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Abstract

Methods have been developed for Mendelian randomization that can obtain consistent

causal estimates under weaker assumptions than the standard instrumental variable

assumptions. The median-based estimator and MR-Egger are examples of such methods.

However, these methods can be sensitive to genetic variants with heterogeneous causal

estimates. Such heterogeneity may arise from over-dispersion in the causal estimates, or

specific variants with outlying causal estimates. In this paper, we develop three extensions

to robust methods for Mendelian randomization with summarized data: 1) robust regression

(MM-estimation); 2) penalized weights; and 3) Lasso penalization. Methods using these

approaches are considered in two applied examples: one where there is evidence of over-

dispersion in the causal estimates (the causal effect of body mass index on schizophrenia

risk), and the other containing outliers (the causal effect of low-density lipoprotein choles-

terol on Alzheimer’s disease risk). Through an extensive simulation study, we demonstrate

that robust regression applied to the inverse-variance weighted method with penalized

weights is a worthwhile additional sensitivity analysis for Mendelian randomization to pro-

vide robustness to variants with outlying causal estimates. The results from the applied

examples and simulation study highlight the importance of using methods that make differ-

ent assumptions to assess the robustness of findings from Mendelian randomization investi-

gations with multiple genetic variants.

Introduction

Mendelian randomization uses genetic variants as instrumental variables to estimate the causal

effect of a risk factor on an outcome using observational data [1, 2]. The genetic variants must

satisfy the following criteria (illustrated in Fig 1) to be a valid instrumental variable (IV):

• IV1: the variant is associated with the exposure X,

PLOS ONE | https://doi.org/10.1371/journal.pone.0222362 September 23, 2019 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Rees JMB, Wood AM, Dudbridge F,

Burgess S (2019) Robust methods in Mendelian

randomization via penalization of heterogeneous

causal estimates. PLoS ONE 14(9): e0222362.

https://doi.org/10.1371/journal.pone.0222362

Editor: N. Charlotte Onland-Moret, Universitair

Medisch Centrum Utrecht, NETHERLANDS

Received: April 6, 2019

Accepted: August 27, 2019

Published: September 23, 2019

Copyright: © 2019 Rees et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data can be

found in the PhenoScanner database (http://www.

phenoscanner.medschl.cam.ac.uk/). R code for

performing the approaches outlined in the paper,

and extracting genetic association estimates are

found in S1 Appendix.

Funding: Stephen Burgess is supported by Sir

Henry Dale Fellowship jointly funded by the

Wellcome Trust and the Royal Society (Grant

Number 204623/Z/16/Z).

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

http://orcid.org/0000-0001-5365-8760
https://doi.org/10.1371/journal.pone.0222362
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222362&domain=pdf&date_stamp=2019-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222362&domain=pdf&date_stamp=2019-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222362&domain=pdf&date_stamp=2019-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222362&domain=pdf&date_stamp=2019-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222362&domain=pdf&date_stamp=2019-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222362&domain=pdf&date_stamp=2019-09-23
https://doi.org/10.1371/journal.pone.0222362
http://creativecommons.org/licenses/by/4.0/
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/


• IV2: the variant is independent of all confounders U of the exposure-outcome association,

and

• IV3: the variant is independent of the outcome Y conditional on the exposure X and con-

founders U [3].

A recent development in Mendelian randomization is the availability of summarized data:

this consists of the associations (beta-coefficients and standard errors) of genetic variants with

the risk factor and with the outcome from regressing each variant in turn [4]. Summarized

data can be used to calculate an estimate of the causal effect of the risk factor on the outcome

for each genetic variant. The inverse-variance weighted (IVW) method [5] combines these

estimates to provide an overall estimate of the causal effect using summarized data from all the

genetic variants. If the genetic variants are uncorrelated, the IVW estimate is asymptotically

equal to the estimate from the two-stage least squares method commonly used with individ-

ual-level data [6].

The inclusion of a variant in a Mendelian randomization analysis that violates either the

IV2 or the IV3 assumption may lead to biased causal estimates [7]. Robust methods have

therefore been developed to estimate consistent causal effects under weaker assumptions when

there are multiple genetic variants. These methods include a median-based method [8] and

MR-Egger [9]. Genetic variants that violate the IV assumptions are likely to have heteroge-

neous causal estimates. We here consider heterogeneity in two settings: firstly, when there is

more variance between the variant-specific causal estimates than expected by chance, but the

burden of heterogeneity is shared across several genetic variants (over-dispersion); and sec-

ondly, when specific variants have outlying causal estimates, and they alone are responsible for

driving the observed heterogeneity.

Several robust methods have been proposed that try to identify and remove genetic variants

with heterogeneous causal estimates that are suspected to be invalid instruments. These

include the MR-PRESSO [10], global and individual tests for direct effects (GLIDE) [11], and

generalized summary Mendelian randomization (GSMR) [12] methods. Cochran’s Q-statistic

has been used in Mendelian randomization to downweight [8] or exclude genetic variants

with heterogeneous causal estimates [13]. The Q-statistic is based on the first order weights of

the IVW model which assumes that there is no measurement error (NOME) in the genetic

Fig 1. Causal directed acyclic graph illustrating the instrumental variable assumptions for the instrumental variable G, exposure X,

outcome Y, and the set of variables (U) that confound the association between X and Y.

https://doi.org/10.1371/journal.pone.0222362.g001
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associations with the risk factor [14]. If this assumption is invalid, then the type I error rate of

the Q-statistic will be inflated. Bowden et al. [14] have accounted for possible violations in the

NOME assumption by using adapted second order weights to calculate the Q-statistic.

We here propose three further ways of downweighting or excluding variants with hetero-

geneous causal estimates that could be considered as part of a sensitivity analysis in a Mende-

lian randomization study. The first two of these extensions can be used as modifications to

either the IVW or the MR-Egger method. These extensions have been influenced by the liter-

ature on robust statistics [15], and recent developments in robust methods for Mendelian

randomization.

First, we outline the parametric assumptions made throughout the paper and discuss the

estimation of the causal effect in a Mendelian randomization study. We then introduce three

robust approaches: robust regression (MM-estimation), penalized weights, and Lasso penaliza-

tion. We apply these approaches to published data on body mass index (BMI) and schizophre-

nia risk, and on low-density lipoprotein cholesterol (LDL-C) and Alzheimer’s disease (AD)

risk. Next, we perform a simulation study under realistic settings to compare bias and coverage

properties of the robust methods when some of the genetic variants are invalid IVs. Finally,

we discuss the results of the paper and its implications to applied Mendelian randomization

research. Software code for implementing all of the methods used in this paper, including

extracting the genetic association estimates for the applied examples, is provided in S1 Appen-

dix. The methods (excluding Lasso penalization) can also be applied using the R packageMen-
delianRandomization [16].

Methods

Parametric assumptions

Throughout the paper, we assume linearity and no effect modification of the causal effect θ of

the risk factor on the outcome, and the associations of the genetic variants Gj (j = 1, . . ., J) with

the risk factor and with the outcome. These assumptions are not necessary to estimate a causal

effect, but they ensure that all valid IVs estimate the same causal parameter. Under these

assumptions, the association bYj between the variant Gj and the outcome can be decomposed

into an indirect effect via the risk factor and a direct (pleiotropic) effect αj (illustrated in Fig 2):

bYj ¼ aj þ ybXj : ð1Þ

We also assume that the outcome is a continuous variable. If the outcome is binary, then

the methods can be applied to the log odds ratios obtained from logistic regression of each

genetic variant on the outcome. The linearity assumption must now hold for the logit-trans-

formed probability of the outcome. Difficulties with interpreting the causal estimate of an

odds ratio with a binary outcome and a logistic-linear model have been widely discussed [17],

with evidence to suggest that the causal estimates tend to be unbiased under the null [18].

Estimating the causal effect

The causal effect θ can be estimated using the genetic associations with the risk factor (b̂Xj)

and with the outcome (b̂Yj). The ratio estimate of the causal effect for variant j is given by:

ŷ j ¼
b̂Yj

b̂Xj

: ð2Þ

The J ratio estimates can be combined to provide an overall causal estimate by fitting weighted
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linear regression of the associations of the variants with the outcome on the associations of the

variants with the exposure, with the intercept set to zero and se ðb̂YjÞ
� 2

as weights:

b̂Yj ¼ y b̂Xj þ �j; �j � N ð0;c2 se ðb̂YjÞ
2
Þ : ð3Þ

The estimate obtained from Eq (3) is equivalent to the estimate from the IVW method [5].

