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Abstract

Introduction

The Accelerated Development of VAccine beNefit-risk Collaboration in Europe (ADVANCE)

is a public private collaboration aiming to develop and test a system for rapid benefit-risk (B/

R) monitoring of vaccines, using existing electronic healthcare record (eHR) databases in

Europe.

Part of the data in such sources is missing due to incomplete follow-up hampering the

accurate estimation of vaccination coverage. We compared different methods for coverage

estimation from eHR databases; naïve period prevalence, complete case period preva-

lence, period prevalence adjusted for follow-up time, Kaplan-Meier (KM) analysis and

(adjusted) inverse probability weighing (IPW).

Methods

We created simulation scenarios with different proportions of completeness of follow-up.

Both completeness independent and dependent from vaccination date and status were con-

sidered. The root mean squared error (RMSE) and relative difference between the esti-

mated and true coverage were used to assess the performance of the different methods for

each of the scenarios. We included data examples on the vaccination coverage of human

papilloma virus and pertussis component containing vaccines from the Spanish BIFAP

database.

Results

Under completeness independent from vaccination date or status, several methods pro-

vided estimates with bias close to zero. However, when dependence between complete-

ness of follow-up and vaccination date or status was present, all methods generated biased
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estimates. The IPW/CDF methods were generally the least biased. Preference for a specific

method should be based on the type of censoring and type of dependence between com-

pleteness of follow-up and vaccination. Additional insights into these aspects, might be

gained by applying several methods.

Introduction

The evaluation of the performance of vaccination programs requires tools to monitor compli-

ance with the recommended vaccination schedules. This compliance is often summarized

using vaccination coverage estimates. The methods and data sources used for coverage estima-

tion vary widely between studies. The need for harmonization is generally acknowledged [1].

Coverage estimates are either reported as a point estimate of the coverage attained at a specific

age or date or as multiple age-specific estimates. The advantage of reporting age-specific esti-

mates is that the age-appropriate uptake of vaccination can be assessed. Single point estimates

do not reflect the variation in vaccine administration with respect to the recommended age

[2]. In the presence of vaccination delay, they misrepresent the vaccine induced protection

and herd immunity [3]. The disadvantage of age-specific estimates is that information on the

exact age at vaccination is required whereas for single point estimates it is sufficient to know if

a person was vaccinated by a certain time or age. Therefore, not all data sources will allow for

age-specific coverage estimation.

A survey from 2016 among European countries demonstrated that multiple countries were

developing an immunization information system. In this system individual level information

on vaccines received in a given area is used to inform both government and individuals [4]. In

the absence of an exhaustive immunization registry, surveys (e.g. household surveys) and

administrative data (e.g. school health examination reports) are the most typically used data

sources [5]. Both have limitations. Household surveys rely on vaccination cards and/or recall.

They have been described as both over- and underestimating vaccine coverage due to recall

bias and incomplete records [6,7]. For some administrative data sources, such as reimburse-

ment or insurance data, a clear denominator, the number of persons eligible for vaccination, is

lacking [8,9]. In an effort to overcome such limitations, data sources have been merged.

Administrative data has been combined with immunization registries in the PRISM program

[10].

In this paper, we focused on electronic healthcare records (eHRs) as data source. EHRs

have been used previously to estimate vaccination coverage [10,11]. They allow for the timely

monitoring of age-specific coverage estimates at a relatively low cost and often cover large geo-

graphical areas or sizeable populations. Their popularity is growing. The populations captured

in eHRs however are generally dynamic, with members moving in and out of the population

over time (i.e. transient membership). This results in incomplete follow-up, hampering a

straightforward estimation of vaccination coverage from eHRs [12]. As vaccination possibly

occurs outside follow-up, coverage estimation not accounting for incomplete follow-up will

underestimate vaccination coverage. If we assume no exposure misclassification and indepen-

dence of completeness of follow-up and vaccination date/status, we can consider the estima-

tion of vaccination coverage from eHRs as a missing completely at random problem [13].

