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Abstract

Prostatic acid phosphatase (PAP), which is secreted by prostate, increases in some dis-

eases such as prostate cancer. PAP is also present in the central nervous system. In this

study we reveal that α-synuclein (Snca) gene is co-deleted/mutated in PAP null mouse. It is

indicated that mice deficient in transmembrane PAP display neurological alterations. By

using immunohistochemistry, cerebellar cortical neurons and zone and stripes pattern were

studied in Pap-/- ;Snca-/- mouse cerebellum. We show that the Pap-/- ;Snca-/- cerebellar cor-

tex development appears to be normal. Compartmentation genes expression such as zebrin

II, HSP25, and P75NTR show the zone and stripe phenotype characteristic of the normal

cerebellum. These data indicate that although aggregation of PAP and SNCA causes

severe neurodegenerative diseases, PAP -/- with absence of the Snca does not appear to

interrupt the cerebellar architecture development and zone and stripe pattern formation.

These findings question the physiological and pathological role of SNCA and PAP during

cerebellar development or suggest existence of the possible compensatory mechanisms in

the absence of these genes.

Introduction

Alpha- synuclein (SCNA, 140 amino acids) is encoded by Snca gene and is present in the cyto-

plasm in both free and lipid associated forms [1,2]. This protein is one of several major mem-

bers of intracellular fibrillary proteins, abundant protein in presynaptic axon terminals and

important for brain normal function [3]. Synuclein family are comprised of α-, β-, and ɣ-synu-

clein, and synoretin [4]. It was found first in Torpedo californica’s acetylcholine vesicles and

suggested to have a role in dopaminergic neurotransmission and synaptic plasticity [3,5].

When SNCA aggregates in the brain (forming oligomers and insoluble fibrils with increased
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ß-sheet configuration, Lewy bodies and non-Amyloid β component) it can result in a subset of

neurodegenerative disorders like Alzheimer’s disease (AD), Parkinson’s disease (PD), demen-

tia with Lewy bodies (DLB), and other synucleinopathies [6,7].

It is important to note that many of the proteins involved in the progression of neurodegen-

eration have crucial contributions during neurodevelopment [8]. In a study conducted on the

developing human from fetus to adulthood, it is concluded that the expression of α-synuclein

(SNCA) observed and condensed first in neuronal cell bodies of cortical plate at 11 weeks,

then in the hippocampus, basal ganglia, and brain stem at 20 weeks and persist for few years

after birth [9]. In the cerebellum, it expresses in granular layer and molecular layer which starts

at 21 weeks and continues until adulthood [9]. In the study was done by Raghavan et al., it is

demonstrated the expression of SNCA in brain (anatomical and subcellular localization) varies

with age, and starts disappearing from the neuronal cytosol in early fetus, and only presents in

neuronal processes in older fetuses and adults while its role changes from stem cell fate and

differentiation to synapse plasticity, synaptogenesis, and neurotransmission [9].

In mice, the expression of SNCA in developing brain has been detected as early as E 9.5 in

the marginal zone of the neocortex and later in the subplate [10]. In the cerebellum, the high

expression of SNCA is firstly observed in the cerebellar nuclei and then, the same pattern is

seen in the Purkinje cells. The reason for this spatio-temporal expression pattern underscored

by the authors as a response to the neuronal migratory pathways and the formation of the syn-

apse connections [10]. In the mice lacking SNCA, the regulatory role of SNCA is shown

through depletion of the presynaptic vesicular pool [11].

Thiamine monophosphatase (TMPase) is known as a molecular marker of small-diameter

dorsal root ganglia neurons [12]. It has been reported that transmembrane isoform of prostatic

acid phosphatase (PAP) is identical to the TMPase [12]. The two types of PAP transcripts are

generated by alternative splicing; transmembrane PAP (TMPAP) which consists of 11 exons

(exon 1–9, 10a and 11), and cellular and secretory PAPs having 10 exons (exon 1–9 and 10b)

[13–15]. TMPAP is a member of the plasma membrane-endosomal-lysosomal pathway and

the length of the 3’ untranslated region of TMPAP is shorter than those of cellular and secre-

tory PAPs: 405 bp versus 874 bp [15,16]. As an important marker for prostatic carcinoma,

PAP was identified long before the introduction of prostate specific antigen (PSA) [14,17,18].