Under a fixed-effects model, we set the residual standard error (ψ) to be equal to one by

dividing the standard error of the causal estimate by the estimated residual standard error.

To account for heterogeneity (overdispersion) in the causal estimates, the residual standard

error can be greater than one under a random-effects model. The causal estimate from the

fixed and multiplicative random-effects models will be the same, but the standard error of the

causal effect will be larger from the multiplicative random-effects model if there is heterogene-

ity between the causal estimates.

A genetic variant is pleiotropic if it has a direct effect on the outcome that is not via the risk

factor (αj 6¼ 0). The IVW method under a fixed or multiplicative random-effects model will

produce a consistent causal estimate when there is no pleiotropy (αj = 0 for all variants), or

when the average pleiotropic effect is zero (referred to as balanced pleiotropy) and the pleiotro-

pic effects are distributed independently of the associations of the genetic variants with the

risk factor (known as the InSIDE assumption—Instrument strength independent of the Direct

Effect) [9, 19]. If an intercept term in Eq (3) is estimated, then this is the MR-Egger method,

and the causal estimate will be consistent in the presence of directional pleiotropy (the average

pleiotropic effect differs from zero) if the InSIDE assumption is satisfied [9]:

b̂Yj ¼ y0 þ y1 b̂Xj þ �j; �j � N ð0;c2

E se ðb̂YjÞ
2
Þ : ð4Þ

If the genetic variants are all valid IVs, then the ratio estimates for each variant should be

similar. If the b̂Yj estimates were plotted against the b̂Xj estimates, a pleiotropic variant may

Fig 2. Decomposition of the association between the genetic variant Gj and the outcome Y into the indirect effect via the risk factor X and

direct (pleiotropic) effect αj.

https://doi.org/10.1371/journal.pone.0222362.g002
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appear as an outlier relative to the valid IVs as the direct effect of the pleiotropic variant will

result in the vertical displacement of b̂Yj from the causal effect (Eq (1)). Robust methods that

downweight the contribution of variants with heterogeneous ratio estimates should reduce the

impact that variants with outlying or over-dispersed estimates have on the causal estimate. For

example, the simple median estimator is the median of the J ratio estimates θj (j = 1, . . ., J), and

will produce consistent causal estimates if at least 50% of the genetic variants are valid IVs [8].

Typically, applied Mendelian randomization analyses will use one variant from each gene

region. Under Mendel’s second law, these variants should be independently distributed due to

their physical separation. The methods discussed in this paper will therefore assume that the

variants are uncorrelated.

Robust regression (MM–estimation). The breakdown point is a measure of the robust-

ness of an estimator to contaminations (such as outliers) in the dataset [15]. Ordinary least

squares (OLS) has a breakdown point of 0% as all of the observations have equal weight and

just one outlying observation can heavily influence the estimator, resulting in an arbitrarily

large or small estimate. Robust regression methods, such as MM-estimation, have been pro-

posed where the breakdown point is greater than 0% [15].

In this paper, we use an MM-estimation approach proposed by Koller and Stahel [20] as it

retains the high asymptotic efficiency of the M-estimator (‘maximum likelihood type’), whilst

utilising the S-estimator (‘scale-type estimate’) to provide robustness against outliers and

leverage points. Under this method, a S-estimate is fitted to minimize the M-estimate of scale,

which has the desired high breakdown point but may lack efficiency. The estimates for the

scale and regression parameters obtained in this stage are then used to fit an M-estimator with

high efficiency, where the scale estimate is held constant to retain the high-breakdown point

[20].

Additional robustness in MM-estimation may be achieved by using Tukey’s bisquare objec-

tive function in the estimation procedure with its weighting function:

wðrjÞ ¼
1 �

rj
c

� �2
� �2

if jrjj < c

0 if jrjj � c

;

8
>><

>>:

where rj are the standardized residuals, and w(rj) are used in the objective function of the itera-

tively reweighted least squares algorithm to obtain the MM-estimates. The recommended

values for the tuning parameter cmaintain a high breakdown point in the S-estimation step

(c = 1.548) and provide efficiency in the M-estimation step (c = 4.685). In MM-estimation

with Tukey’s bisquare objective function, the weight of an observation decreases as rj tends

away from zero, and when |rj|� c the observation will have zero weight.

Throughout the paper, we will refer to this approach as robust regression. It is the default

implementation of robust regression for the lmrob command in the R package robustbase
[21]. Since the lmrob command allows the user to specify a vector of weights to be used in

conjunction with Tukey’s weighting function, robust regression can be used instead of ‘ordi-

nary regression’ (weighted least squares) for the IVW and MR-Egger methods.

Penalized weights. We assume that the NOME assumption is satisfied, and propose an

approach for downweighting genetic variants with heterogeneous ratio estimates in the IVW

model using Cochran’s Q statistic:

Q ¼
X

j

Qj ¼
X

j

se ðb̂YjÞ
� 2
ðb̂Yj � ŷb̂XjÞ

2
; ð5Þ
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which has an approximate w2
J� 1

distribution under the null hypothesis that all J genetic variants

satisfy the IV assumptions, with the J components Qj (j = 1, . . ., J) having approximate w2
1

dis-

tributions [13]. Since penalized weights would normally be considered when pleiotropy is

suspected, the simple (unweighted) median estimate is used for the value of ŷ in Eq (5) rather

than the IVW estimate.

To ensure that the weights ( se ðb̂YjÞ
� 2

) for the majority of the variants remain the same, we

use a penalization for the IVW method based on the one-sided upper tail probability (denoted

qj) of Qj on a w2
1

distribution by multiplying the weights by min(1, 100qj). A similar down-

weighting factor, min(1, 20qj), was used for the penalized–median estimator in the paper by

Bowden et al. [8]. Initially we used min(1, 20qj) but found that too many variants were being

penalized, resulting in over-precise estimates that had poor coverage of the true causal effect.

By multiplying the weights by min(1, 100qj), the outlying variants should be severely penalized,

without downweighting too many genetic variants that are valid IVs.

For the MR-Egger method, we consider the modified Q’ statistic [22]:

Q0 ¼
X

j

Q0j ¼
X

j

se ðb̂YjÞ
� 2
ðb̂Yj � ŷ0 � ŷ1b̂XjÞ

2
; ð6Þ

where ŷ0 and ŷ1 are taken from the MR-Egger model. If the MR-Egger model is correct, the Q’

statistic in Eq (6) should follow an approximate w2
J� 2

distribution [23]. The penalized weights

described in this Section can also be applied to robust regression for the IVW and MR-Egger

methods, subsequently referred to as the robust and penalized approach (or robust regression

with penalized weights).

Lasso penalization. The application of Lasso regression in IV analyses has already been

considered in the literature [24–26]. The penalty term in Lasso regression shrinks the regres-

sion coefficients towards zero, and forces some coefficients to be zero [27]. The sparsity prop-

erty (shrinking some coefficients to zero) of Lasso regression has been used to identify and

remove invalid IVs. The IV methods that use Lasso regression have only been considered with

respect to individual level data.

We take the ‘post-lasso’ method proposed by Windmeijer et al. [25] for individual level

data and adapt this method to be used with summary level data. First, we consider the objec-

tive function for the MR-Egger model that is minimized when fitting the regression model of

Eq (4):

X

j

se ðb̂YjÞ
� 2
ðb̂Yj � y0 � y1b̂XjÞ

2
:

To better model the pleiotropic effects αj in Eq (1), we propose replacing θ0 with a separate

intercept coefficient for each genetic variant y0j
, and adding a Lasso-penalty term for the y0j

parameters:

X

j

se ðb̂YjÞ
� 2
ðb̂Yj � y0j

� y1b̂XjÞ
2
þ l
X

j

jy0j
j : ð7Þ

If y0j
shrinks to zero in Eq (7), the genetic variant is treated as a valid IV. We take the genetic

variants with a zero intercept term y0j
, and perform the IVW method using these variants

only to estimate the causal effect θ. The degree of shrinkage in Eq (7) is determined by

the value of the tuning parameter λ. If λ =1, then all of the genetic variants are assumed

to be valid instruments as y0j
is forced to be zero for all J variants, and the IVW method is
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performed using the full set of genetic variants. If λ = 0, then all of the variants can be pleio-

tropic, and the parameters in Eq (7) are not identified.