Different statistical methods with good finite sample properties, such as inverse probability

weighting (IPW), have been developed for such and less restrictive mechanisms of missingness

[14]. Of these methods, the Kaplan-Meier (KM) method has received most attention in the

field of age-specific vaccination coverage estimation [15].
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With the Accelerated Development of VAccine beNefit-risk Collaboration in Europe proj-

ect (ADVANCE) we aim to build a system that can generate information on vaccine coverage,

benefits and risks using available European eHR databases. In this work, we investigated the

performance of complete case-analysis, KM and IPW -methods for the estimation of vaccina-

tion coverage from eHR databases with a simulation study. We illustrated the methodology by

estimating the coverage of Human Papilloma Virus (HPV) and acellular pertussis component

containing (aPE) vaccines from the Spanish ‘Base de Datos Para la Investigación Farmacoepi-

demiológica en Atención Primaria’ (BIFAP) database.

Methods

Notation

The time scale we use is the age of a person (in weeks). For easy notation, we introduce the fol-

lowing definitions:

Ai ¼ in follow � up ðFUÞ during age i; vaccination recorded at age i

Bi ¼ in FU during age i; vaccination recorded before age i

Ci ¼ in FU during age i; no recorded vaccination before age i

Di ¼ Not in FU during age i; vaccination recorded before age i

Ei ¼ Not in FU during age i; no recorded vaccination before age i

The total number of persons (N) in the population of interest eligible for vaccination is

assumed to be constant over age. The population of interest will often be a specific birth cohort.

N ¼ Aþ Bþ C þ Dþ E

The proportion of persons in follow-up is age-dependent:

FUi;proportion ¼
Ai þ Bi þ Ci

N

Estimators

Period prevalence (PP). The period prevalence estimate for age i is the proportion of vac-

cinated persons over the total number of persons eligible for vaccination. In other words; PPi
represents the cumulative incidence up to age i over all eligible persons in the cohort.

PPi ¼
Ai þ Bi þ Di

N

Period prevalence: Complete case (PPCC). The PPCC analysis is performed on a subset of

the data containing only persons with a complete follow-up period, as indicated with the sub-

script. A complete follow-up is defined as follow-up from the start of the vaccination eligible

age till the end of the vaccination eligible age. This period will be vaccine specific and is defined

by the researcher.

PPCC;i ¼
Acc;i þ Bcc;i

Acc;i þ Bcc;i þ Ccc;i
¼
Acc;i þ Bcc;i
Ncc

Period prevalence: Follow-up (PPFU). The PPFU estimate for week i is the number of
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vaccinated persons in follow-up divided by the number of persons in follow-up during week i.

PPFU;i ¼
Ai þ Bi

Ai þ Bi þ Ci

Kaplan-Meier (KM). We first compute the survival function at age i as;

Si ¼
C

Aþ C

� �

1

�
C

Aþ C

� �

2

� . . . �
C

Aþ C

� �

i

The Kaplan-Meier estimate is then defined as one minus the survival function

KMi ¼ 1 � Si

Inverse Probability Weighting (IPW). We first compute the proportion of persons in fol-

low-up at age i;

FUproportion;i ¼
Ai þ Bi þ Ci

N

The total number of persons vaccinated at age i is obtained by weighing the number of

recorded vaccinations at age i over the proportion of persons in follow-up at age i.

AIPW;i ¼
Ai

FUproportion;i

The cumulative sum at the end of week i of AIPW is then set as the number of vaccinated

persons at age i. The IPW -coverage estimate is defined as

IPWi ¼

P
0!iAIPW;i
N

Adjusted inverse probability weighting: Cumulative distribution function (CDF).

We estimate the cumulative probability density (FA) for the age at vaccination from the subset

of persons with a complete follow-up. The cumulative distribution function represents the

probability to be vaccinated by a certain age. We interpreted the increase between week i−1

(= FA(ti−1)) and i (= FA(ti)) as the amount of meaningful follow-up (MFUi).MFUi thus equals

the probability of vaccination during week i inferred from persons with a complete follow-up.

We use a 5000-step numerical integration to quantifyMFU for each age-week. FA(ti) repre-

sents the total amount of meaningful follow-up at the end of week i, FA(ti−1) represents this

value at the start of week i.

