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Abstract

Arachis hypogea (Peanut) is one of the most important crops, and it is harvested and used

for food and oil production. Being a legume crop, the fixation of atmospheric nitrogen is

achieved through symbiotic association. Nitrogen deficiency is one of the major constrains

for loss of crop productivity. The bacterium Stenotrophomonas maltophilia is known for inter-

actions with plants. In this study, characteristics that promote plant growth were explored for

their ability to enhance the growth of peanut plants under N2 deficit condition. In the pres-

ence of S. maltophilia, it was observed that fatty acid composition of peanut plants was influ-

enced and increased contents of omega-7 monounsaturated fatty acid and omega-6 fatty

acid (γ-Linolenic acid) were detected. Plant growth was increased in plants co-cultivated

with PGPR (Plant Growth Promoting Rhizobacteria) under normal and stress (nitrogen defi-

cient) condition. Electrolyte leakage, lipid peroxidation, and H2O2 content reduced in plants,

co-cultivated with PGPR under normal (grown in a media supplemented with N2 source; C+)

or stress (nitrogen deficient N+) conditions compared to the corresponding control plants

(i.e. not co-cultivated with PGPR; C–or N–). The growth hormone auxin, osmoprotectants

(proline, total soluble sugars and total amino acids), total phenolic-compounds and total fla-

vonoid content were enhanced in plants co-cultivated with PGPR. Additionally, antioxidant

and free radical scavenging (DPPH, hydroxyl and H2O2) activities were increased in plants

that were treated with PGPR under both normal and N2 deficit condition. Overall, these

results indicate that plants co-cultivated with PGPR, S. maltophilia, increase plant growth,

antioxidant levels, scavenging, and stress tolerance under N2 deficit condition. The benefi-

cial use of bacterium S. maltophilia could be explored further as an efficient PGPR for grow-

ing agricultural crops under N2 deficit conditions. However, a detail agronomic study would

be prerequisite to confirm its commercial role.
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Introduction

Different abiotic stresses are a major problem associated with arid and semi-arid regions.

Stresses are of natural or human-induced (anthropogenic) processes that inhibit plant growth

[1]. Salinization is a major constraint for the crop productivity and it has been estimated that

an approximate area of 7 million hectares of land is covered by saline soil in India [2]. Salinity

affects the glycophytic plants at cellular, morphological, physiological and molecular levels [3,

4]. Salt interrupts the soil nutrient balance which ultimately affects the growth of plant [5].

Halophytes have the ability to grow under high saline areas and are considered a rich source of

metabolites [6, 7], oligosaccharides [8], proteins [9], genes [10–22], promoters [23–25] and

renewable energy [26].

The narrow region of soil that is closest to the plant root and is directly influenced by root

exudates and associated-microorganisms is known as the rhizosphere. Rhizosphere is consid-

ered highly nutritive, therefore is highly competitive for soil microbes. Soil bacteria that inhab-

itant in the rhizosphere and enhance the plant growth are known as plant growth promoting

rhizobacteria (PGPR). PGPR colonize the root surface and induce these positive effects on the

plant, and act as (1) bio-fertilizers (increasing plant nutrient availability via phosphate solubili-

zation and siderophore production), (2) phytostimulators (by promoting plant growth

through phytohormones), (3) rhizo-remediators (degrading organic pollutants) and (4) bio-

pesticides (controlling diseases through production of antibiotics, antifungal metabolites and

biofilms) [27]. PGPR have enormous potential to increase crop productivity under normal as

well as stressful environmental conditions.

Stenotrophomonas is a genus of Gram negative bacteria and belongs to Xanthomonadaceae

family. A species of Stenotrophomonas, S. maltophilia was isolated from the rhizosphere of

Cyperus laevigatus and demonstrated to present different bioactivities including anti-quorum

sensing and antibiofilm [28], biological control of fungal plant diseases, and bioremediation

[29]. Cyperus laevigatus is a species of sedge which grows in the coastal saline area and harbors

beneficial rhizospheric bacteria such as Delftia tsuruhatensis and Exiguobacterium indicum
[30, 31]. Plant growth promoting potential of S. maltophilia has been reported in wheat plants

along with resistance against biotic and abiotic stress [32].

Arachis hypogaea (peanut) is an economically important crop which is utilized for oil, food,

fiber and fodder for livestock. Peanut seeds contain approximately 40–60% oil, 20–40% pro-

tein and 10–20% carbohydrate, and many vitamins and minerals [33]. India ranks second

worldwide in terms of peanut production (6–7 million tons per year) after China, but its pro-

duction has declined immensely because of various environmental stresses including nitrogen

deficiency in the soil. Some transgenic approaches have been employed for developing abiotic

stress tolerant peanut [34–36]. However, developing a transgenic peanut is time consuming

and laborious method, ethical and environmental issues make it difficult [37]. Subsequently, it

is clear that an environment friendly and natural method is preferred for the enhanced pro-

ductivity of crops. It has been noted that CO2-fixing bacterial communities were observed as

part of the peanut rhizosphere which hints at the possibility of peanut-microbe interactions

[38].

Nitrogen deficiency in the soil is one of the major causes that leads to low productivity and

health of the crop. Reclamation of these type of soils requires the excessive application of

chemical fertilizers, however, PGPR have the potential to protect plants under such conditions.