To determine the value of λ, two rules were considered: 1) a heterogeneity stopping rule;

and 2) a cross-validation rule. The heterogeneity stopping rule is influenced by the method

used by Windmeijer et al. [25] and Cochran’s Q statistic. For the heterogeneity stopping rule,

we fit the Lasso penalization model (Eq (7)) over a range of values for λ, starting with a value

close to zero, and then increasing λ in small increments. We stop at λ = λn when the residual

standard error from the IVW model, based on the variants determined to be valid from λ =

λn+1, is greater than 1, and the increase in the residual standard error from λn to λn+1 is greater

than w2
1
ð0:95Þ=Jinc, where w2

1
ð0:95Þ is the upper 95th percentile of a chi-squared distribution

on 1 degree of freedom, and Jinc is the number of genetic variants included in the IVW model

when λ = λn+1.

As an alternative to the heterogeneity stopping rule, we use the optL1 command in the R

package penalized [28]. optL1 compares the predictive ability of the Lasso regression model

for different values of λ through leave-one-out cross-validation. The optimal value of λ is then

determined by maximizing the cross-validated likelihood function.

Summary

In this Section, we have introduced three robust approaches that can be used in a Mendelian

randomization study as part of the sensitivity analysis. The approaches use summary level data

that either downweight or remove genetic variants that have heterogeneous causal ratio esti-

mates. In the next Section, we apply these approaches to published summary data to investi-

gate the causal effect of body mass index on schizophrenia risk, and the causal effect of low-

density lipoprotein cholesterol on Alzheimer’s disease risk.

Applied examples

To illustrate the performance of the proposed extensions, we considered two applied examples:

one where there was evidence of over-dispersion in the ratio estimates (the causal effect of

BMI on schizophrenia risk); and another that contained outliers (the causal effect of LDL-C

on AD risk). Using summary data (beta–coefficients and standard errors) from PhenoScanner

[29], we considered the IVW method with: 1) the full set of genetic variants; 2) robust regres-

sion; 3) penalized weights; and 4) robust regression and penalized weights. Lasso penalization

with the heterogeneity stopping and cross-validation rules, the simple median, the weighted

median, and the MR-Egger methods were also considered. Under the heterogeneity stopping

rule, the Lasso penalization model was applied to λ = 0.1, 0.2, . . ., 4.9, 5.0, 5.2, 5.4, . . ., 9.8, 10.0.

Multiplicative random-effects models were used in all analyses.

Causal effect of body mass index on schizophrenia risk

Although individuals with schizophrenia tend to be overweight [30], it is generally believed

that this is due to the effect of anti-psychotic medication on body composition (reverse causa-

tion) rather than any causal effect of BMI on schizophrenia risk [31]. For this Mendelian ran-

domization analysis, we used the 97 genetic variants reported by the Genetic Investigation of

Anthropometric Traits (GIANT) consortium that were associated with BMI in 339,224 Euro-

pean-descent individuals at a genome-wide level of significance (p-value < 5 × 10−8) [32]. Var-

iants were clumped at a correlation threshold of r2 > 0.1, and all 97 variants are separated by at

least 500 kilobases. The genetic associations with schizophrenia were obtained from the Psy-

chiatric Genomics Consortium (PGC) based on 35,476 cases and 46,839 controls mostly of

European descent [33]. The summarized data used in this paper were recently applied in a

Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates
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Mendelian randomization study investigating the causal effect of BMI on psychiatric disor-

ders, including schizophrenia risk [34].

Causal effect of low-density lipoprotein cholesterol on Alzheimer’s disease

risk

Epidemiological studies have provided evidence of an association between LDL-C and

increased risk of AD [35, 36]. However, there is also evidence to suggest that patients with AD

have altered lipid metabolism (reverse causation) [37]. In this Mendelian randomization analy-

sis, we used the 75 genetic variants previously demonstrated to be associated with LDL-C at

a genome-wide level of significance by the Global Lipids Genetics Consortium (GLGC) [38].

The point estimates for the genetic associations with LDL-C were taken from the linear regres-

sion in up to 188,578 participants from GLGC [39]. The majority of variants are separated by at

least 1 megabase. A second variant from a gene region was only selected if it was independently

associated with LDL-C and in low linkage disequilibrium with the lead variant (r2 < 0.05). A

recent Mendelian randomization study used summarized data from GLGC to investigate the

causal association between low LDL-C levels and AD risk using data on 380 variants. Our anal-

ysis is based on a smaller set of genetic variants compared to Benn et al. [40] as we excluded

variants that were associated with LDL-C and high-density lipoprotein and/or triglycerides.

The genetic associations with AD were obtained from the International Genomics of Alzhei-

mer’s Project (IGAP) based on 17,008 cases and 37,154 controls of European-descent [41].

Results

The estimated genetic associations with 95% confidence intervals for the two examples are dis-

played in Fig 3. The plots demonstrate the overdispersion in the ratio estimates for BMI and

Fig 3. Graph A) displays the estimated genetic associations and 95% confidence intervals with body mass index (BMI, standard deviation units) and with

schizophrenia (log odds ratios) for 97 genetic variants. Graph B) displays the estimated genetic associations and 95% confidence intervals with low-density

lipoprotein cholesterol (LDL-C, standard deviation units) and with Alzheimer’s disease (log odds ratios) for 75 genetic variants: the two outlying variants are

labelled with their rsID codes.

https://doi.org/10.1371/journal.pone.0222362.g003
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schizophrenia; and two outliers in the LDL-C and AD example. The outlying variants (rs6859

and rs7254892) for LDL-C and AD are located near to the APOE locus and are associated with

AD risk with odds ratios of 1.40 (95% CI: 1.35, 1.44) and 1.28 (95% CI: 1.15, 1.44) respectively

[41]. Studentized residuals from the IVW analysis for these variants are 16.5 and −0.95 (all

other variants had absolute Studentized residual less than 2), and Cook’s distances are 2.51

and 0.11 respectively (all other Cook’s distances were less than 0.06).

Estimates and 95% confidence intervals from the Mendelian randomization analyses are

provided in Table 1. All of the estimates for BMI and schizophrenia suggest a null causal effect

(as also observed in the Mendelian randomization study by Hartwig et al. [34]), although there

is wide variation in the standard errors. The use of penalized weights and robust regression in

the IVW method improved the precision of the estimates. There was little difference in the

point estimates or standard errors obtained from the IVW method with penalized weights,

and from the IVW method with robust regression and penalized weights. With exception of

the IVW and MR-Egger methods, the median estimates were the least precise.

Table 1. Estimates (standard errors) and 95% confidence intervals of the causal effect of body mass index on

schizophrenia risk (log odds ratio for schizophrenia per 1 standard deviation increase in body mass index) and

low-density lipoprotein cholesterol on Alzheimer’s disease risk (log odds ratio for Alzheimer’s per 1 standard

deviation increase in low-density lipoprotein cholesterol) from the IVW method with: 1) the full set of genetic var-

iants (IVW); 2) robust regression; 3) penalized weights; and 4) robust regression and penalized weights. Results

from Lasso penalization with the heterogeneity stopping rule and cross-validation, simple median, weighted median

and MR-Egger methods are also presented.

Estimate (SE) 95% CI

Applied example 1: Causal effect of BMI on schizophrenia risk

IVW -0.031 (0.100) -0.227, 0.165

Robust regression -0.024 (0.079) -0.180, 0.132

Penalized weights -0.056 (0.065) -0.184, 0.073

Robust regression with penalized weights -0.052 (0.066) -0.182, 0.078

Lasso penalization

Heterogeneity stopping rule -0.022 (0.055) -0.131, 0.086

Cross validation -0.036 (0.087) -0.207, 0.136

Median

Simple -0.073 (0.083) -0.237, 0.090

Weighted -0.075 (0.090) -0.252, 0.102

MR-Egger 0.336 (0.241) -0.136, 0.808

Applied example 2: Causal effect of LDL-C on AD risk

IVW 0.239 (0.102) 0.039, 0.439

Robust regression 0.048 (0.038) -0.027, 0.123

Penalized weights 0.040 (0.042) -0.043, 0.123

Robust regression with penalized weights 0.046 (0.032) -0.016, 0.108

Lasso penalization

Heterogeneity stopping rule 0.032 (0.044) -0.054, 0.118

Cross validation 0.088 (0.045) 0.000, 0.175

Median

Simple 0.108 (0.071) -0.031, 0.247

Weighted 0.046 (0.061) -0.073, 0.165

MR-Egger 0.391 (0.168) 0.061, 0.722

Abbreviations: SE, standard error; CI, confidence interval; BMI, body mass index; IVW, inverse-variance weighted;

LDL-C, low-density lipoprotein cholesterol; AD, Alzheimer’s disease.

https://doi.org/10.1371/journal.pone.0222362.t001
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The Lasso penalization estimates are displayed in Fig 4 where the causal estimates are

relatively similar across the different values of the tuning parameter. The value of the tuning

parameter λ was 1.9 under the heterogeneity stopping rule, with 64 genetic variants included

in the IVW method. The cross-validation method returned a much larger value of λ = 6.63,

with 95 of the 97 variants included in the IVW method.