The expression of TMPAP was observed in nonprostatic tissues, including brain, kidney, liver,

lung, skeletal muscle, placenta, salivary gland, spleen, thyroid, and thymus [19,20]. It is indi-

cated that mice deficient in transmembrane PAP display increased GABAergic neurotransmis-

sion beside increase in striatal dopamine synthesis and neurological alterations [21].

Neurodegenerative disorders with synucleinopathies are accompanied with dopaminergic

neuron loss [22]. Interestingly, PAP has stronger antinociceptive effects than morphine and

has been suggested to use for the treatment of chronic pain [12].

In this study to question any neurological abnormalities related to cerebellum, we investi-

gated the cerebellar cortex patterning to indicate any changes in form of stripes and patterns

compartmentation in PAP mutant mice, to uncover the possible role of PAP and SNCA in the

cytoarchitecture and function of the cerebellum.

Material and methods

Animal maintenance

All animal procedures were performed in accordance with institutional regulations and the

Guide to the Care and Use of Experimental Animals from the Canadian Council for Animal

Care and has been approved by local authorities “the Bannatyne Campus Animal Care Com-

mittee” (approved protocol # 15–066). PAP KO mice were obtained from Dr. Pirkko Vihko,

Pap-/- ; Snca-/- mouse cerebellar cortex patterning
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University of Helsinki, Finland. All control wide types C57BL/6 mice were obtained from Cen-

tral Animal Care Service, University of Manitoba. Animals were kept at optimum temperature

and relative humidity (18–20˚C, 50–60%) on a light and dark cycle (12:12 h) with free access

to food and water. The midday of the vaginal plug discovery was designated embryonic day 0.5

(E0.5) and the day of birth postnatal day 0 (P0). Pregnant females (n = 6, 3 Pap-/-, 3 Pap+/+)
were anesthetized with 40% isoflurane, UPS Baxter Co. Mississauga, Ontario, Canada) and

killed via cervical dislocation. The embryos at E 12.5 were carefully dissected, placed immedi-

ately in ice-cold phosphate buffered saline (PBS) to remove blood, and then fixated overnight

in the fixation solution (4% paraformaldehyde (PFA)). For postnatal brain sample collection,

mice at P60 (n = 20; 10 Pap-/-, 10 Pap+/+) were anesthetized with isoflurane and transcardially

perfused at first with ice-cold PBS and followed by the 4% PFA. Then brains removed from

skull and placed in the same fixation solution for overnight.

Sections immunohistochemistry and immunofluorescence

The embryos and postnatal brains were transferred to the gradient 10%-20%-30% sucrose

until they sank at the bottom of the container. Then they were embedded in clear frozen sec-

tion compound (OCT: VWR, USA), were frozen at -80˚C and cut at 20 μm via cryostat micro-

tome. The sections were placed on slides covered with a coating solution (0.05% chromic

potassium sulfate and 0.5% gelatin) or floated in sterile PBS to be utilized for immunochemis-

try (IHC) process as explained in our previous studies [23,24]. Antibody dilutions were used

as follows: SNCA (sc-69977, Santa Cruz) 1:500 [10], p75NTR (8238, Cell Signaling) 1:1000

[25]. Two anti-calbindin (Calb1) antibodies were used (in the cerebellum, Calb1 is entirely

expressed in Purkinje cells): Rabbit polyclonal anti-calbindin D-28K antiserum (anti-Calb1,

diluted 1:1,000, Swant Inc., Bellinzona, Switzerland), and mouse monoclonal anti-calbindin

(anti-Calb1, diluted 1:1,000, Swant Inc., Bellinzona, Switzerland) [23,24]. Anti-zebrin II (a gift

from Dr. Richard Hawkes, University of Calgary, Calgary, AB, Canada) is a mouse monoclonal

antibody that was produced by immunization with a crude cerebellar homogenate from the

weakly electric fish Apteronotus. We used it directly from spent hybridoma culture medium