In this study, we observed the interaction of S. maltophilia BJ01 with peanut plants, and effect

on morphology and plant growth, changes in physiology, production of ROS, and different

activities (antioxidant and scavenging) of peanut plants were analyzed under normal and

nitrogen deficit conditions.

Stress tolerance by PGPR
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Materials and methods

Plant material, bacterial strain and treatment

Peanut seeds (cultivar GG-20) were obtained from the Junagadh Agricultural University, Juna-

gadh (Gujarat), India. Dry and mature peanut seeds were washed with 70% (v/v) aqueous-eth-

anol followed by surface sterilization with 0.1% mercuric chloride for 10 min with gentle

shaking [35]. The seeds were thoroughly washed with sterile water (five to six times) and

soaked for 3 h in water. Seeds of uniform size were placed on sterilized cotton in tissue culture

bottles containing ½ Murashige and Skoog (MS) media [(NH4)2NO3 825 mg L-1; KNO3 950

mg L-1; KH2PO4 85 mg L-1; MgSO4.7H2O 185 mg L-1; CaCl2.2H2O 220 mg L-1; KI 0.41 mg L-1;

H3BO3 3.1 mg L-1; MnSO4.4H2O 11.15 mg L-1; ZnSO4.7H2O 4.3 mg L-1; CoCl2.6H2O 0.0125

mg L-1; CuSO4.5H2O 0.0125 mg L-1; Na2MoO4.2H2O 0.0625 mg L-1; FeSO4.7H2O 13.9 mg L-1;

Na2EDTA 18.6 mg L-1; pH 5.8] for germination. Previously, we have isolated bacterial strain

Stenotrophomonas maltophilia BJ01 from the roots of Cyperus laevigatus L., near costal region

of Dwarka, Gujarat, India [28], and deposited at Indian marine microbial culture collection of

CSMCRI, Bhavnagar with culture collection number IMMCC255. To check nitrogen fixing

ability of the bacteria, nitrogen-free semisolid (NFb) medium with malate as a carbon source

was used for growth. Further total DNA of the bacterium, S. maltophilia BJ01 were isolated,

the nifH gene was amplified using degenerate primers [39]. Polymerase chain reaction (PCR)

amplified products were analyzed on an agarose gel and purified using the QIAquick gel

extraction kit (Qiagen, Germany). The purified PCR amplicons were cloned in pGEM-T Easy

cloning vector (Promega, USA) and transformed into Escherichia coli DH5α competent cells.

Positive clones were selected, confirmed and sequenced (M/s Macrogen Inc., South Korea).

For the bacterial inoculum preparation, the bacterial strain was streaked on DYGS (dex-

trose 1.0 g L-1; malate 1.0 g L-1; peptone 1.5 g L-1; yeast extract 2.0 g L-1; MgSO4.7H2O 0.5 g L-1;

L-glutamic acid 1.5 g L-1; pH 6.0) agar plate and incubated for 16 hr at 30˚C. Single colony

from the plate was inoculated in 5 mL DYGS broth media and incubated overnight at 30˚C

and 180 rpm in an incubator shaker. Overnight grown culture was diluted to OD600nm 0.01 in

150 mL of DYGS medium and grown up to OD600nm 0.6 in an incubator shaker (30˚C and 180

rpm). Freshly grown 150 mL (OD600 0.6) bacterial culture was centrifuged at 4000 x g for 10

min. Pellet was re-suspended in 300 mL ½ MS media supplemented with or without nitroge-

nous component. The ½ MS media containing all macronutrients, micronutrients and vita-

mins is considered control media/ condition with nitrogenous source (C), whereas MS media

that did not contain any nitrogenous constituents/ ingredients (such as ammonium nitrate

and potassium nitrate from macronutrients, and vitamins) was considered media without

nitrogenous source or nitrogen deficit media/ condition (N)

Seven days old germinated seedlings were transferred to hydroponics condition in a glass

beaker containing 300 mL ½ MS media supplemented with (C) or without nitrogenous com-

ponent (N). The experiment was first divided in two sets, i) control (C: control plants grown

in a media supplemented with nitrogen source) and stress (N: plants grown under nitrogen

deficient condition) followed by further division in two sub-sets; C–and C+ (control plants

grown without or with PGPR), and N–and N+ (plants under nitrogen deficient without and

with bacteria). Seedlings were transferred to the particular growth condition for twenty-one

days at 25 ± 2˚C temperature, 16 h/ 8 h light/dark cycle, and 170±25 μmol m-2 s-1 light inten-

sity. Corresponding media were replenished every seven days, and different morphology char-

acteristics including shoot length, root length and fresh weight were recorded, and images

were captured for each plant. After completion of 21 days, growth characteristics, physio-bio-

chemical properties and metabolic activities were studied.
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Fatty acid profiling

Total lipid was extracted from 300 mg plant samples (fresh leaves) using chloroform–metha-

nol–phosphate buffer (1:2:0.9 v/v/v, pH 7.5; 10 mL), and fatty acids were converted to corre-

sponding methyl esters (FAMEs) by transmethylation. For transmethylation, 1 mL of NaOH

(1% v/v in methanol) was added, and mixture was incubated at 55˚C for 15 min, after that 2

mL of methanolic HCl (5% v/v) was added and further incubated at 55˚C for 15 min. Finally 3

mL of deionized water–hexane mixture (1:2 v/v) was added. FAMEs were extracted in three

times in hexane, samples were pooled together and dried under vacuum. Dried sample was

resuspended in 200 μl hexane and analyzed by using a RTX 5MS capillary column in

GCMS-QP2010 (Shimadzu, Japan) coupled with an auto-sampler (AOC-5000) [6].