The estimates from the IVW and MR-Egger methods suggested a positive causal effect of

LDL-C on AD risk. This effect was attenuated to the null for the other robust methods. Com-

pared to the robust methods that reported a null causal effect of LDL-C on AD risk, the simple

and weighted median estimates had larger standard errors. The estimates from the IVW and

MR-Egger methods from Benn et al. [40] indicated that lower LDL-C levels may be beneficial

Fig 4. Log odds ratio and 95% confidence intervals for schizophrenia per 1 standard deviation increase in body mass index for different

values of the tuning parameter (λ = 0.1, 0.2, . . ., 4.9, 5.0, 5.2, 5.4, . . ., 9.8, 10.0) included in the Lasso regression model. The number of

genetic variants included in the IVW models are also displayed. The dotted line at λ = 1.9 is the value of the tuning parameter chosen by the

heterogeneity stopping rule. The dashed line at λ = 6.63 is the value chosen by cross-validation.

https://doi.org/10.1371/journal.pone.0222362.g004
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in reducing AD risk, whereas their estimate from the weighted median method suggested a

null effect. Since the genetic variants in the APOE gene region tend to be highly pleiotropic

[10], it is likely that the positive effects obtained from the IVW models in our analysis and in

the paper by Benn et al. [40] are driven by these pleiotropic variants, rather than there being a

true causal effect of LDL-C on AD risk.

The λ values for the heterogeneity stopping rule (λ = 3.4 based on 72 genetic variants) and

cross-validation (λ = 4.00 based on 73 genetic variants) for Lasso penalization were similar

(Fig 5). However, the estimate based on 72 genetic variants was much closer to the null,

Fig 5. Log odds ratio and 95% confidence intervals for Alzheimer’s per 1 standard deviation increase in low-density lipoprotein

cholesterol for different values of the tuning parameter (λ = 0.1, 0.2, . . ., 4.9, 5.0, 5.2, 5.4, . . ., 9.8, 10.0) included in the Lasso regression

model. The number of genetic variants included in the IVW models are also displayed. The dotted line at λ = 3.4 is the value of the tuning

parameter chosen by the heterogeneity stopping rule. The dashed line at λ = 4.00 is the value chosen by cross-validation.

https://doi.org/10.1371/journal.pone.0222362.g005
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demonstrating the sensitivity of the IVW method to a single variant. None of the estimates in

Fig 5 include information on the rs6859 variant, and this outlying variant was only included

in the IVW model for Lasso penalization when λ = 19.8, whereas the other outlying variant

(rs57254892) was included when λ = 3.5.

The consistency of the results from the robust methods for the BMI and schizophrenia

example strengthened the evidence from the primary IVW analysis, providing similar point

estimates but with narrower confidence intervals. The LDL-C and AD example highlighted

the possibility that only using the IVW method may provide conclusions that are not represen-

tative of the majority of the data. Whilst in practice the outlying rs6859 variant could have

been identified and removed from the dataset prior to the analysis, the robust approaches

identified this outlying variant in an automated manner.

Simulation study

Approaches applied to the simulated data

We applied the approaches introduced in this paper to simulated datasets, including the IVW

method with: 1) all the J genetic variants (standard IVW method); 2) robust regression; 3)

penalized weights; and 4) robust regression and penalized weights. The Lasso penalization

method with the heterogeneity stopping rule was also considered. The bias and coverage prop-

erties of the estimates from these robust methods were compared to those from the simple

(unweighted) median, weighted median, and MR-Egger methods. Standard errors for the sim-

ple and weighted median estimates were obtained through bootstrapping [8]. Robust regres-

sion, penalized weights, and robust regression and penalized weights were also applied to the

MR-Egger model. The Lasso penalization method was applied to λ = 0.1, 0.2, . . ., 4.9, 5.0, 5.2,

5.4, . . ., 9.8, 10.0 under the heterogeneity stopping rule.

To allow for direct comparisons with the MR-Egger method, and to assess the performance

of the methods when the IV assumptions were violated, the simulations followed a similar

structure to the simulation study performed in the paper by Bowden et al. [8]. The data gener-

ating model used in the simulation study is outlined below.

Data generating model

The simulation study generated data in accordance to Fig 6 for participants indexed by i =

1, . . ., N, and genetic variants indexed with j = 1, . . ., J:

Ui ¼
XJ

j¼1

�jGij þ �Ui ;

Xi ¼
XJ

j¼1

bXjGij þ Ui þ �Xi ;

Yi ¼
XJ

j¼1

ajGij þ yXi þ Ui þ �Yi ;

Gij � Binomialð2; 0:3Þ independently for all j ¼ 1; . . . ; J ;

�Ui; �Xi; �Yi � N ð0; 1Þ independently ;

where αj represents the direct effect of the genetic variant Gj on the outcome, ϕj represents

the effect of the genetic variant on the confounder U of the risk factor X and outcome Y
association, bXj represents the genetic effect of Gj on X, and θ is the causal effect of X on Y. The

error terms �Ui, �Xi, and �Yi were drawn independently from standard normal distributions.
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The performance of the robust methods was investigated under a two-sample Mendelian

randomization setting with N = 10, 000 individuals and J = 15 genetic variants. Data were

generated for 2N participants, and the associations of the variants with the risk factor were

estimated in the first N participants, and associations with the outcome in the second N
participants. Only the summary level data (beta-coefficients and standard errors) were used

in the analyses. A one-sample setting was also considered where an additional N partici-

pants were simulated and all of the genetic associations were estimated from the same N
participants.

If a genetic variant is associated with a confounder of the risk factor–outcome association,

then this will affect the variant’s association with both the risk factor and the outcome, leading

to the violation of the InSIDE assumption. Using this observation, data were simulated to con-

sider the following four scenarios:

• Scenario 1—No pleiotropy, InSIDE automatically satisfied: αj and ϕj were set to zero for all j.

• Scenario 2—Balanced pleiotropy, InSIDE satisfied: αj� U[0.05, 0.15] for invalid variants,

with each αj having a 0.5 probability of being multiplied by -1. ϕj was set to zero for all j.

• Scenario 3—Directional pleiotropy, InSIDE satisfied: αj� U[0.05, 0.15] for invalid variants,

and ϕj was set to zero for all j.

• Scenario 4—Directional pleiotropy, InSIDE violated: ϕj� U[0.05, 0.10] for invalid variants,

and αj was set to zero for all j.

The genetic variants Gj were coded to correspond to a single nucleotide polymorphism

with minor allele frequency 0.3. If a genetic variant was a valid IV then αj and ϕj were set to

zero in all four scenarios. In Scenarios 2 to 4, the number of invalid IVs was set to 1, 3 and 6.

Fig 6. Causal directed acyclic graph used in the data generating model for the simulation study.U represents the set of variables that confound

the association between the risk factor X and outcome Y. The genetic effect of Gj on X is bXj , the direct (pleiotropic) effect of Gj on Y is αj, the effect

of Gj onU is ϕj, and the causal effect of X on Y is θ.

https://doi.org/10.1371/journal.pone.0222362.g006
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The causal effect of the risk factor on the outcome was either θ = 0 (null causal effect) or θ =

0.3 (positive causal effect). The effects of the genetic variants on the risk factor (bXj) were

drawn from a uniform distribution between 0.06 and 0.13. 10 000 simulated datasets were gen-

erated for each combination of parameters (24 different combinations in total).

Results

The mean proportion of variance in the risk factor explained by the genetic variants (R2 statis-

tic), mean F statistic, and mean I2 statistic are contained in Table A in the S2 Appendix for sce-

narios 1-4 for the null and positive causal effects by the number of invalid instruments. The

mean R2 values were greater than 3% for all of the scenarios, and the minimum mean F-statis-

tic was 20.8. The I2 statistic ranged from 39.1% to 80.9%. Since violations in the no measure-

ment error (NOME) assumption of the genetic associations with the risk factor can lead to

attenuation towards the null for the MR-Egger estimates, and this attenuation is approximately

equal to the I2 statistic, we expected the MR-Egger estimates for the positive causal effect to be

severely attenuated towards the null [42].