(diluted 1:200) [23,24,26]. Fluorescent detection was performed using followed antibodies:

Alexa Fluor1 568 Goat Anti-Rabbit IgG (H+L), Alexa Fluor1 488 Chicken Anti Mouse IgG

(H+L) (A-11036, A21200, Life Technologies) 1:1000. Detection of peroxidase IHC was also

performed as described previously using HRP conjugated goat anti rabbit IgG and goat anti-

mouse IgG (H+L) antibodies (EMD Millipore Corporation, 12–348 and AP308P, respectively)

1:500, and developed with DAB (3,3’-diaminobenzidine) solution (Sigma, St. Louis MO,

USA).

Western blotting analyses

Equal amount of proteins (n = 6, 3 Pap-/-, 3 Pap+/+) were separated by SDS/PAGE in 10–15%

precast gels (Bio-Rad, Hercules, CA, USA) and transferred onto the PVDF-membrane. For the

Western blot analysis, membranes were blocked in 5% nonfat dry milk (NFDM) in TBS con-

taining 0.02% Tween 20 (TBST) and then incubated overnight at 4˚C with primary antibodies

as follows: α-synuclein (sc-69977, Santa Cruz) 1:2000. Secondary antibodies as follows: HRP

conjugated goat anti-mouse IgG (AP308P, Millipore) 1:6000. Binding was assessed using DAB

(3,3’-diaminobenzidine) solution (Sigma, St. Louis MO, USA).

PCR analysis

To study the expression of SNCA in Pap-/-and Pap+/+, total DNA from cerebellum (n = 6,

Pap-/-, 3 Pap+/+) was extracted using a kit (AccuStartTM II Mouse Genotyping Kit, Cat# 95135–

Pap-/- ; Snca-/- mouse cerebellar cortex patterning
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500, Quanta BioSciences, Inc. MD, USA), according to manufacturer’s instructions. DNA

quality and quantity were determined by measuring the absorbance at 260 and 280 nm using

NanoDrop ND-1000 UV- 19 Vis Spectrophotometer (Thermo Fisher Scientific, Waltham,

MA, USA). All samples had an absorption ratio A260/A280 between 1.8 and 2.2. DNA (1 μg)

from each sample was used.

To amplify the SNCA gene, PCR reactions were performed in a T3000 thermocycler (Bio-

metra, Göttingen, Germany) using AccuStartTM II GelTrackTM PCR SuperMIX (2X) (Cat#

95136–500, Quanta BioSciences, Inc. MD, USA) in a final volume of 25 μL. There were three

sets of primers to amplify across an intron to probe genomic DNA for SNCA (the SNCA

primer sequences are presented in S2 Fig). Then PCR products were run on PCR agar gel and

detected for the target gene (SNCA) bands to distinguish differences in PAP-WT from

PAP-KO mice.

Imaging and figure preparation

For bright field microscopy, images were captured using Zeiss Axio Imager M2 microscope

(Zeiss, Toronto, ON, Canada). Images were then analyzed with a Zeiss Microscope Software

(Zen Image Analyses software) (Zeiss, Toronto, ON, Canada). For fluorescence microscopy of

the embryonic entire cerebellum sections, a Z2 Imager Zeiss Fluorescence microscope (Zeiss,

Toronto, ON, Canada) equipped with a camera was used to capture the images. Images were

then analyzed using Zen software. Images were cropped, corrected for brightness and contrast,

and assembled into montages using Adobe Photoshop CS5 Version 12.

Results

SNCA expression in cerebellum of PAP-/- mouse and wide type controls

(Zone and Stripe Pattern)

The expression of SNCA in different part of central nervous system (cerebrum, cerebellum,

brain stem and spinal cord) was evaluated at protein level by Western blotting. Western blot

analysis at P = 60 showed SNCA expression in all different parts (cerebrum, cerebellum, brain

stem and spinal cord) of the control Pap+/+ and none of the PAP-/- (Fig 1A). The expression of

SNCA was also evaluated by immunohistochemistry of transverse cerebellar sections at P = 60

and confirmed Western blot results. In the cerebellum of control Pap+/+, SNCA was expressed

in the axon terminals of the mossy fibers in the granular layer (Fig 1B). Transverse section

through the anterior cerebellum immunoperoxidase-stained for SNCA showed strong immu-

noreactivity in the granular layer in an array of parasagittal stripes (lobules III and V; Fig 1C).