Chlorophyll and carotenoid content

Leaf chlorophyll and total carotenoid contents were estimated according to the methods

described by Arnon and Chamovitz et al. [40, 41]. Briefly, leaf tissues (100 mg) were homoge-

nized in 80% acetone, incubated for 6hrs in the dark, centrifuged at 10000 x g and absorbance

of supernatant was recorded at 461, 645, 663, and 664nm. Total carotenoid and chlorophyll

contents were calculated using the following equations:

Total Chlorophyll ¼
½ð20:2� Abs645Þ þ ð8:02� Abs663Þ� � vol of sample in ml

weight of tissues

Chlorophyll a ¼
½ð12:7� Abs663Þ � ð2:6� Abs645Þ� � vol of sample in ml

weight of tissues

Chlorophyll b ¼
½ð22:9� Abs645Þ � ð4:68� Abs663Þ� � vol of sample in ml

weight of tissues

Total carotenoid ¼ ½ðAbs461Þ � ð0:046� Abs664Þ� � 4

Electrolyte leakage

Leaves of equal size and age were harvested from primary branch (toward the distal end) of

each experimental plant and washed thoroughly with deionized water to remove surface-

adhered electrolytes. Samples were kept in deionized water (10 mL) and incubated at 25˚C on

a rotary shaker for 24 h. The electrical conductivity (EC) of the solution (L1) was determined

using a conductivity meter (Seven Easy, Mettler Toledo, USA). Samples were autoclaved at

120˚C for 20 min, cooled at 25˚C, and electrical conductivity (L2) was determined [42]. The

electrolyte leakage was estimated with the following equation:

EL %ð Þ ¼
L1

L2

� 100

Membrane stability index

To determine the membrane stability index (MSI), thoroughly washed leaf samples (equal size

and age) were kept in 10 mL deionized water, incubated at 40˚C for 30 min, and EC (L1) was

recorded. Samples were boiled at 100˚C for 20 min, then they were cooled at 25˚C, and EC

(L2) was recorded to calculate MSI [43]. Following equation were used for the calculation:

MSI ¼ 1 �
L1

L2

� �

� 100
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Lipid peroxidation

Lipid peroxidation was determined by quantifying the malondialdehyde (MDA) content

according to method described by Hodges et al. [44]. In brief, leaf samples (100 mg) were

homogenized in liquid nitrogen and extracted. In one set of reaction, leaf extract was mixed

with an equal volume of thiobarbituric acid reagent containing thiobarbituric acid (TBA) and

trichloroacetic acid (TCA) (TBA; 1 mL of 0.5% w/v prepared in 20% w/v TCA). In another set

of reaction, extract was mixed with an equal volume of TCA (20% w/v). Reaction mixtures

were incubated at 95˚C for 30 min, cooled at 25˚C, and centrifuged at 10000 x g for 5 min.

Absorbance of the supernatant was recorded at 440 nm, 532 nm, and 600 nm. MDA content

was quantified using the following equation:

A ¼ ½Abs532þTBA � Abs600þTBA� � ½Abs532� TBA � Abs600� TBA�

B ¼ ½Abs440þTBA � Abs600� TBA� � 0:0571

MDA mmol g � 1ð Þ ¼
A � B
15700

� 106

Total H2O2 content

Leaf samples (100 mg) were extracted in 80% cold acetone and hydrogen peroxide was deter-

mined by the modified method described by Mukherjee and Choudhuri [45]. Absorbance was

measured at 415 nm. Total H2O2 content of samples was calculated by a standard curve drawn

with the known concentration of H2O2.

Auxin content

For the quantification of auxin contents, Leaf samples were homogenized in liquid nitrogen

and extracted with 95% ethanol. Colorimetric assay was performed with Salkowski reagent

and the absorbance was recorded at 535nm [46].

Proline content

Free proline contents of harvested leaf samples were quantified by acid ninhydrin reagent as

described by Bates et al. [47]. One hundred mg plant leaves were homogenized in liquid nitro-

gen and extracted in aqueous sulphosalicylic acid. An equal volume of the extract and the acid

ninhydrin reagent are mixed together and incubated at 100˚C for 1 h. Reaction was terminated

by cooling the sample in an ice bath. Toluene was added after cooling the sample mix, vor-

texed, and upper phase was aspirated to measure the absorbance at 520nm. Total proline con-

tent was calculated using a standard curve of known concentration of proline.

Total amino acid content. Total amino acid content of plant samples was determined by

previously described method [48]. Plant leaf samples (100 mg) were extracted with 80% etha-

nol, and extract was treated with an equal volume of 0.2 M citrate buffer (pH 5) along with nin-

hydrin reagent (1% ninhydrin). The reaction mixture was incubated at 95˚C in a water bath

for 15 min. Samples were cooled to room temperature centrifuged and the absorbance was

read at 570 nm.