MFUi ¼ FAðtiÞ � FAðti� 1Þ;

We subsequently multiply the meaningful follow-up for week i with the proportion of per-

sons in follow-up at week i to obtain the proportion of meaningful follow-up (MFUproportion,i).

MFUproportion;i ¼ FUproportion;i �MFUi

To allow for age-specific vaccination coverage estimation we need to normalize the propor-

tion of meaningful follow-up at the end of week i;

MFUproportion:normalized;i ¼
P

o!iMFUproportion;iP
o!iMFUi
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Finally we weight the total number of vaccinations at the end of week i by the normalized

MFUproportion,i.

CDFi ¼
P

0!iAi
MFUproportion:normalized;i

Software

All formulas were written in R version 3.5.2 and all R-code is made available as supplementary

material (S1 R-Code Estimation functions, S2 R-Code Simulation scenarios). We opted for

Kernel density estimation as this is a non-parametric method for which no distributional

assumptions are needed and used the default R density function (‘density()’) [16].

Simulation study

Per simulation run we created 10 000 persons. The date of birth of all persons is set at 1st of

January 2000. By default, all persons had a follow-up from birth (start-date: 01/01/2000) till

one year of age (end-date: 31/12/2001). The vaccination coverage was set at 90% and the age at

vaccination was sampled from a Weibull distribution (shape = 1, scale = 30, location = 28). A

Weibull distribution is an appropriate distribution for age at vaccination as its longer right tail

reflects delayed vaccinations [17]. For the PPCC- and CDF -method, complete cases were

defined as persons with follow-up from date of birth, 1st of January 2000, till the end of the

study period, 31st of December 2000.

Simulation scenarios. Incomplete follow-up was created in the simulated scenarios by

altering start-dates (left censoring) and end-dates (right censoring) of follow-up. The propor-

tion of altered start-dates and/or end-dates were 0, 0.3, 0.5, 0.7 and 0.9. We varied the amount

of incompleteness in each simulation scenario and defined four scenarios by the type of

incompleteness: ‘random left-censoring’ (scenario 1), ‘random right-censoring’ (scenario 2),

‘double censoring dependent on vaccination status’ (scenario 3) and ‘double censoring depen-

dent on age at vaccination’ (scenario 4) (Table 1, Fig 1). We did not allow for re-entry into fol-

low-up. This reflected BIFAP input data; persons were only allowed to have a single start- and

end-date. Whenever the altered start-date was a later date than the altered end-date, we ran-

domly chose one of the dates to be set back to its original value.

In scenarios 1 and 2, we randomly altered the start- (scenario 1) or end-date (scenario 2) of

a proportion of randomly selected simulated persons. In scenario 3, we created dependence

between follow-up and vaccination status by more frequently altering start- and end-dates in

unvaccinated than in vaccinated persons. The alterations were such that the coverage among

Table 1. Overview of the simulation scenarios.

Completeness of follow-up independent of vaccination

Scenario 1 (random left-censoring): Altered start of follow-up dates for a proportion of randomly selected

subjects.

Scenario 2 (random right-censoring): Altered end of follow-up dates for a proportion of randomly selected

subjects.

Completeness of follow-up dependent of vaccination

Scenario 3 (double censoring dependent on vaccination status): The vaccination coverage of persons with a

complete follow-up is 10% higher than the coverage of persons with incomplete follow-up.

Scenario 4: (double censoring dependent on age at vaccination): If late age of vaccination, 50% chance of end-

date at date of vaccination.

https://doi.org/10.1371/journal.pone.0222296.t001
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persons with a complete follow-up was 10% higher than the coverage among persons with an

incomplete follow-up. This simulation scenario represents a situation in which a complete fol-

low-up is indicative for compliance with vaccination. In scenario 4, we altered both start- and

enddates and created dependence between the period of follow-up and the date of vaccination.

More precisely, in 50% of persons who were three months or older at the time of vaccination,

the vaccination date coincided with the end-date of follow-up. The population vaccination

coverage remained at 90% as in all simulation scenarios. This simulation scenario represents a

situation in which persons with low compliance to the vaccination schedule are also more

likely to drop-out early.