The PAP-/- transverse cerebellar section was immunolabeled with SNCA and showed no

immunoreactivity in granular layer (Fig 1D) or in anterior zone (Fig 1E).

The expression of SNCA in embryonic stage in PAP-/- mouse and wide type

controls

To determine the expression of SNCA during early development, double immunofluorescence

staining performed in sagittal cerebellar sections at E12 with SNCA and P75NTR (positive

immunoreactivity for nuclear transitory zone (NTZ) at early cerebellar development). In con-

trol Pap+/+ (Fig 2A–2C), SNCA immunopositive cells in NTZ (Fig 2A) and P75NTR immuno-

positive cells in NTZ (Fig 2B) were observed and co-labeled (merge one, Fig 2C). In

comparison, the PAP-/- sagittal cerebellar sections at E12 showed no immunoreactivity for

SNCA (Fig 2D) while P75NTR immunopositive cells were seen in NTZ (Fig 2G). No co-label-

ing of NTZ was seen (Fig 2F).

Pap-/- ; Snca-/- mouse cerebellar cortex patterning
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PCR results

To confirm the lack of Snca in Pap-/-, the expression of Snca in Pap-/- and Pap+/+ was studied

by amplification across an intron to probe genomic DNA for Snca. We found that Snca was

deleted in Pap-/-mice after running PCR products on agar gel with three sets of different prim-

ers of SNCA (Fig 3 and S1 Fig).

The expression of Calb1 and zebrin II in cerebellum of Pap-/- ; Snca-/-

mouse and wide type controls (Zone and Stripe Pattern)

The expression of Calb1 (a marker expressed by all of the Purkinje cells [23]) and is a critical

determinant of the precision of motor coordination [27] was also evaluated by immunohis-

tochemistry of transverse cerebellar sections at P = 60 and showed no differences between

Pap+/+ ; Snca+/+ (Fig 4A) and Pap-/- ; Snca-/- (Fig 4B) and appeared all Purkinje cells are present

with normal phenotype, arranged Purkinje cell bodies in line and their dendrites were arbor-

ized to molecular layer. Immunolabeling of transverse cerebellar sections with zebrin II

showed that the pattern expression of zebrin II with parasagittal stripes in Pap+/+ ; Snca+/+ (Fig

4C) is the same in anterior (Fig 4D), central (Fig 4E), posterior (Fig 4F) and nodular (Fig 4G)

zones in Pap-/ -; Snca-/-mice and is normal. The mouse cerebellar cortex is subdivided into

four transverse zones—the anterior zone (AZ: ~lobules I–V), the central zone (CZ: ~lobules

Fig 1. SNCA expression in cerebellar vermis of adult WT and Pap null mice. A. Immunoblotting showed lack of the SNCA expression in Pap null

cerebellum, cerebrum, brainstem, and spinal cord tissue at P = 60 in comparison to the control. B-C. SNCA immunoperoxidase staining of a transverse

section through the anterior cerebellum at P = 60 shows strong immunoreactivity in the granular layer in the terminals of mossy fibers afferents (B) in

an array of parasagittal stripes in anterior zone (C). D-E. The Pap null cerebellum shows a lack of SNCA expression at low (D) and in higher

magnification (E). Abbreviations: pcl: Purkinje cell layer, gl: granular layer, III and V: lobule III and lobule V Scale bar: 20 μm in B and D; 200 μm in C

and E

https://doi.org/10.1371/journal.pone.0222234.g001

Pap-/- ; Snca-/- mouse cerebellar cortex patterning
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VI–VII, with two sub-zones—see [28]), the posterior zone (PZ: ~lobules VIII + dorsal IX), and

the nodular zone (NZ: ~ventral lobule IX + lobule X) (e.g., [29] and [30]).