Total soluble sugars. Total soluble sugar contents were calculated according to the previ-

ously described method [49]. One hundred microgram leaf samples were homogenized with

liquid nitrogen and extracted in 1 mL of 80% ethanol. Three milliliter freshly prepared

anthrone reagent (150 mg anthrone in 100 mL of 72% v/v H2SO4) was added to 100 μL extract,
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kept at 100˚C in water bath for 10 min. Reaction mixtures were cooled at room temperature

and the absorbance was measured at 625 nm

Extract preparation for the analysis of metabolic activities. Five gram leaves were har-

vested from control and treated plants, powdered by homogenizing in liquid N2, and added to

the aqueous methanol (70% v/v). After 16 hr of incubation sample were centrifuged at 10000 x

g for 10 min, supernatant was collected in fresh reagent bottle and aqueous methanol was

again added to the sample for re-extraction. After double extraction supernatant was pooled,

concentrated under vacuum using a rotary evaporator (Büchi, Switzerland), and lyophilized at

-80˚C (VirTis Sentry, USA) and stored at -20˚C until further use.

Total phenolic content. Total phenolic content of the samples was estimated by the

Folin–Ciocalteu reagent. The Plant extract was added in 2.5 mL Folin–Ciocalteu reagent

(0.2M; Sigma-Aldrich, USA) mixed and incubated at room temperature. After 5 min of incu-

bation, 2 mL sodium carbonate (Na2CO3; 75 g L-1) were mixed in the reaction mixture and

incubated in dark at room temperature for 90 min. The absorbance was measured at 760 nm,

and the total phenolic content was calculated as gallic acid equivalent (GAE) from a standard

curve plotted with the known concentration of gallic acid [50, 51].

Total flavonoid content. Total flavonoid content was measured as described by Zhishen

et al. [52]. Plant extracts were mixed with NaNO2 (5% w/v), incubated at room temperature

for 5 min, followed by addition of AlCl3 (10% v/v). After 6 min, 1M NaOH was added to reac-

tion mixture, mixed well by vortex and absorbance was measured at 510 nm. The total flavo-

noid content was calculated from a standard curve of quercetin.

Total antioxidant activity. Total antioxidant activity was measured by 2,20-azino-bis

(3-ethylbenzothiazoline-6-sulphonic acid) free radical (ABTS+) scavenging ability of the

extracts of To generate the free radicals, ABTS diammonium salt (7 mM) solution was mixed

with potassium persulfate (2.45 mM), and incubated overnight in the dark at room tempera-

ture. After the generation of stable free radicals, absorbance of ABTS+ radical solution was

adjusted to A734nm = 0.70 ± 0.02 and equilibrated at 30˚C. Different concentrations of the

extract (10–50 μg mL-1) or the standard (1–5 μg mL-1) were added to the ABTS+ radical solu-

tion and absorbance was measured at 734 nm after 5 min. Trolox was used as standard and

percentage inhibition of absorbance was calculated [53].

DPPH free radical scavenging assay. To check the free radical scavenging of extract, 2,20-

diphenyl-1-picrylhydrazyl (DPPH) was used as free radical. The DPPH solution (0.024% w/v)

was prepared in methanol and absorbance was adjusted to Abs517 nm 0.98 ± 0.02 using metha-

nol. Different concentrations of extracts (10–80 μg mL-1) were mixed in DPPH solution

(Abs517 nm 0.98 ± 0.02) and incubated for 15 min at room temperature in the dark. The absor-

bance was measured at 517 nm and the radical scavenging activities were estimated [54].

Scavenging %ð Þ ¼
Abscontrol � Abssample

Abscontrol
� 100

Reducing power assay. To check reducing capacity different concentrations of the plant

extracts (100–1000 μg mL-1) were mixed with 1 mL phosphate buffer (0.2 M, pH 6.6). Thereaf-

ter 1 mL of K3Fe(CN)6 (10 mg mL-1) was added to the reaction and incubated at 50˚C in water

bath (Julabo, Germany). After 20 min of incubation, 1 mL trichloroacetic acid (100 mg L-1)

was added to terminate the reaction. Reaction mixtures were cooled at room temperature, cen-

trifuged at 7000 x g for 10 min and the supernatant was collected. In the next step 1 mL super-

natant was mixed with 0.2 mL freshly prepared FeCl3 (0.1% w/v), incubated for 10 min at

room temperature, absorbance was measured at 700 nm. Ascorbic acid was used as standard

[49, 51].
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Hydrogen peroxide scavenging activity. The hydrogen peroxide scavenging activity of

different concentration of plant extracts was evaluated by previously described method [6, 48,

49, 51]. Plant extracts (0.1–0.5 mg mL−1) were mixed with 0.4 mL phosphate buffer (50 mM,

pH 7.4) and 43 mM hydrogen peroxide (0.6 mL; prepared in phosphate buffer) added to the

reaction mixture, and absorbance was recorded at 230 nm (T1). After 10 min incubation,

absorbance of reaction mix was recorded at 230 nm (T2) and scavenging activity was calcu-

lated using following formula:

H2O2 scavenging activity %ð Þ ¼ 1 �
Abssample at T2

Abssample at T1

" #

� 100

Hydroxyl radical scavenging assay. Hydroxyl radical scavenging activity was performed

with different concentrations (10–100 μg) of plant extracts using Fenton reaction (Fe3+-ascor-

bate-EDTA-H2O2) as described by Saeed et al. [54]. Plant extracts were mixed with 500 μL of

2.8 mM 2-deoxyribose prepared in 50 mM potassium phosphate buffer (pH 7.4). Thereafter,

200 μL of 100mM FeCl3 and 100mM EDTA solution (1:1 v/v) and 100 μL of 200 mM H2O2

were added to reaction mixture. Reaction was started by adding 100 μL of 300mM ascorbic

acid to the reaction mixture and incubated for 1 h at 37˚C. After incubation, 500 μL reaction

mixture was added to the 1 mL of TCA solution (2.8% w/v) followed by addition of 1 mL of

aqueous TBA solution (1% prepared in 0.025 M NaOH containing 0.02% BHA) and incubated

at 99˚C in water bath (Julabo, Germany) for 15 min. Reactions were cooled at room tempera-

ture and absorbance was recorded at 532 nm. The following formula was used to calculate per-

cent scavenging activity.

Hydroxyl scavenging activity %ð Þ ¼ 1 �
Abssample

Abscontrol

� �

� 100

Statistical analysis

Statistical analysis was performed by GraphPad Prism software. One-way ANOVA followed

by Tukey post-hoc test was applied to compare the test and controls. Values are expressed as

the mean ± SE, and statistically significant differences are marked with different stars.

Results and discussion

Nitrogen fixing ability of Stenotrophomonas maltophilia BJ01

The bacterium S. maltophilia was grown in nitrogen-free semisolid NFb medium with malate

as a carbon source to confirm the nitrogen-fixing ability of the bacterial strain. Further, an

amplicon of expected 360 bp was obtained with degenerate nifH primers [55, 56], which con-

firmed the presence of the nifH gene in the bacterium (S1 Fig). The sequence analysis showed

99% query coverage and 99.44% homology with uncultured bacterium dinitrogenase reductase

(nifH) gene (JN162497) and also showed 99% query coverage and 83.29% homology with nifH
gene of culturable bacterium Bradyrhizobium japonicum (GQ289567). The nifH gene sequence

of S. maltophilia BJ01 was submitted to NCBI (GenBank: JX545230).

Stenotrophomonas maltophilia BJ01 alters the plant fatty acid composition

Fatty acid composition of peanut seedling was highly influence by the interaction with S. mal-
tophilia (Table 1). Under control condition (with N2 source), about 84.75% heptadecenoic

acid was detected followed by hexadecanoic acid (6.74%) and pentadecenoic acid (6.6%),
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whereas other fatty acids were negligible. In contrast, heptadecenoic acid was not detected

when plants were grown with nitrogenous source and bacterium. Furthermore, hexadecanoic

acid (37.5%) detected utmost followed by heptadecanoic acid (33.43%) and 6,9,12-octadeca-

trienoic acid (28.62%). Under N2 deficit condition, the maximum content of heptadecanoic

acid (76.54%) was detected in control plants (without N2 source) followed by hexadecanoic

acid (11.65%) and 6,9,12-octadecatrienoic acid (8.07%). High content of tetradecanoic acid

(C14:0; 41.11%) was observed in the plants grown under N2 deficit condition along with bacte-

rial inoculum, followed by 9-hexadecenoic acid (30.15%), hexadecanoic acid (15.94%), penta-

decanoic acid (9.26%) and 6,9,12-octadecatrienoic acid (2.16%). A change in the fatty acid

composition was observed due to interaction between S. maltophilia and peanut under control

and stress condition.

Peanut is an edible oil-yielding plant and grown worldwide for commercial edible-oil pro-

duction. Its fatty acid composition is considered beneficial for human health and widely used

in the human diet. It was observed that PGPR S. maltophilia interaction altered fatty acid com-

position while interacting with peanut plants under both normal and N2 stress conditions

(Table 1). Palmitoleic acid or 9-Hexadecenoic acid is an omega-7 monounsaturated fatty acid,

which is biosynthesized from palmitic acid, and an enhanced concentration was detected in

plants grown with PGPR under N2 stress condition. Monounsaturated fats are well known to

provide membrane fluidity and thus protect against cardiovascular disease. Similarly,

6,9,12-Octadecatrienoic acid, also known as Gamma-linolenic acid or GLA (γ-Linolenic acid)

is an omega-6 fatty acid, and its concentration increased after PGPR interaction. GLA has

been reported to reduce atopic dermatitis in a double-blind, placebo-controlled clinical trial

[57]. It was also noticed that content of mono-saturated fatty acids increased in plants during

PGPR inoculation. It was shown that saturated fatty acid has no effect on blood cholesterol lev-

els [58] whereas some saturated fatty acids have antibacterial activity [59]. Similar to this

study, inoculation of PGPR Bradyrhizobium japonicum altered the fatty acids composition of

soybean [60]. It was established that fatty acids content regulates the cell-membrane fluidity,

Table 1. Fatty acid composition of peanut plants grown under control or N2 stress conditions with or without bacteria Stenotrophomonas maltophilia BJ01.