Comparing the methods and presenting results

Methods performance was assessed using the root mean squared error (RMSE), defined as

RMSEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

1
ðcoveragei;n � estimated coveragei;nÞ

2

N

s

;

and the relative difference (RD), defined as

RDi ¼

PN
1
ð
coveragei;n � estimated coveragei;n

coveragei;n
Þ

N
;

where n represent runs of the simulation (n = 1:N with N = 10 000) and i represents the age-

estimates in weeks (i = 1:I with I = 52). For each scenario we present three graphs. We first

present the RMSE and RD over the proportion of missing FU.

missing FUi ¼ 1 �
Ai þ Bi þ Ci

N

In the third graph we present the RD by age in weeks for the highest proportion of

incompleteness.

Data illustration: BIFAP database

Real life data from the BIFAP database on HPV (dose 1) and aPE (dose 2) vaccination coverage

was used to illustrate the methodology and assess the impact of censoring. Exploratory analysis

Fig 1. Graphical overview of the simulation scenarios.

https://doi.org/10.1371/journal.pone.0222296.g001
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had shown that the follow-up of the population captured in the BIFAP database was dynamic

and therefore allowed for illustrative examples. The BIFAP-database is a primary care database

from the National Health System in Spain [18]. The database is multi-regional. It started regis-

tration in 2003 and during 2010 a new region was added to the database. A recent article about

the recording process in the BIFAP database, its validation and precision reported that 97.9%

of the vaccination records were submitted at the date of vaccination by the nurse who adminis-

tered the vaccine in the primary care practice. Primary care general practitioners and paedia-

tricians also submit vaccination records to the database [19].HPV-immunization has been

included in the Spanish national vaccination program from 2007 onwards for all girls aged 11–

14 years old [20]. The second dose of pertussis component containing vaccine is recom-

mended at 4 months of age since 1999. Since 2002 whole cell pertussis vaccine (wPE) has been

replaced with aPE [21].

For the first dose of HPV vaccine, our population of interest were females born in 1999, liv-

ing in Spain and registered in the BIFAP database before the age of 16 years. For the second

dose of aPE vaccine, our population of interest were all children born in 2010, living in Spain

and registered in the BIFAP database before the age of 30 days. The methods as described for

the simulation study were applied. We presented age-specific estimates (by age in years) for

the age groups 0–6 years (aPE) and 10–16 years (HPV). While an exact comparison is not pos-

sible, because the population and methodology differs, we do also present the estimates of the

Spanish public health authority for both HPV and aPE. This estimate is based on the number

of vaccines bought by the public healthcare administration over population size.

Results

Simulation scenarios 1 and 2

The RMSE associated with the PP-method increased with increasing proportion of missing

data. Since vaccinations were more likely registered in the beginning of the follow-up period

than towards the end, the RMSE over the proportion of missing data was smaller in scenario 2

than in scenario 1. The performance of the KM- and PPFU-method also differed between sce-

narios 1 and 2. Both methods showed a small to non-existent bias in scenario 2, while they

showed substantial bias, increasing underestimation with increasing proportion of missing

data, in scenario 1. The PPCC-, IPW- and CDF-method allowed for close to unbiased estimates

in both scenarios 1 and 2, even when a large proportion of subjects was having incomplete fol-

low-up (Figs 2 and 3).

Simulation scenarios 3 and 4

Scenarios 3 and 4 resulted in biased estimates for all methods. The bias was largest for the PP-

estimate, followed by the PPFU-estimate and the KM-estimate in both scenarios 3 and 4. The

performance of the PPCC-, the IPW- and CDF-method differed between scenarios.

The PPCC-method showed biased estimation during the age period in which the coverage

changed most, from age 3 weeks to 20 weeks. In scenario 3, the PPCC-estimate continued to be

more biased than the IPW- and CDF-estimate. Due to the specific simulation setting (complete

cases had a coverage that was 10% higher than persons with incomplete follow-up), the bias

caused by overestimation was maximum 10%. In scenario 4 from age 20 weeks onwards, the

PPCC-method provided the least biased estimate as compared to the other methods. The RMSE

associated with the PPCC-method was always larger than the RMSE associated with the IPW-

and CDF-method since RMSE was aggregated over the age in weeks. Both the IPW- and CDF-

method overestimated the vaccination coverage from age 20 weeks onwards in scenario 4. This

overestimation was larger for the IPW-estimate than for the CDF-estimate (Figs 4 and 5).
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Data examples