The expression of P75NTR and HSP25 in cerebellum of Pap-/ -; Snca-/-

mouse and wide type controls (Zone and Stripe Pattern)

The expression of P75NTR in central zone (Fig 5A) and nodular zone (Fig 5B) in Pap+/+ ;
Snca+/+ transverse sections of cerebellum at P = 60 showed immunoreactivity in stripes

Fig 2. Lack of Snca expression in the Pap mouse at E12. A-F. Double immunostaining with SNCA (green) and P75NTR (red) at E12 in WT (A–C)

and Pap-null mice (D–F) shows a lack of SNCA expression in NTZ cells (D), while P75NTR cells are present in NTZ cells and confirm the presence of

these cells (E). Abbreviations: CB: cerebellum, NTZ: nuclear transitory zone Scale bar = 50 μm.

https://doi.org/10.1371/journal.pone.0222234.g002

Fig 3. The three sets of primers, each to amplify across an intron to probe genomic DNA for Snca, which are all were negative in the Pap KO
mice and positive in the WT mice. PCR amplification of α -synuclein from Pap KO and WT mouse genomic DNA to verify that the gene is present.

From intron-exon map, it is feasible to amplify from exon 1–281 to exon 281–430 (intron is 1096); exon 426–470 to exon 469–614 (intron is 2586);

exon 612–698 to exon 698–1286 (intron is 940). Primer pair 1- PCR product size is 1271, Primer pair 2- PPCR product size is 2694, and Primer pair 3-

PCR product size is 1108. The data convincing show that the expected PCR products are seen in WT but not Pap KO genomic DNA.

https://doi.org/10.1371/journal.pone.0222234.g003

Pap-/- ; Snca-/- mouse cerebellar cortex patterning
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pattern. In comparison to the Pap+/+ ; Snca+/+, the transverse sections of Pap-/ -; Snca-/- cerebel-

lum showed similar pattern of stripes with P75NTR immunopositive Purkinje cells in central

(Fig 5C) and nodular zone (Fig 5D). The pattern of P75NTR positive immunoreactivity resem-

bles HSP25 expression in same stripes pattern in central and nodular zone of Pap-/—; Snca-/-

cerebellum (Fig 5E and 5F). HSP25 immunolabeling is absent in the anterior and posterior

Fig 4. Transverse sections through the adult cerebellum of WT and Pap null mice immunostained with Calb1 and zebrin II. A-B.

Immunohistochemistry with Calb1 (a pan Purkinje cell marker in the cerebellum) shows there is no phenotypic alteration between the WT (A) and

Papmutant (B). C-G. Transverse sections through the cerebellum of the adult WT (C) and Pap null (D-G) immunoperoxidase stained for zebrin II.

The pattern of parasagittal stripes in the anterior zone central zone, posterior zone, and nodular zone are normal. The conventional stripe

nomenclature has zebrin II+ stripes called P+, and are numbered from P1+ (indicated by 1) at the midline to P3+ (indicated by 3) laterally(e.g., [30]

and [65]). Abbreviations: Scale bar = 200μm

https://doi.org/10.1371/journal.pone.0222234.g004

Pap-/- ; Snca-/- mouse cerebellar cortex patterning
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zones, while is expressed in parasagittal stripes in the central and nodular zone of the normal

cerebellum [23].

Discussion

In this study, we have shown that despite the importance of the expression of PAP and SNCA

during development, knock-out mice have normal brain morphology, including stripes and

zone patterns of the cerebellar cortex architecture. An initial objective of the project was to

identify the expression of SNCA in PAPmouse, and the idea of studying the expression of

SNCA in Pap KOmice was done following our lab interest in cerebellar expression of SNCA

during early and postnatal development. One interesting finding is that at different part of the

brain (cerebrum, cerebellum, brain stem and spinal cord) there was no expression of SNCA in

the Papmouse. SNCA is not expressed in the axon terminals of mossy fibers and confirms the

absence of this gene in Papmouse. From our data, it appears that Pap KO is also Snca knock

out. It is hard to call them double knock out since it was not done intentionally. Several reports

have shown their findings on the deletion of Snca. In studies done on the mutated model of