FAs Fatty acid Control (with nitrogen) Stress (without nitrogen)

C–

without bacteria

C+

with bacteria

N–

without bacteria

N+

with bacteria

C12:0 Dodecanoic acid nd nd nd 0.12%

C13:0 Tridecanoic acid nd nd nd 0.10%

C14:0 Tetradecanoic acid 0.43% nd nd 41.11%

C15:0 Pentadecanoic acid nd nd 0.18% 9.26%

C15:1 10-Pentadecenoic acid 6.60% nd nd 0.12%

C16:0 Hexadecanoic acid 6.74% 37.50% 11.65% 15.94%

C16:1 (cis-9) 9-Hexadecenoic acid nd 0.07% 0.51% 30.15%

C17:0 Heptadecanoic acid 0.02% 33.43% 76.54% 0.51%

C17:1 10-Heptadecenoic acid 84.74% nd 0.41% 0.53%

C18:0 Octadecanoic acid nd 0.01% nd nd

C18:1 (trans-9) 9-Octadecenoic acid 0.04% nd 0.17% nd

C18:2 (cis-9,12) 9,12-Octadecadienoic acid 0.36% 0.37% 0.17% nd

C18:3 (cis-6,9,12) 6,9,12-Octadecatrienoic acid 0.49% 28.62% 8.07% 2.16%

C18:3 (cis-9,12,15) 9,12,15-Octadecatrienoic acid 0.58% nd 2.31% nd

nd: not detected or negligible amount detected. Control (C) and stressed (N) peanut seedlings (seven days old) grown in hydroponics (Hoagland solution) with (C+ and

N+) or without (C–and N–) bacterial inoculum for 21 days

https://doi.org/10.1371/journal.pone.0222405.t001
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and therefore alleviates the plant tolerance to different stress condition [61]. Surprisingly,

Cagide et al. [62] did not find any change in the fatty acid composition of Soybean grown with

Bradyrhizobium elkanii and Delftia sp. Strains. A similar result was also observed with alfalfa

plants cocultivated with S. meliloti [63]. It was speculated that inoculation of PGPR S. malto-
philia may have altered the fatty acid composition of peanut plants, resulted in the improved

plant-tolerance to N2 deficit condition by modulating membrane fluidity.

Plant growth and photosynthetic pigments are influenced by S. maltophilia
BJ01

The total chlorophyll, (about 0.7 mg g−1 Fw), Chl a (about 0.3 mg g−1 Fw), Chl b (about 0.4mg

g−1 Fw), and carotenoid (about 14 μg g−1 Fw) content were comparable between control plants

(media supplemented with nitrogenous source) grown with (C+) or without (C–) bacterial

inoculum (Fig 1). Under N2 deficit conditions, chlorophyll (total, a and b) and carotenoid con-

tents decreased in stressed plants grown without bacteria (N–) compared to control plants (Fig

1). About 0.4, 0.25, 0.15 and 0.12 mg g−1 Fw total chl, chl a, chl b and carotenoid contents were

estimated in stress plants grown without bacteria. It was observed that bacterial inoculation

enhances the photosynthetic pigments of plants under N2 deficit conditions. Higher amount

of total chlorophyll (about 0.6), chl a & b (about 0.3), and carotenoid (about 14 mg g−1 Fw)

were detected in stress plants (N+) grown with bacterial inoculum compared to those plants

grown without bacteria under N2 stress condition.

PGPRs are widely used in agriculture for enhanced growth and productivity of crops, and

the most common beneficial bacteria are Azospirillum spp. and rhizobia [64]. It is hypothe-

sized that PGPRs influence the content of photosynthesis pigments, and thus control the plant

growth and yield. Growth characteristics of the control and treated plants did not show signifi-

cant changes (S2 Fig), however, plants grown with bacterium inoculum showed dense root

morphology (Fig 2). Overall, plants grown with bacterium showed better morphology (overall

plant growth e.g. plant height–shoot and root length, and number of leaves) compared to their

corresponding control plants (Fig 2). Chlorophylls and carotenoids are pigments which are

involved in photosynthesis, they absorb light and provide the energy [65]. They are also

involved in the regulation of plant growth [66]. Our results suggest that bacterial inoculation

promotes plants to grow under control and stress conditions compared to corresponding

plants grown without bacteria (Figs 1 and 2). Previously, an increase in the content of photo-

synthetic pigments was observed in wheat and Arabidopsis thaliana plants by inoculation with

Azospirillum brasilense [67, 68].