HPV vaccination. We included 30,170 female persons born in 1999 with at least one day

of follow-up in the BIFAP database between 1999 and 2016. For 38% and 65% of the girls, fol-

low-up started after the age of 10 years and ended before the age of 15 years respectively,

implying both left and right censoring of the follow-up time (Fig 6, left panel). The median

Fig 2. Scenario 1 (random left-censoring). (A) RMSE by the proportion of incomplete follow-up time, (B) RD by the proportion of incomplete follow-up-time and (C)

RD by ‘age in weeks’ (PP out of boundaries) (KM = Kaplan-Meier, PP = Period Prevalence, PP.fu = PP.follow-up, CDF = Cumulative Distribution Function,

IPW = Inverse Probability Weighting, CC = Complete Case, RD = relative difference, FU = follow-up, RMSE = Root Mean Squared Error).

https://doi.org/10.1371/journal.pone.0222296.g002
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follow-up time was 3.8 years (interquartile range = 4.8 years). Complete cases were defined as

having continuous follow-up from 10 to 15 years of age (N = 4266, 14.1%). The date of vacci-

nation and the start of follow-up occurred simultaneously for 382 girls.

Because of censoring, the PP-estimate (49.6%) underestimated the vaccination coverage

(Fig 6, right panel). Because of left-censoring the KM-estimate (81.0%) and the PPFU-estimate

Fig 3. Scenario 2 (random right-censoring). (A) RMSE by the proportion of missing follow-up time, (B) RD by the proportion of missing follow-up-time and (C) RD

by ‘age in weeks’ (KM = Kaplan-Meier, PP = Period Prevalence, PP.fu = PP.follow-up, CDF = Cumulative Distribution Function, IPW = Inverse Probability Weighting,
CC = Complete Case, RD = relative difference, FU = follow-up, RMSE = Root Mean Squared Error).

https://doi.org/10.1371/journal.pone.0222296.g003
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(81.3%) at 15 years of age also likely underestimated the coverage. Because of right-censoring

the PPFU-estimate became less stable from 15 years of age on. Because there were only 7.1%

(N = 4266) complete cases, the PPCC-estimate (83.7%) was considered less representative. We

preferred the CDF/IPW -estimate over the other estimates and estimated the coverage for

Spanish women born in 1999 under follow-up by the BIFAP-database at 81.6 (IPW) - 82.3

Fig 4. Scenario 3 (double censoring dependent on vaccination status). (A) RMSE by the proportion of missing follow-up time, (B) RD by the proportion of missing

follow-up-time and (C) RD by ‘age in weeks’ (PP out of boundaries) (KM = Kaplan-Meier, PP = Period Prevalence, PP.fu = PP.follow-up, CDF = Cumulative Distribution
Function, IPW = Inverse Probability Weighting, CC = Complete Case, RD = relative difference, FU = follow-up, RMSE = Root Mean Squared Error).

https://doi.org/10.1371/journal.pone.0222296.g004
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(CDF) % by the age of 15 years. The Spanish public health authority estimated the first dose

HPV-vaccine coverage at 74.0%-91.4% in 2015 for the specific regions that also provide pri-

mary care data to BIFAP [22].

aPE vaccination. We included 25,078 children born in 2010 with at least one day of fol-

low-up in the BIFAP database between 2010 and 2017. To reduce left censoring the analysis

Fig 5. Scenario 4 (double censoring dependent on age at vaccination). (A) RMSE by the proportion of missing follow-up time, (B) RD by the proportion of missing

follow-up-time and (C) RD by ‘age in weeks’ (PP out of boundaries) (KM = Kaplan-Meier, PP = Period Prevalence, PP.fu = PP.follow-up, CDF = Cumulative Distribution
Function, IPW = Inverse Probability Weighting, CC = Complete Case, RD = relative difference, FU = follow-up, RMSE = Root Mean Squared Error).

https://doi.org/10.1371/journal.pone.0222296.g005
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was restricted to children with follow-up before the age of 30 days, which meant that 80% of all

children in the 2010 BIFAP-birth cohort that were under follow-up before the age of 6 years

were excluded. The follow-up ended before the age of four years for 64% of included children

(Fig 7, left panel). The median duration of follow-up was 3.7 years (the interquartile range 1.4

years). Complete cases were defined as having continuous follow-up from 30 days to 4 years of

age (N = 9028).