Snca, it is indicated that although Snca is expressed in all brain regions, knock-out mice have

normal brain morphology and cellular structure. However, these mice demonstrates Lewy

bodies inside the dopaminergic neurons under certain conditions. It is important to note that

abnormal dopamine signaling may be associated with the role of SNCA in the nigrostriatal

pathway, which is functional and not structural [31,32]. Further, other studies have shown that

decreased dopamine levels in the striatum and reduced locomotor activity in response to

Fig 5. P75NTR and HSP25 expression in the cerebellum of the WT (A-B) and Pap null mouse (C-F). A-B. P75NTR immunoperoxidase staining

shows pattern of stripe immunoreactivity in central zone (A) and nodular zone (B) in WT cerebellum. C-D. P75NTR immunoperoxidase staining

shows pattern of stripe immunoreactivity in central zone (C) and nodular zone (D) in Pap null cerebellum which is comparable with WT. E-F.

Immunoperoxidase staining for HSP25 in transverse sections through the central zone and nodular zone of the Papmutant cerebellum reveals that

subsets of Purkinje cells expressing HSP25 are interposed by HSP25 immunonegative Purkinje cells which are comparable with p75NTR expression in

WT and Papmutant. Abbreviations: Scale bar = 200μm.

https://doi.org/10.1371/journal.pone.0222234.g005

Pap-/- ; Snca-/- mouse cerebellar cortex patterning
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amphetamine plus resistance to toxic effects of MPTP (a neurotoxin used to induce PD in ani-

mals by destroying dopaminergic neurons) [33–35].

As indicated before by Zhong et al. during embryonic stage, SNCA is condensed in NTZ of

early developing cerebellum [10]. To examine the possibility of the disappearance of NTZ cells

in the current study we found that despite the deletion of this gene, NTZ cells are still there

and are labeled by P75NTR, while are immunonegative for SNCA. Neuronal proliferation/dif-

ferentiation is regulated by P75NTR that are mainly expressed during early development [36–

38].

Another interesting finding was by PCR experiment and confirmed the simultaneous dele-

tion of Snca with Pap while a note of caution is due here since questioning the possibility of

deletion of other genes and mainly raises questions about the original strain and / or mutation

method.

There is a fundamental and unique cytoarchitecture organization in the cerebellar compart-

mentation and each gene is expressed, functioned and aligned in the pattern of zones and

stripes [23–25,39–41]. The best way of studying Purkinje cell degeneration and vulnerability is

indicated by the pattern of gene expression in different cerebellar lobules [23,25,39,40,42,43].

Many genes are expressed uniformly or their immunoreactivity are negative in the CZ and NZ

[23,44]. Here, well-known Purkinje cell markers were used: Calb1, zebrin II, P75NTR and

HSP25. The expression pattern of Calb1 showed no differences between normal and mutant

mice and was expressed in all of Purkinje cells. The parasagittal striped expression pattern of

zebrin II with immunopositive bands from medial to lateral of adult transverse cerebellar sec-

tions are termed P1+ to P7+ [25,45] and were identical in different zones. HSP25 is another

Purkinje cell marker and it is expressed in the CZ and NZ uniformly at around P12 [46]. By

around P15-21 the expression pattern of HSP25 in CZ became striped. It is reported the corti-

cogenesis and development of CZ occurred in slower pace in comparison to the other cerebel-

lar zones [47]. In our previous study, we have shown that the pattern of P75NTR expression in

the adult cerebellar tissue is comparable with HSP25 expression [25]. Surprisingly, the parasa-

gittal stripe pattern expression of P75NTR and HSP25 in the CZ and NZ resembled each other

and showed no differences between knockout and WT control cerebellum. All in all were in

support of the normal cerebellar compartmentation and morphology in dual Pap / Snca KO
mice.