Interaction of S. maltophilia regulates the physiology and biochemical

status of Arachis hypogea
Electrolyte leakage, membrane stability, lipid peroxidation and hydrogen peroxide production

were measured for control and stressed plants, grown with or without bacteria (Fig 3). No sig-

nificant electrolyte leakage was observed in the control plants (C) grown with (C+; 8.2%) or

without (C–; 7.7%) bacteria. However, under nitrogen deficit condition, electrolyte leakage

decreased significantly in the plants grown with bacteria (N+; 6%) compared to those that

grown without bacteria (N–; 9.8%). Similarly, lower H2O2 content was estimated in the treated

plants (C+ and N+; grown with bacteria) compared to plants grown without bacterial inocu-

lum (C–and N–). About 7.4 μmol g-1 Fw H2O2 were measured in the plants grown without

bacteria (C–), which decreased significantly to 6.3 μmol g-1 Fw in the plants grown with bacte-

ria (C+). Under nitrogen stress condition, H2O2 production further decreased significantly,

and 5.5 and 4.4 μmol g-1 Fw H2O2 were estimated in the plants grown without (N–) or with
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bacteria (N+). In contrast, lipid peroxidation (measured by MDA content which is a product

of lipid peroxidation and accumulated in the cells) increased under N2 stress condition but a

quenching effect (mitigation of lipid peroxidation) was observed when plants were grown with

bacteria under both normal and N2 stress condition. About 1.36 (C–) and 2.56 (N–) μmol g-1

Fw MDA contents were measured in control and N2 stressed plants grown without bacteria,

which reduced to 0.83 (C+) and 1.73 (N+) μmol g-1 Fw in the plants grown with bacteria inoc-

ulum. The membrane stability indices (0.8–0.9) were almost similar for control and N2

stressed plants grown with or without bacteria inoculum.

The biochemical status of plants was studied by measuring auxin, proline, total amino-

acids and total sugar contents of control and N2 stressed plants grown with or without bacteria

inoculum (Fig 4). Auxin content was increased significantly in the plants grown with bacteria

inoculum, about 0.28 mg g-1 Fw auxin was detected in control and N2 stressed plants (C–and

N–) grown without bacteria which reached to about 0.4 mg g-1 Fw in the plants grown with

bacteria inoculum. In contrast, lower proline accumulation was observed in the plants grown

Fig 1. Chlorophyll content and carotenoids content of control and stressed peanut plants grown with or without bacterium.

(A) Total chlorophyll, (B) chlorophyll a, (C) chlorophyll b, and (D) carotenoids contents of peanut plants grown under nitrogen

supplement (C) or nitrogen deficit (N) conditions with inoculum (C+ and N+) or without inoculum (C–and N–). Bars represent

means ± SE, and ‘�’, ‘��’ and ‘���’ indicate significant differences at P< 0.05, P< 0.01 and P< 0.001, respectively, while ‘ns’

means no significant difference.

https://doi.org/10.1371/journal.pone.0222405.g001
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with bacteria inoculum compared to corresponding plants grown without bacteria. About 62

and 71 μg g-1 Fw proline were estimated in the control and N2 stressed plants grown without

bacteria. Proline content was decreased more than 50%, and about 30 and 34 μg g-1 Fw proline

Fig 2. Morphology of control and stressed peanut plants grown with or without bacterial inoculum. Control (C:

medium supplemented with nitrogenous source) and stressed (N: nitrogen deficit condition) peanut seedlings grown

in hydroponics (Hoagland solution) with (C+ and N+) or without (C–and N–) bacterial inoculum for 21 days.

https://doi.org/10.1371/journal.pone.0222405.g002
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were detected in the plants grown with bacteria inoculum. Similarly, total soluble sugar (TSS)

was decreased in the plants grown with bacteria compared to plants grown without bacteria

under both control and N2 stress condition. About 0.35–0.37 mg g-1 Fw TSS was observed in

control and N2 stressed plants grown without bacteria, which decreased significantly to 0.25–

0.23 mg g-1 Fw when plants were grown with bacteria inoculum. No significant difference was

found in the total amino-acid (TAA) content, and about 0.35 mg g-1 Fw TAA was observed in

Fig 3. Physiological analyses of control and stressed peanut plants grown with or without bacterium. Estimation of (A) electrolyte leakage, (B) membrane

stability index, (C) lipid peroxidation, and (D) hydrogen peroxide content of peanut plants grown under nitrogen supplement (C) or nitrogen deficit (N) conditions

with inoculum (C+ and N+) or without inoculum (C–and N–). Bars represent means ± SE, and ‘�’, ‘��’ and ‘���’ indicate significant differences at P< 0.05, P< 0.01

and P< 0.001, respectively, while ‘ns’ means no significant difference.

https://doi.org/10.1371/journal.pone.0222405.g003
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all plants, however TAA increases significantly to about 0.43 mg g-1 Fw in the stressed plant

grown with bacteria.

Accumulation of osmoprotectants such as proline, total amino acids and total sugars can

protect plants and scavenge the free hydroxyl radicals [69]. Rhizobacterium Enterobacter cloa-
cae is reported to protect plants under biotic and abiotic stress conditions [1]. In the present

study, plants co-cultivated with PGPR S. maltophilia showed improved physiology and bio-

chemical status under normal as well as N2 stress condition (Figs 3 and 4). Environmental

Fig 4. Biochemical analyses of control and stressed peanut plants grown with or without bacterium. Estimation of (A) Auxin, (B) proline, (C) total amino

acids, and (D) total soluble sugars in peanut plants grown under nitrogen supplement (C) or nitrogen deficit (N) conditions with inoculum (C+ and N+) or

without inoculum (C–and N–). Bars represent means ± SE, and ‘�’, ‘��’ and ‘���’ indicate significant differences at P< 0.05, P< 0.01 and P< 0.001, respectively,

while ‘ns’ means no significant difference.

https://doi.org/10.1371/journal.pone.0222405.g004
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stress promotes the generation of ROS which leads to enhanced lipid peroxidation, assessed by

observation of an increase in the MDA contents [70, 71]. The decrease in MDA content con-

firms that bacterial inoculation protects peanut plants under control and stress conditions.