Because of right censoring during the period in which vaccinations were registered, the PP-

estimate (91.2% at the age of 4 years) was lower than the other estimates (Fig 7, right panel).

The PPFU-estimate (97.7%) indicates right censoring of mostly unvaccinated children, as it

increased while other estimates remained stable. The positive relation between follow-up and

vaccination status is also seen in the CC-estimate (96.0%) as this estimate is higher than the

IPW (94.6%), KM (95%) and CDF (94.6%)-estimates. Because we selected a study population

without left censoring, the KM-estimate is not below the IPW and CDF-estimate. For this

study population we preferred the IPW, CDF or KM-method with the aPE dose 2 coverage

estimated at 94.6 (IPW/CDF) - 95 (KM) % by the age of 4 years for Spanish children born in

2010 whose follow-up by the BIFAP- database started before the age of 30 days. The Spanish

public health authority estimated the second dose aPE-vaccine coverage at 94.1% in 2011 (for

children aged 1–2 years old) [22].

Fig 6. HPV vaccination. (A) Overview of the cohort characteristics (FU = follow-up) presented as counts over years. (B) Age-specific estimates of the coverage over age

in years. Both for the first dose of HPV-vaccine, birthcohort of females born in 1999, BIFAP, Spain.

https://doi.org/10.1371/journal.pone.0222296.g006
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Discussion

In this article we explored the performance of different methods for the estimation of vaccina-

tion coverage from eHRs through a simulation study. We compared methods that ignore

incompleteness in follow-up (PP), circumvent it by subsampling (PPCC, PPFU) or adjust for it

(KM, IPW, CDF).

Whenever there is independence between vaccination and incompleteness, the IPW and

CDF -method will provide nearly unbiased estimates even when the proportion of missing

data is large. Additional criteria will determine the performance of the other methods. KM and

PPFU-methods might be considered when left-censoring is absent. If the population of com-

plete cases is large enough PPCC-methods can be considered as well. In case of dependence

between completeness of follow-up and vaccination, the estimates vary across methods and all

methods provide biased estimates, with CC, IPW and CDF being the least biased for our simu-

lation settings.

The period prevalence (PP), complete case-analysis (PPCC), and the period prevalence of

the persons in follow-up (PPFU) all estimate the coverage as the number of vaccinated persons

over the number of persons in follow-up, but do so over a different subset of the data. The PP-

method is the only method not accounting for incomplete follow-up. The bias of the PP-

Fig 7. aPE vaccination. (A) Overview of the cohort characteristics (FU = follow-up) presented as counts over years. (B) Age-specific estimates of the coverage over age

in years. Both for the second dose of aPE containing vaccine, birthcohort of children born in 2010, BIFAP, Spain.

https://doi.org/10.1371/journal.pone.0222296.g007

Vaccine coverage estimation from electronic healthcare records

PLOS ONE | https://doi.org/10.1371/journal.pone.0222296 September 18, 2019 13 / 17

https://doi.org/10.1371/journal.pone.0222296.g007
https://doi.org/10.1371/journal.pone.0222296


method will always be downwards and the estimates can therefore be used as a lower bound of

the vaccination coverage. For the PPCC-method, only complete cases were used for the calcula-

tion of the vaccination coverage. The PPCC-estimates will be biased when the sample of com-

plete cases is not representative for the population of interest in terms of vaccination coverage

and age at vaccination. The denominator of the PPFU-method varies according to those actu-

ally in follow-up during week i. PPFU-estimates can become unstable or decline over time. In

case of left-censoring, PPFU-estimates will be biased downward even under independence

between vaccination and completeness as persons entering the database after vaccination, thus

without having the vaccination registered, will be included in the analysis as unvaccinated.