The number of robust regression models that did not report a standard error (maximum

of 2.6% across all of the scenarios considered) are given in Table B in the S2 Appendix. Apart

from the calculation of the mean standard error, the robust regression models that did not

report a standard error were included in the results, and the power calculations treated the

standard error as infinite.

When all of the genetic variants were valid IVs (Table 2), all of the methods produced unbi-

ased estimates of the null causal effect and the Type I error rates were close to the nominal

level of 5%. Apart from the simple median method, there was attenuation towards the null

with a positive causal effect for all methods, and as expected, this was particularly evident for

the MR-Egger method (also observed for Scenarios 2 and 3). Violation of the NOME assump-

tion can lead to inflation of the intercept term in the MR-Egger method [42], and this was

true for the simulation study where the power to detect the intercept term for Scenarios 1

and 2 was greater than 5% (Table C in the S2 Appendix). Only 7.5% of the MR-Egger models

Table 2. Mean estimate (mean standard error), standard deviation, coverage of the 95% confidence interval (%), and power at the 5% significance level (%) of the

estimates from the IVW model with: 1) the J genetic variants (IVW); 2) robust regression; 3) penalized weights; and 4) robust regression and penalized weights for

Scenario 1 with a null (θ = 0) or positive (θ = 0.3) causal effect. Results from Lasso penalization with the heterogeneity stopping rule, simple (unweighted) median,

weighted median and MR-Egger methods are also provided.

Null causal effect (θ = 0) Positive causal effect (θ = 0.3)

Estimate (SE) SD Cov. Pow. Estimate (SE) SD Cov. Pow.

Scenario 1. No pleiotropy, InSIDE automatically satisfied

IVW -0.001 (0.061) 0.058 95.7 4.3 0.287 (0.073) 0.069 95.5 98.2

Robust regression -0.001 (0.066) 0.060 95.1 4.9 0.287 (0.079) 0.072 94.7 94.8

Penalized weights -0.001 (0.060) 0.059 95.0 5.0 0.289 (0.072) 0.071 94.7 98.2

Robust regression with penalized weights -0.001 (0.064) 0.061 94.5 5.5 0.288 (0.077) 0.073 94.1 95.7

Lasso penalization -0.001 (0.060) 0.059 94.8 5.2 0.287 (0.072) 0.071 94.6 98.0

Median

Simple -0.002 (0.086) 0.074 97.9 2.1 0.301 (0.105) 0.090 98.0 86.9

Weighted -0.002 (0.080) 0.071 97.4 2.6 0.277 (0.097) 0.085 96.7 85.7

MR-Egger -0.001 (0.219) 0.207 96.1 3.9 0.143 (0.261) 0.251 91.0 7.5

Abbreviations: SE, standard error; SD, standard deviation; Cov., coverage; Pow., power; InSIDE, instrument strength independent of direct effect; IVW, inverse-

variance weighted.

https://doi.org/10.1371/journal.pone.0222362.t002
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detected a positive causal effect, and apart from the median estimators, all of the robust meth-

ods had approximately 95% power to detect the positive causal effect.

Although the mean estimates in Scenario 2 (Tables 3 and 4) were similar to those in Sce-

nario 1, there were clear differences in the precision of the estimates for the null and positive

causal effects, with most of the methods reporting larger mean standard errors under Sce-

nario 2. The mean standard error increased as the number of invalid instruments increased

for all methods. The IVW model with penalized weights had the most precise estimates,

but suffered from inflated Type I error rates and poor coverage. The simple and weighted

median estimators performed just as well, if not better, than the other robust methods for

Scenario 2.

Table 3. Mean estimate (mean standard error), standard deviation, coverage of the 95% confidence interval (%), and power at the 5% significance level (%) of the

estimates from the IVW model with: 1) the J genetic variants (IVW); 2) robust regression; 3) penalized weights; and 4) robust regression and penalized weights (R

and P) for Scenarios 2-4 with a null causal effect (θ = 0) by the number of invalid IVs. Results from Lasso penalization with the heterogeneity stopping rule, simple

median, weighted median and MR-Egger methods are also provided.

1 invalid IV 3 invalid IVs 6 invalid IVs

Est. (SE) SD Cov. Pow. Est. (SE) SD Cov. Pow. Est. (SE) SD Cov. Pow.

Scenario 2. Balanced pleiotropy, InSIDE satisfied

IVW -0.002 (0.089) 0.092 94.7 5.3 0.000 (0.133) 0.136 93.4 6.6 0.000 (0.180) 0.183 93.0 7.0

Robust -0.002 (0.069) 0.065 94.3 5.7 0.000 (0.096) 0.087 94.5 5.5 0.001 (0.196) 0.173 94.3 5.6

Penalized -0.002 (0.062) 0.064 94.2 5.8 0.000 (0.066) 0.077 91.1 8.9 0.001 (0.075) 0.116 81.5 18.5

R and P -0.002 (0.071) 0.065 94.6 5.4 0.001 (0.094) 0.078 94.7 5.2 0.001 (0.160) 0.119 91.5 7.3

Lasso -0.002 (0.063) 0.065 94.4 5.6 0.000 (0.071) 0.080 91.7 8.3 0.001 (0.088) 0.129 84.5 15.5

Median

Simple -0.002 (0.090) 0.080 97.4 2.6 0.001 (0.097) 0.094 96.5 3.5 0.002 (0.115) 0.132 92.7 7.3

Weighted -0.001 (0.082) 0.076 96.9 3.2 0.000 (0.089) 0.090 95.2 4.8 0.000 (0.101) 0.133 88.9 11.1

MR-Egger -0.004 (0.317) 0.335 92.7 7.3 -0.009 (0.477) 0.496 92.7 7.3 -0.006 (0.646) 0.661 93.0 7.0

Scenario 3. Directional pleiotropy, InSIDE satisfied

IVW 0.064 (0.089) 0.064 94.8 5.2 0.194 (0.126) 0.076 76.0 24.0 0.388 (0.154) 0.089 16.1 83.9

Robust 0.010 (0.069) 0.064 94.3 5.7 0.069 (0.113) 0.083 93.9 6.1 0.335 (0.227) 0.105 63.6 36.4

Penalized 0.007 (0.062) 0.063 94.2 5.8 0.033 (0.067) 0.078 89.2 10.8 0.148 (0.082) 0.137 57.3 42.7

R and P 0.005 (0.072) 0.065 94.8 5.2 0.025 (0.092) 0.079 93.2 6.7 0.115 (0.138) 0.147 78.6 20.9

Lasso 0.006 (0.063) 0.065 94.2 5.8 0.031 (0.071) 0.080 90.3 9.7 0.164 (0.096) 0.146 60.5 39.5

Median

Simple 0.021 (0.089) 0.077 97.3 2.7 0.074 (0.100) 0.086 92.9 7.2 0.224 (0.134) 0.124 64.3 35.7

Weighted 0.017 (0.082) 0.074 96.9 3.1 0.065 (0.090) 0.085 91.7 8.3 0.210 (0.110) 0.149 56.9 43.1

MR-Egger -0.003 (0.318) 0.334 92.9 7.2 -0.001 (0.450) 0.465 93.2 6.8 -0.004 (0.544) 0.562 92.4 7.6

Scenario 4. Directional pleiotropy, InSIDE violated

IVW 0.077 (0.070) 0.058 83.4 16.7 0.186 (0.075) 0.056 25.6 74.4 0.290 (0.071) 0.050 0.3 99.7

Robust 0.031 (0.085) 0.069 93.9 6.0 0.142 (0.127) 0.082 73.1 26.0 0.289 (0.079) 0.053 3.3 96.6

Penalized 0.021 (0.061) 0.070 89.2 10.8 0.083 (0.063) 0.091 64.1 35.9 0.231 (0.061) 0.092 12.2 87.8

R and P 0.018 (0.071) 0.070 92.7 7.3 0.075 (0.084) 0.095 76.2 23.7 0.230 (0.074) 0.101 19.0 80.8

Lasso 0.024 (0.062) 0.073 88.2 11.8 0.116 (0.066) 0.099 51.1 48.9 0.286 (0.066) 0.070 2.2 97.8

Median

Simple 0.020 (0.089) 0.077 97.3 2.7 0.071 (0.092) 0.083 89.9 10.1 0.192 (0.088) 0.091 40.0 60.0

Weighted 0.055 (0.082) 0.077 91.0 9.0 0.198 (0.081) 0.097 34.8 65.2 0.343 (0.069) 0.074 0.5 99.5

MR-Egger 0.305 (0.214) 0.219 66.8 33.2 0.539 (0.197) 0.183 21.3 78.7 0.644 (0.182) 0.165 5.1 94.9

Abbreviations: IV, instrumental variable; Est. estimate; SE, standard error; SD, standard deviation; Cov., coverage; Pow., power; InSIDE, instrument strength

independent of direct effect; IVW, inverse variance weighted method; R and P, robust and penalized.

https://doi.org/10.1371/journal.pone.0222362.t003
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In Scenario 3 (directional pleiotropy, InSIDE satisfied), the IVW method produced biased

causal estimates with inflated Type I error rates, and the degree of bias increased with the

number of invalid IVs. With one invalid instrument, estimates from the robust methods were

only slightly biased and Type I error rates were fairly well controlled. As the number of instru-

ments increased, bias in the estimates for the robust methods also increased, although the mag-

nitude of bias was smaller than the IVW method, and Type I error inflation was less severe.

