:

28479476

63. Jack CR, Barkhof F, Bernstein MA, Cantillon M, Cole PE, DeCarli C, et al. Steps to standardization and

validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzhei-

mer’s disease. Alzheimer’s & Dementia. 2011; 7: 474–485.e4. https://doi.org/10.1016/j.jalz.2011.04.

007 PMID: 21784356

64. Hunsaker MR, Rosenberg JS, Kesner RP. The role of the dentate gyrus, CA3a,b, and CA3c for detect-

ing spatial and environmental novelty. Hippocampus. 2008; 18: 1064–1073. https://doi.org/10.1002/

hipo.20464 PMID: 18651615

65. Andersen AH, Gash DM, Avison MJ. Principal component analysis of the dynamic response measured

by fMRI: a generalized linear systems framework. Magnetic Resonance Imaging. 1999; 17: 795–815.

https://doi.org/10.1016/s0730-725x(99)00028-4 PMID: 10402587

66. Lebedev AV, Westman E, Van Westen GJP, Kramberger MG, Lundervold A, Aarsland D, et al. Random

Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort

robustness. NeuroImage: Clinical. 2014; 6: 115–125. https://doi.org/10.1016/j.nicl.2014.08.023 PMID:

25379423

67. Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics. 2012; 99: 323–329. https://

doi.org/10.1016/j.ygeno.2012.04.003 PMID: 22546560

68. Zhang S, Li X, Zong M, Zhu X, Wang R. Efficient kNN Classification with Different Numbers of Nearest

Neighbors. IEEE Transactions on Neural Networks and Learning Systems. 2018; 29: 1774–1785.

https://doi.org/10.1109/TNNLS.2017.2673241 PMID: 28422666

69. Mohammed A, Al-Azzo F, Milanova M. Classification of Alzheimer Disease based on Normalized Hu

Moment Invariants and Multiclassifier. International Journal of Advanced Computer Science and Appli-

cations. 2017;8. https://doi.org/10.14569/IJACSA.2017.081102

70. Cohen J. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement.

1960; 20: 37–46. https://doi.org/10.1177/001316446002000104

71. Jha D, Alam S, Pyun J-Y, Lee KH, Kwon G-R. Alzheimer’s Disease Detection Using Extreme Learning

Machine, Complex Dual Tree Wavelet Principal Coefficients and Linear Discriminant Analysis. Journal

of Medical Imaging and Health Informatics. 2018; 8: 881–890. https://doi.org/10.1166/jmihi.2018.2381

72. Beheshti I, Demirel H, Farokhian F, Yang C, Matsuda H. Structural MRI-based detection of Alzheimer’s

disease using feature ranking and classification error. Computer Methods and Programs in Biomedi-

cine. 2016; 137: 177–193. https://doi.org/10.1016/j.cmpb.2016.09.019 PMID: 28110723

Early diagnosis of Alzheimer’s disease using combined features

PLOS ONE | https://doi.org/10.1371/journal.pone.0222446 October 4, 2019 30 / 30

https://doi.org/10.1006/nimg.1998.0395
http://www.ncbi.nlm.nih.gov/pubmed/9931268
https://doi.org/10.1016/j.neuroimage.2015.04.042
https://doi.org/10.1016/j.neuroimage.2015.04.042
http://www.ncbi.nlm.nih.gov/pubmed/25936807
https://doi.org/10.1016/j.neuroimage.2017.04.046
http://www.ncbi.nlm.nih.gov/pubmed/28479476
https://doi.org/10.1016/j.jalz.2011.04.007
https://doi.org/10.1016/j.jalz.2011.04.007
http://www.ncbi.nlm.nih.gov/pubmed/21784356
https://doi.org/10.1002/hipo.20464
https://doi.org/10.1002/hipo.20464
http://www.ncbi.nlm.nih.gov/pubmed/18651615
https://doi.org/10.1016/s0730-725x(99)00028-4
http://www.ncbi.nlm.nih.gov/pubmed/10402587
https://doi.org/10.1016/j.nicl.2014.08.023
http://www.ncbi.nlm.nih.gov/pubmed/25379423
https://doi.org/10.1016/j.ygeno.2012.04.003
https://doi.org/10.1016/j.ygeno.2012.04.003
http://www.ncbi.nlm.nih.gov/pubmed/22546560
https://doi.org/10.1109/TNNLS.2017.2673241
http://www.ncbi.nlm.nih.gov/pubmed/28422666
https://doi.org/10.14569/IJACSA.2017.081102
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1166/jmihi.2018.2381
https://doi.org/10.1016/j.cmpb.2016.09.019
http://www.ncbi.nlm.nih.gov/pubmed/28110723
https://doi.org/10.1371/journal.pone.0222446