Survival analysis methods, such as the KM-method, have been used previously to assess vac-

cination coverage and delay in age-specific vaccination [15,23]. The methodology also allows

for further analysis, such as research into factors associated with delayed administration of the

vaccines through Cox regression analysis [24]. The method as presented in this paper does not

correct for left censoring. Researchers who want to use the KM-method on dynamic eHRs will

have to resort to sub-setting their data to persons with only right censoring (as we did in our

data example on pertussis vaccine), or left truncate their data to lose the left censoring. The lat-

ter will require additional methodology, such as Turnbull’s self-consistent estimators for dou-

bly censored data [25,26]. Our study did not investigate survival-based methods allowing for

inference from doubly censored data [27,28].

The weight in the IPW-method was only determined by the total proportion of persons in

follow-up at a certain age. Additional stratification might be necessary. For example, if we

assume that the proportion of persons in follow-up are year of birth specific, then it is neces-

sary to obtain weights for each birth year to be able to estimate ‘birth year’-cohort specific cov-

erage. The CDF-method, a special case of inverse probability weighting, exploits the fact that

vaccines are often given at specific ages by using weights corresponding to the probability of

vaccination at a specific age and the proportion of persons in follow-up at this age. The proba-

bility distribution of age at vaccination is estimated from the age at vaccination of complete

cases. A wide range of density estimation techniques can be used for the CDF-method, either

non-parametrically or parametrically [29]. This identifies two weaknesses of the method.

Complete cases with a representative age at vaccination need to be identified and the method

is computationally more intensive than the other methods as we need to first estimate a density

function and then apply a method such as numerical integration.

The CDF-method resulted in less correct estimates in scenarios 1 and 2 (without depen-

dence) during the age periods in which most vaccines were administered as compared to the

IPW-method. However, in scenario 4 (with dependence) the CDF-method outperformed the

unadjusted IPW-method. The adjusted weights came with the advantage that vaccinations

administered at an age within the tail of the estimated ‘age at vaccination’ density distribution

contributed less to the CDF-estimate then to the IPW-estimate. The IPW-method therefore

overestimated the number of unregistered vaccination to a larger extent compared to the

CDF-method. One might prefer the PPCC-estimate when dependence between the age at vacci-

nation and the age at the start/end-date of follow-up is present. Especially when the depen-

dence manifests at an ‘early’ age as compared to the other ages at vaccination. For example

when healthcare is organised in a way in which entry into the database is linked to contact

with the vaccinator.

Insight into the type of censoring and type of dependence between completeness and vacci-

nation are important to select the preferred method for estimating vaccination coverage. This

insight can be gained from histograms, as with the BIFAP-examples, but it might also prove

helpful to plot and compare estimates from different methods. The PP-method will, for exam-

ple, provide a lower bound and differences between the KM- and the IPW/CDF-method will
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indicate left censoring. If the shape of the curve of age-specific estimate is different between

PPCC and the other methods, it might reflect an unrepresentative population of complete cases.

Limitations

The choice of stratification granularity defines the balance between computational time and

accuracy of the estimates. We opted for weekly stratification because of the computation bur-

den already inherent to a simulation study. The simulated dates of follow-up and vaccination

were however defined on a daily level. As a consequence, none of our methods could produce

unbiased estimates.

Martin-Merino et al. recently discussed the data quality of the HPV-records in the BIFAP

database and found that presence of a vaccination record confirmed vaccination and the date

of vaccination [19]. We did not further investigate the influence of data quality problems. A

common problem in obtaining age-specific estimates from eHR databases is that dates of birth

are sometimes rounded to month-year of year of birth to protect the patient’s privacy.

Relevant background characteristics (ideology, socio-economic status, . . .) might influence

both follow-up by a database and vaccination and introduce bias into the estimation. It is

important to differentiate incomplete follow-up from completely missing follow-up. While the

differentiation might be artificial in actual applications, only the former is explored in this

paper in simulation scenarios 3 and 4. The latter is outside the scope of our current work. As a

result, estimates obtained with any of the methods only estimate coverage for the population

captured by the database and, given dependence between vaccination and follow-up, we will

only be able to estimate that coverage up to a certain extent. Additional analysis or assump-

tions on the representativeness of the database-population are necessary to translate estimates

to a larger population.
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