Higher accumulation of auxin in inoculated plants further supports the plant growth due to

PGPR under normal as well as stress condition.

Bacterium interaction influences the antioxidant and scavenging activities

of Arachis hypogea
Total phenolic (TPC) and total flavonoid (TFC) contents were increased in the plants when

grown with bacteria. About 6.24 μg mg-1 gallic acid equivalent (GAE) TPC was estimated in

the control plants grown without bacteria which increased significantly after bacterial inocula-

tion (21.29 μg mg-1 GAE). Under N2 stress condition, about 95.76 μg mg-1 GAE TPC was mea-

sured in the plants grown without bacteria, which further increased and reached maximum

(103.25 μg mg-1 GAE) when grown with bacterial inoculum (Fig 5). Similarly, total flavonoid

content was increased and maximum content (95.35 μg QE) was estimated in the plants grown

under N2 deficit condition with bacterial inoculum (Fig 5). Plants co-inoculated with S. malto-
philia showed higher content of phenolic-compounds and total flavonoids under normal and

stress condition compared to corresponding controls. These results suggest that peanut plants

modify their metabolism in response to bacterium inoculum and thus produce a higher

amount of TPC and TFC. Further, total phenolic-compounds and total flavonoids influence

the plant defence against free radicals under normal and N2 stress condition.

The N2 deficit condition may lead to free radical formation during nitrogen fixation, there-

fore different antioxidant and scavenging activities were studied under normal and stress con-

dition. Total antioxidant and scavenging (DPPH, hydrogen peroxide and hydroxyl ions)

activities were found concentration dependent (S3 Fig). Total antioxidant and scavenging

activities were increased concomitantly with the increasing concentration of plants extracts,

and maximum activity (except DPPH scavenging) was noticed for the N2 stressed plants

grown with bacterial inoculum (N+). In contrast, maximum DPPH scavenging activity was

observed with stressed plant extracts grown without bacterial inoculum (S3 Fig).

The half maximal effective concentration (EC50) was estimated for the different antioxidant

and scavenging activities (Fig 5). The EC50 for total antioxidant was lower for stressed plants

grown with bacteria (N+; 90 μg mL-1) compared to control plants grown with bacteria (C+;

104 μg mL-1), followed by control plants grown without bacteria (C–; 139 μg mL-1) and stressed

plants grown without bacteria (N–; 167 μg mL-1). Similarly, for hydroxyl ions scavenging

activity, the lowest EC50 of 210 μg mL-1 was detected for N+, followed by C+ (236 μg mL-1),

C–(412 μg mL-1) and N– (551 μg mL-1). Plants grown under N2 deficit condition showed maxi-

mum H2O2 scavenging activity compared to plants grown under control condition. In contrast,

a decrease in the DPPH scavenging activity was observed in plants after bacterial interaction

under both control and stress condition. In addition bacterial interaction showed maximum

antioxidant and scavenging activities that required the lowest EC50 dose (Fig 5).

Phenolic, flavonoids and secondary metabolites are plant-derived compounds which play a

key role in defence under stress condition [72]. Phenolic-compounds are considered precur-

sors of several signalling molecules which are involved in plant growth, redox reactions and

stress tolerance [73, 74]. In legumes, flavonoids (like daidzein and genistein) and coumestrol

trigger the nodule formation [75, 76]. In this study, an enhanced total phenolic and flavonoid

contents were detected in plants which are co-cultivated with bacterium inoculum (Fig 5).

Generation of free radicals lead to auto-oxidation, and maintain oxidation/reduction equi-

librium which is important for plant growth and stress tolerance [77]. TPC and TFC are
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known for their antioxidant and scavenging potential [78], as well as our results showed that

PGPR S. maltophilia improves the antioxidant and scavenging activities of peanut plants by

enhancing the TPC and TFC. Similarly, soybean plants inoculated with PGPR also enhanced

antioxidant and scavenging activities [59, 79, 80].

Conclusion

In the study, the PGPR effect of Stenotrophomonas maltophilia BJ01 strain was evaluated by

co-cultivating with Arachis hypogaea GG20 (peanut) plants under normal and nitrogen defi-

cient conditions. Plants use metabolites, especially secondary metabolites (alkaloids, flavonoids

and phenolics), as their defence system in the face of various biotic and abiotic stresses. Earlier

studies have shown the changes in metabolic profile and essential oils of host plant after inter-

action with microbes. We have demonstrated that metabolites and fatty acid content were

altered in peanut after interaction with S. maltophilia BJ01 strain under nitrogen starvation

condition. The data presented herein highlight the understanding of different aspects of con-

nection between induced systemic resistance ISR, signaling and metabolic pathways which can

play a major role in plant-microbe interaction. Interaction of plants with PGPR’s improve the

plant health and soil fertility in many aspects but the systemic information about host plant at

metabolic and genetic level is still in infancy which needs an extensive research.
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