Small-diameter neurons are located in the dorsal root ganglia and trigeminal ganglia which

are responsible for sensing painful and tissue-damaging stimuli [48,49]. These neurons express

acid phosphatase or TMPase [50,51]. Prostatic acid phosphate is used as an indicator for diag-

nosis and treatment response in prostate carcinoma patients [14,18,52,53]. It has been shown

that there is a decrease in thiamine-dependent processes in the postpartum brains of patients

with neurodegenerative diseases. Evidence indicates that antinociceptive effects of thiamine

are mediated by PAP [54]. Decrease in thiamine-dependent enzymes (TMPase, transmem-

brane isoform of PAP [15]) result in the antioxidant reversal and increased oxidative and

nitrosative stress lead to neurodegenerative disease [55]. In addition, thiamine-dependent pro-

cesses play an important role in glucose metabolism. Interestingly, AD and thiamine (vitamin

B1) deficiency are associated with reduced glucose metabolism and increased oxidative stress

in the brain. These two disorders are accompanied by irreversible cognitive impairment and

share similar behavioral consequences, but are not identical and implicate the involvement of

thiamine in the modulation of peroxisomal function, oxidative stress, protein processing, and

transcription [56,57]. Beside role of PAP in neurodegeneration, it is reported that Pap knock-

out mice have normal acute pain sensitivity but enhanced sensitivity in chronic inflammatory

and neuropathic pain models (increased thermal hyperalgesia and mechanical allodynia) [12].

In addition, PAP introduced as a neglected ectonucleotidase (extracellular adenosine

Pap-/- ; Snca-/- mouse cerebellar cortex patterning
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production by dephosphorylation of the extracellular AMP to adenosine) could regulate

diverse physiological processes that are dependent on adenosine [58,59]. Both adenosine and

oxidative stress play an important role in prostate cancer [60,61]. TMPase deficient mice dis-

play increased GABAergic transmission and neurological alterations [21].

The most interesting aim of this experiment to pursue was the lack of the alpha-synuclein

protein (SNCA) which is perhaps a consequence of the inbreeding in Pap KOmice. Specht

and Schoepfer has shown that the deletion of alpha-synuclein locus is shown in the C57BL/6S

strain mice, namely animals from Harlan when they inbred [62]. Interestingly, It is indicated

that after Pap KOmice was generated, the homogenous background obtained by backcrossing

to the C57BL/6 strain (Harlan Laboratories Inc.) for 16 generation [63,64].

These findings demonstrate the normal appearance of the stripe and zone patterns of the

genes involved in cerebellar cortex architecture and compartmentation in Pap-/ -; Sncamice

and if there is an unintentional double knockout, it has been raised an important issue for

future research; what else is missing?

Conclusion

To conclude, the most obvious finding to emerge from this study is that Pap and Snca dual KO

mice have normal cerebellar morphology. These findings will be of interest to clinicians who

are working on Parkinson’s disease, Alzheimer’s disease or other synucleinopathies.

Supporting information

S1 Fig. The DNA expression of Snca and Pap in control and KO mice embryos. PCR ampli-

fication of Snca and Pap in KO and WT mouse embryos genomic DNA to verify that the gene

is present or not. Snca primer pair 3- PCR product size is 1108. The data convincing show that

the expected PCR products are seen in WT but not Pap KO genomic DNA. Pap primer pair

PCR product size is ~ 1000 (oligonucleotides used, (5´-TGCTGCACGGATACACATGC-3´
and 5´-TCGCAGCGCATCGCCTTCT-3’)) andWT primer pair PCR product size is ~ 500

oligonucleotides used (5´- GCA TGG AAC AGC ACT ACG AAC T -3´ and 5´- TC
C ACA TCT GTG CTC CGG ATA T -3’). The data show that the expected PCR prod-

ucts are seen inWT at around 500 in WT mice and for Pap at around 1000 in KO genomic

DNA.

(TIF)

S2 Fig. Snca primers for cDNA and genomic DNA. In this study, the primers sequences were

designed to be useful for both cDNA and genomic DNA, with small products using cDNA and

bigger products using genomic DNA.

(TIF)
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