Robust regression with penalized weights performed reasonably well when there was 1 or 3

invalid instruments. Although the median methods give unbiased estimates asymptotically

(that is, as the number of participants increases), when pleiotropic effects are directional there

is some bias with a finite sample.

Table 4. Mean estimate (mean standard error), standard deviation, coverage of the 95% confidence interval (%), and power at the 5% significance level (%) of the

estimates from the IVW model with: 1) the J genetic variants (IVW); 2) robust regression; 3) penalized weights; and 4) robust regression and penalized weights (R

and P) for Scenarios 2-4 with a positive causal effect (θ = 0.3) by the number of invalid IVs. Results from the Lasso penalization method with the heterogeneity stopping

rule, simple median, weighted median and MR-Egger methods are also provided.

1 invalid IV 3 invalid IVs 6 invalid IVs

Est. (SE) SD Cov. Pow. Est. (SE) SD Cov. Pow. Est. (SE) SD Cov. Pow.

Scenario 2. Balanced pleiotropy, InSIDE satisfied

IVW 0.286 (0.097) 0.100 94.0 80.9 0.288 (0.139) 0.140 93.5 54.5 0.285 (0.184) 0.184 93.3 34.3

Robust 0.287 (0.084) 0.079 93.9 91.0 0.288 (0.116) 0.107 93.6 71.1 0.286 (0.193) 0.178 93.8 34.5

Penalized 0.289 (0.074) 0.079 93.2 96.5 0.291 (0.080) 0.098 88.6 91.8 0.295 (0.090) 0.147 78.4 80.5

R and P 0.289 (0.083) 0.080 93.5 92.5 0.290 (0.100) 0.097 92.2 81.6 0.295 (0.145) 0.147 88.1 59.4

Lasso 0.287 (0.076) 0.080 93.2 95.4 0.288 (0.085) 0.102 89.4 88.0 0.288 (0.108) 0.167 80.5 69.9

Median

Simple 0.302 (0.109) 0.097 97.5 83.1 0.302 (0.118) 0.113 96.1 75.3 0.303 (0.136) 0.155 92.5 61.4

Weighted 0.276 (0.100) 0.091 96.1 81.9 0.277 (0.106) 0.108 94.0 75.6 0.277 (0.119) 0.152 88.2 63.2

MR-Egger 0.143 (0.349) 0.363 90.2 9.0 0.138 (0.495) 0.518 91.2 8.4 0.126 (0.657) 0.681 92.1 7.5

Scenario 3. Directional pleiotropy, InSIDE satisfied

IVW 0.353 (0.098) 0.075 96.1 97.8 0.482 (0.133) 0.087 81.5 99.3 0.673 (0.160) 0.101 28.3 100

Robust 0.306 (0.084) 0.077 95.1 94.8 0.383 (0.134) 0.099 93.9 86.2 0.631 (0.205) 0.112 60.8 90.8

Penalized 0.303 (0.074) 0.078 93.8 98.0 0.346 (0.081) 0.100 86.4 97.8 0.511 (0.098) 0.164 47.6 99.1

R and P 0.300 (0.083) 0.080 94.1 93.5 0.335 (0.102) 0.102 91.3 88.8 0.485 (0.142) 0.179 66.2 86.9

Lasso 0.301 (0.076) 0.079 94.0 97.4 0.340 (0.086) 0.104 88.2 96.5 0.513 (0.113) 0.168 53.8 98.5

Median

Simple 0.329 (0.110) 0.095 97.5 89.5 0.393 (0.125) 0.108 93.5 93.2 0.572 (0.158) 0.150 61.8 97.2

Weighted 0.300 (0.100) 0.090 97.2 88.1 0.356 (0.111) 0.104 94.5 93.0 0.516 (0.131) 0.161 63.6 97.4

MR-Egger 0.142 (0.345) 0.353 90.9 8.7 0.138 (0.468) 0.485 91.3 8.1 0.137 (0.555) 0.576 91.9 8.0

Scenario 4. Directional pleiotropy, InSIDE violated

IVW 0.367 (0.080) 0.071 88.8 99.8 0.478 (0.084) 0.067 42.2 100 0.582 (0.078) 0.062 2.3 100

Robust 0.329 (0.100) 0.082 94.3 90.2 0.447 (0.128) 0.085 73.7 90.2 0.581 (0.087) 0.066 8.2 99.7

Penalized 0.323 (0.072) 0.086 88.6 98.2 0.403 (0.072) 0.102 61.2 98.9 0.546 (0.068) 0.092 11.2 99.9

R and P 0.318 (0.085) 0.087 92.4 94.1 0.397 (0.095) 0.107 72.7 93.6 0.547 (0.077) 0.098 16.0 98.4

Lasso 0.323 (0.073) 0.089 87.9 97.6 0.430 (0.076) 0.105 52.7 99.3 0.579 (0.073) 0.079 4.4 100

Median

Simple 0.328 (0.108) 0.095 97.0 89.9 0.387 (0.111) 0.101 90.0 95.1 0.509 (0.101) 0.101 43.4 99.5

Weighted 0.344 (0.099) 0.095 94.0 94.4 0.496 (0.097) 0.108 47.2 99.7 0.625 (0.085) 0.087 3.4 100

MR-Egger 0.488 (0.254) 0.259 86.1 51.8 0.767 (0.233) 0.220 45.4 90.0 0.887 (0.214) 0.197 20.2 98.1

Abbreviations: IV, instrumental variable; Est. estimate; SE, standard error; SD, standard deviation; Cov., coverage; Pow., power; InSIDE, instrument strength

independent of direct effect; IVW, inverse variance weighted method; R and P, robust and penalized.

https://doi.org/10.1371/journal.pone.0222362.t004
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In Scenario 4 (directional pleiotropy, InSIDE violated), all of the robust methods produced

biased estimates. When there were only one invalid instrument, the magnitude of bias from

the robust methods was less severe than the IVW method, and this was particularly true for

robust regression with penalized weights. As the number of invalid IVs increased, the perfor-

mance of the robust methods worsened, and there was little advantage in applying the robust

methods compared to the median estimator in Scenario 4 when 6 of the 15 genetic variants

were invalid IVs. In this scenario, bias is greater for the weighted median than for the simple

median method as the invalid genetic variants are on average more strongly associated with

the risk factor than the valid ones. This is because invalid variants are associated with the

risk factor directly and via their effect on the confounder. In practical applications, invalid

genetic variants will not necessarily be more strongly associated with the risk factor than valid

ones, and so the simple median will not necessarily perform better than the weighted median

method.

While results were fairly similar for most of the methods, results from the MR-Egger

method were often quite different. This is because the other methods are fairly similar in

their assumptions (that most genetic variants are valid IVs) and their mode of operation

(variants with causal estimates that differ from the consensus are penalized or down-

weighted). This highlights the importance in an applied analysis of performing a range of

methods that make different assumptions, rather than multiple methods that make similar

assumptions [43].

Results from applying robust regression and penalized weights to the MR-Egger method

are provided in Table D in the S2 Appendix. Although we had hoped that the combination of

the MR-Egger method and approaches to reduce the influence of outlying variants would be

synergistic in improving robustness, findings were disappointing, and all of the models were

affected by the violation of the NOME assumption. A reason for this is the flexibility of the

method: in allowing the intercept to differ from zero and allowing outliers that deviate from

the regression model, the method permits the IV assumptions to be violated in quite a broad

way. In a substantial number of cases, the method identified the wrong variants as invalid,

finding an incorrect configuration of valid and invalid variants that appeared to fit the data

better.

Finally, results from the one-sample setting are provided in Tables E and F in the S2 Appen-

dix. Bias in the direction of the observational association was observed for all methods. As

with the two–sample setting, the median estimators and robust regression with penalized

weights produced the least biased estimates, and the IVW with penalized weights was the most

precise.

Increased number of genetic variants

Since many of the methods described in this paper are based on asymptotic theory, it was

anticipated that there would be an improvement in the performance of the methods when the

data were generated with a larger number of genetic variants. We therefore repeated the simu-

lation study for Scenarios 2–4 for 1 000 simulated datasets with the number of genetic variants

increased from 15 to 100, and the number of invalid IVs increased from 1, 3 and 6 to 5, 15 and

30. The bounds of the uniform distribution used to generate the genetic associations with the

risk factor (bXj) were multiplied by
ffiffiffiffiffi
15

100

q
to ensure the average R2 values were comparable

with the original simulation study. The IVW model with: 1) the full set of genetic variants; 2)

robust regression; 3) penalized weights; and 4) robust regression and penalized weights were

all applied to the dataset. The Lasso penalization method with the heterogeneity stopping rule

was also considered.
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Results. The mean R2 statistic, F-statistic, and I2 statistic are contained in Table G in the

S2 Appendix for Scenarios 2–4 for the null and positive causal effect by the number of invalid

IVs. The mean R2 values for the 100 genetic variants were slightly higher than the values

reported in the original simulation study (Table A in the S2 Appendix). For all of the scenarios

considered, there was a significant reduction in the mean F-statistic and I2 statistic, and we

therefore expected the estimates to be affected by weak instrument bias.

Results from the simulation study for the IVW model with: 1) the J genetic variants (IVW);

2) robust regression; 3) penalized weights; and 4) robust regression and penalized weights, and

the Lasso penalization method with the heterogeneity stopping rule are provided in Table 5.

The reduction in the strength of the IVs led to weak instrument bias, and there was severe

attenuation towards the null for the positive causal effect (Table 5). For the null causal effect,

there was little difference in the performance of the robust methods with the increased number

of genetic variants. In fact, the methods performed worst under Scenario 4 when 100 variants

were included in the data generating model rather than 15 (Table 5). Due to the attenuation of

the positive causal effect when the number of variants was increased to 100, it was difficult to

compare the results to the original simulations. Nevertheless, there was no evidence to suggest

that the performances of the robust methods improved when the number of genetic variants

was increased.

Discussion

In this paper, we have introduced three robust approaches for Mendelian randomization with

summary level data that downweight the influence of heterogeneous causal estimates. The

applied examples considered in this paper illustrate the importance of using a variety of meth-

ods in a Mendelian randomization analysis. The results from the robust methods support a

null causal effect of BMI on schizophrenia risk. While the IVW and MR-Egger methods pro-

duced positive estimates that were strongly influenced by pleiotropic variants in the APOE
gene region, the proposed methods were able to give null estimates that were unaffected by

these outlying variants.

We also performed a simulation study to compare the robust approaches to the IVW, simple

median, weighted median, and MR-Egger methods. The simulation study highlighted the sen-

sitivity of the IVW method to violations in the IV assumptions, and the requirement for robust

methods to be considered in the sensitivity analysis of a Mendelian randomization study. The

simulations also demonstrated the impact of violating the NOME assumption on the estimates

from the MR-Egger methods. Since it was not feasible to adjust for the violation of the NOME

assumption through the SIMEX method [42] in the simulation study for computational rea-

sons, it was difficult to compare the performance of the robust methods to MR-Egger.

Robust regression with penalized weights consistently produced the least biased estimates

in the simulation study. Although the power and bias of this approach was significantly better

than the standard IVW method when the IV assumptions were violated, it suffered from poor

coverage and increased Type I error rates, particularly when there was a high proportion of

invalid instruments. When there was only one invalid instrument, robust regression with

penalized weights produced more precise estimates than the median estimator. However, as

the number of invalid instruments increased there was little advantage of using robust regres-

sion with penalized weights compared to the median estimator.

Interpretation of heterogeneity among the causal ratio estimates

Throughout this paper, we have assumed that heterogeneity of the causal ratio estimates is

indicative of violations in the IV assumptions, particularly the presence of pleiotropic effects.
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Table 5. Results from the simulation study when 100 genetic variants were simulated for 1 000 datasets. Mean estimate (mean standard error), standard deviation, cov-

erage of the 95% confidence interval (%), and power at the 5% significance level (%) of the estimates from the IVW model with: 1) the J genetic variants (IVW); 2) robust

regression; 3) penalized weights; and 4) robust regression and penalized weights (R and P) for Scenarios 2-4 with a null causal effect (θ = 0) and positive causal effect (θ =

0.3) by the number of invalid instrumental variables. Results from the Lasso penalization method with the heterogeneity stopping rule are also presented.

5 invalid IV 15 invalid IVs 30 invalid IVs

Est. (SE) SD Cov. Pow. Est. (SE) SD Cov. Pow. Est. (SE) SD Cov. Pow.

Null causal effect (θ = 0)

Scenario 2. Balanced pleiotropy, InSIDE satisfied

IVW -0.003 (0.072) 0.071 95.0 5.0 -0.003 (0.103) 0.105 94.9 5.1 0.000 (0.138) 0.144 94.0 6.0

Robust -0.001 (0.054) 0.051 95.8 4.2 -0.001 (0.065) 0.066 93.7 6.3 0.005 (0.115) 0.114 95.7 4.3

Penalized -0.001 (0.051) 0.051 94.8 5.2 -0.001 (0.054) 0.063 91.3 8.7 0.001 (0.060) 0.081 86.3 13.7

R and P -0.001 (0.055) 0.052 95.8 4.2 -0.001 (0.064) 0.062 95.6 4.4 0.000 (0.087) 0.078 96.5 3.5

Lasso -0.001 (0.051) 0.052 94.2 5.8 -0.002 (0.055) 0.063 91.5 8.5 0.002 (0.062) 0.081 87.6 12.4

Scenario 3. Directional pleiotropy, InSIDE satisfied

IVW 0.096 (0.071) 0.058 77.3 22.7 0.287 (0.099) 0.070 9.0 91.0 0.572 (0.126) 0.088 0.0 100

Robust 0.014 (0.055) 0.053 94.8 5.2 0.070 (0.072) 0.064 87.0 13.0 0.355 (0.169) 0.103 41.3 58.7

Penalized 0.012 (0.051) 0.053 93.9 6.1 0.043 (0.054) 0.061 83.9 16.1 0.156 (0.062) 0.094 34.3 65.7

R and P 0.009 (0.055) 0.054 95.2 4.7 0.031 (0.064) 0.061 91.7 8.3 0.108 (0.087) 0.093 74.6 25.4

Lasso 0.013 (0.051) 0.054 93.2 6.8 0.044 (0.055) 0.062 83.4 16.6 0.165 (0.063) 0.095 32.6 67.4

Scenario 4. Directional pleiotropy, InSIDE violated

IVW 0.170 (0.052) 0.046 7.2 92.8 0.349 (0.049) 0.043 0.0 100 0.476 (0.043) 0.036 0.0 100

Robust 0.076 (0.079) 0.065 87.2 12.8 0.310 (0.089) 0.057 7.7 92.1 0.475 (0.048) 0.038 0.0 100

Penalized 0.053 (0.049) 0.064 72.9 27.1 0.187 (0.046) 0.082 13.5 86.5 0.401 (0.040) 0.062 0.0 100

R and P 0.047 (0.058) 0.064 84.5 15.5 0.184 (0.065) 0.087 26.7 73.3 0.409 (0.044) 0.062 0.0 100

Lasso 0.072 (0.048) 0.068 62.9 37.1 0.276 (0.043) 0.072 0.7 99.3 0.474 (0.035) 0.051 0.0 100

Positive causal effect (θ = 0.3)

Scenario 2. Balanced pleiotropy, InSIDE satisfied

IVW 0.227 (0.079) 0.076 17.8 82.2 0.229 (0.108) 0.113 45.5 54.5 0.228 (0.141) 0.136 64.2 35.8

Robust 0.227 (0.065) 0.062 6.1 93.9 0.233 (0.080) 0.082 18.6 81.4 0.230 (0.126) 0.119 54.3 45.7

Penalized 0.230 (0.061) 0.062 3.9 96.1 0.241 (0.064) 0.079 8.2 91.8 0.241 (0.071) 0.100 15.7 84.3

R and P 0.229 (0.064) 0.063 4.8 95.2 0.237 (0.072) 0.077 11.1 88.9 0.236 (0.088) 0.097 25.5 74.5

Lasso 0.227 (0.061) 0.064 4.8 95.2 0.232 (0.065) 0.079 9.2 90.8 0.230 (0.072) 0.095 17.8 82.2

Scenario 3. Directional pleiotropy, InSIDE satisfied

IVW 0.323 (0.079) 0.068 1.1 98.9 0.514 (0.107) 0.081 0 100 0.804 (0.133) 0.098 0.0 100

Robust 0.251 (0.066) 0.066 2.9 97.1 0.342 (0.093) 0.081 1.3 98.7 0.654 (0.162) 0.107 0.2 99.8

Penalized 0.251 (0.061) 0.066 2.1 97.9 0.308 (0.065) 0.080 0.8 99.2 0.490 (0.076) 0.121 0.0 100

R and P 0.246 (0.065) 0.067 4.1 95.9 0.291 (0.074) 0.080 3.2 96.8 0.442 (0.102) 0.123 1.6 98.3

Lasso 0.247 (0.061) 0.066 2.5 97.5 0.297 (0.065) 0.081 1.3 98.7 0.463 (0.074) 0.115 0.0 100

Scenario 4. Directional pleiotropy, InSIDE violated

IVW 0.411 (0.061) 0.060 0.0 100 0.609 (0.058) 0.054 0.0 100 0.747 (0.051) 0.045 0.0 100

Robust 0.327 (0.095) 0.076 4.5 95.5 0.575 (0.093) 0.065 0.6 99.4 0.746 (0.057) 0.047 0.0 100

Penalized 0.307 (0.058) 0.080 0.9 99.1 0.479 (0.053) 0.093 0.1 99.9 0.689 (0.046) 0.066 0.0 100

R and P 0.298 (0.072) 0.080 1.7 98.3 0.478 (0.073) 0.098 0.2 99.6 0.697 (0.051) 0.066 0.0 100

Lasso 0.314 (0.057) 0.08 0.3 99.7 0.544 (0.050) 0.081 0.0 100 0.742 (0.041) 0.061 0.0 100

Abbreviations: IV, instrumental variable; Est. estimate; SE, standard error; SD, standard deviation; Cov., coverage; Pow., power; InSIDE, instrument strength

independent of direct effect; IVW, inverse variance weighted; R and P, robust regression and penalized weights.

https://doi.org/10.1371/journal.pone.0222362.t005
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However, heterogeneity among the causal ratio estimates may arise for a number of reasons

[44]. For example, there may be multiple mechanisms of intervention on a complex risk factor,

each of which has an associated causal effect. For a two-sample Mendelian randomization

analysis, there may be heterogeneity among the causal ratio estimates due to substantial differ-

ences in the study populations used to estimate the genetic associations with the risk factor

and outcome. The robust approaches considered in this paper penalize genetic variants with

heterogeneous causal ratio estimates regardless of how this heterogeneity has materialised. As

such, these methods should only be employed if it is suspected that the IV assumptions have

been violated, and other possible reasons for heterogeneity among the causal ratio estimates

explored.

Issues with penalizing genetic variants

The simulation study has highlighted some of the disadvantages of excluding or downweight-

ing genetic variants from Mendelian randomization analyses. Excluding genetic variants with

heterogeneous causal estimates will generally reduce the standard error of the estimate. How-

ever, too much penalization can potentially result in artificial overconfidence in the precision

of the causal estimate, leading to poor coverage of the true causal effect and increased Type I

error rates, as seen for Lasso penalization. If the excluded genetic variants are truly invalid IVs

then removing them from the analysis will reduce bias and improve the precision of the causal

estimate. However, outlying or heterogeneous causal ratio estimates may be valid IVs, and so

removing them from the analysis would be inappropriate. On balance, it may be more appro-

priate to consider approaches that reduce the contribution that heterogeneous ratio estimates

have on the causal estimate, such as the median estimator or robust regression, rather than

excluding them from the analysis. If a large number of variants are identified as outliers, then

researchers should consider reporting that the Mendelian randomization analysis is inconclu-

sive, rather than reporting a causal estimate.

Implication for Mendelian randomization studies

The purpose of this paper was not to promote one robust method for Mendelian randomiza-

tion over another, but to emphasize the need for multiple sensitivity analyses that make

different sets of assumptions. Although we acknowledge that none of the proposed methods

performed significantly better than the median estimator, the extensions proposed in this

paper should provide additional confidence in the findings from a conventional Mendelian

randomization analysis, particularly when the causal estimates are consistent. Genetic variants

that are downweighted or excluded from the analysis by the robust methods should be exam-

ined for pleiotropy to determine whether they should be removed from the dataset. The meth-

ods proposed here are likely to be useful for Mendelian randomization analyses performed for

large numbers of risk factors in an automated manner, such as for -omics risk factors mea-

sured on a high-throughput platform. These methods can help a researcher rapidly triage

whether a positive causal estimate from the standard IVW method is evidenced just by a small

number of variants (as in the LDL-cholesterol and Alzheimer’s disease example), or by the

majority of variants.

The methods introduced in this paper, particularly robust regression with penalized

weights, may be more suited to certain scenarios than the median estimator. In the applied

example for LDL-C and AD risk, there were two variants that appeared to be clear outliers.

The median estimator and robust regression with penalized weights both suggested that there

was a null causal effect of LDL-C on AD risk, but the estimates from the median estimator

were less precise. This observation of robust regression producing more precise estimates was
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also observed in the simulation study when there was one invalid IV. Robust regression with

penalized weights may be a useful addition to sensitivity analyses in Mendelian randomization

when there are a small proportion of variants with heterogeneous causal estimates.

Limitations

We found that the Lasso penalization method may be more appropriate in an applied setting,

where the estimates can be reported over a range of values of the tuning parameter. The practi-

cality of applying Lasso penalization to the simulation study was more restrictive, and required

an automated approach to selecting the tuning parameter.

Whilst we appreciate the limitation of only considering methods with uncorrelated genetic

variants, we argue that robust methods should be used when the IV assumptions are in doubt,

and therefore using one genetic variant from each gene region is a sensible (although conserva-

tive) approach for robust methods in an applied Mendelian randomization analysis. This is

because including multiple variants from a single region may mean that region receives a dis-

proportionate weight in the analysis, and so the validity of the analysis would be overly depen-

dent on the validity of these variants. This could be problematic as correlated variants are

likely to all be valid or all be invalid, particularly if they are all in the same gene region. If

an analyst does want to include correlated variants in an analysis, this can be done by first

calculating the appropriate weighting matrix based on the inverse-variance weights and the

correlations between variants, and multiplying the genetic associations by the Cholesky

decomposition of this matrix, as described previously [45]. Software code to do this is provided

in S1 Appendix. However, we caution that no allowance is made that correlated variants are

likely to all be valid or all invalid simultaneously, as the methods treat all association estimates

as separate datapoints.

The violation of the NOME assumption limited the utility of the simulation study as the

estimates from MR-Egger could not be compared to the robust methods. Given that MR-Egger

is frequently used as part of a sensitivity analysis in Mendelian randomization studies, this

could be viewed as a weakness of the simulation study.

The main simulation study was also limited by the number of genetic variants considered

in the data generating model. Since GWASs are now being performed on large study popula-

tions, and estimates of genetic associations are publicly available from large consortia, only

considering 15 variants in the simulation study may have been conservative. We tried to rectify

this limitation by re-performing the simulation study with 100 genetic variants (but keeping

the overall R2 statistic similar) and found that there was significant attenuation towards the

null due to weak instrument bias. We had thought that the performances of some of the robust

methods would have improved by increasing the number of genetic variants as the methods

are based on asymptotic theory. However, we did not find any significant improvements in the

methods, and in some cases, the performance of the models worsened with the increased num-

ber of genetic variants.

Conclusion

This paper has highlighted the difficulty in robust causal inference when genetic variants in a

Mendelian randomization analysis violate the IV assumptions. The extensions proposed in

this paper are by no means perfect; even when a small proportion of the variants were invalid

IVs, all methods had inflated Type I error rates in at least one scenario. Nevertheless, the Type

I error rate for the proposed extensions was substantially better than the IVW method and

MR-Egger when the InSIDE assumption was violated.
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This paper has demonstrated the benefits of using multiple robust methods as part of a

sensitivity analysis. We suggest that the IVW method using robust regression with penalized

weights may be a worthwhile additional sensitivity analysis to be performed in a Mendelian

randomization analysis in addition to previously proposed methods.
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