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Abstract

Cruzain, a cysteine protease of Trypanosoma cruzi, is a validated target for the treatment of

Chagas disease. Due to its high similarity in three-dimensional structure with human cathep-

sins and their sequence identity above 70% in the active site regions, identifying potent but

selective cruzain inhibitors with low side effects on the host organism represents a signifi-

cant challenge. Here a panel of nitrile ligands with varying potencies against cathepsin K,

cathepsin L and cruzain, are studied by molecular dynamics simulations as both non-cova-

lent and covalent complexes. Principal component analysis (PCA), identifies and quantifies

patterns of ligand-induced conformational selection that enable the construction of a deci-

sion tree which can predict with high confidence a low-nanomolar inhibitor of each of three

proteins, and determine the selectivity for one against others.

Introduction

Cysteine proteases, specifically those belonging to the Papain family [1](family C1 and Clan

CA, in the MEROPS [2] database classification), can be found in cellular lysosomes and the

extracellular matrix after cellular secretion [3,4], and are involved in many different biological

processes and pathways, including development and growth, cellular signalling, apoptosis,

pro-hormone processing, nutrition, invasion of host cells and others [5]. Unsurprisingly then,

they are of significant interest to the pharmaceutical industry[6,7] and amongst these enzymes

are validated targets for the development of treatments for osteoporosis, cancer, immune dis-

eases and parasitic diseases[8] (e.g. malaria, Chagas disease [9], and leishmaniasis). As a result

of this interest there are currently a considerable number of small molecule inhibitors of cyste-

ine proteases, especially of human cathepsins, [10–12] Trypanosoma cruzi cruzain, [13–15]

and falcipains from Plasmodium falciparum [16,17].

Chagas Disease is a parasitic disease caused by the flagellated parasite Trypanosoma cruzi
and was described for the first time in 1909 by Carlos Chagas [18–20]. Despite the high eco-

nomic cost of Chagas disease, estimated at 7 billion dollars per year [21] due to palliative
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treatment and early retirement, this disease is neglected by the pharmaceutical industry. The

current available treatment is the drug benzonidazole, which was developed during the 1970s

and has severe side effects [22]. The T. cruzi enzyme cruzipain (Enzyme Classification number

3.4.22.51) is abundant throughout the life cycle of the parasite and is particularly important

during the amastigote phase. Cruzipain is essential to parasite nutrition as well as during dif-

ferentiation phases and host cell invasion, when it activates inflammatory process and

degrades immunoglobulins. It is expressed as a zymogen consisting of catalytic, pre and pro

domains. The last is cleaved to obtain the mature enzyme, while the pre-domain, highly glyco-

sylated, is maintained as part of the enzyme and only released later to trigger an immunogenic

response in the host organism [23]. The presence of this domain in cruzipain differentiates it

from human cathepsins [24]. However, it has been shown that the cleavage of the pre-domain

does not affect the catalytic activity of the protein [25] and hence most research focuses on the

N-terminal catalytic domain, which when expressed heterologously in Escherichia coli is

named cruzain. Cruzain is composed of 215 residues of which Cys25 and His159 are the cata-

lytic dyad. It features three disulfide bonds distributed over the protein that enhance extracel-

lular stability and are also present in cathepsin enzymes.

Cysteine proteases are effectively inhibited by several classes of covalent and non-covalent

inhibitors [14, 26]. Covalent inhibitors typically present groups containing a reactive electro-

philic centre (warhead) susceptible to nucleophilic attack by the activated cysteine present in

the enzyme active site. Depending on the nature of the warhead, covalent bond formation

between the inhibitor and the protein may be irreversible or reversible. [27]. Examples of

reversible covalent inhibitors are peptide-aldehydes, α-diketones, α-ketoesters, α-ketoamides,

α-keto acids and nitriles [28]. In contrast, compounds such as peptidyl diazomethyl ketones,

fluoromethyl ketones, epoxides and vinyl sulfones are capable of binding irreversibly to the

catalytic cysteine, acting as "suicide" inhibitors [29]. Several non-covalent inhibitors of prote-

ases have also been described in the literature, including the analysis of the mode of binding of

our cruzain inhibitor Neq0176 [14]. However, few of them exhibit comparable enzyme affinity

to those acting via a covalent mechanism [30], with the notable exception of a new (non-cova-

lent) and reversible competitive inhibitor that inhibits cruzain in nanomolar concentration

and another one that also kills T. cruzi in low micromolar range [31].

The rational design of selective, potent reversible covalent inhibitors of cysteine proteases is

complicated by their mechanism of action. Aspects of both their covalent and non-covalent

interactions must be considered, but how to do so remains an open question. We have recently

shown [32] that careful QM/MM calculations on the covalent binding of dipepdidyl nitrile

ligands to cruzain can correlate well with experimental binding data, but the procedure is not

suitable for high throughput use where the interactions of multiple ligands with multiple

enzymes requires to be evaluated. Recently, Waldner et al. [33] have shown that, for a panel of

serine proteases, substrate specificity that could not be understood from an analysis of static

(crystal) structures, was interpretable once the differential dynamics of the proteins was con-

sidered. It is well established that any attempt to understand and optimise a ligand-protein

interaction must take into account protein flexibility [34, 35]. The two limiting models for

ligand-induced conformational change in a protein are induced fit and conformational selec-

tion [36]. The former supposes that the native, free, form of protein has a preference for one or

more specific conformations with which the ligand interacts, which then induces and stabilize

a new conformation of protein that was not accessed originally [37]. The latter hypothesises

that the normal thermally-activated dynamics of the free protein involves it spontaneously but

transiently adopting the conformation appropriate for ligand binding. In the presence of the

ligand this state is captured and ‘titrated out’ of the equilibrium distribution [38]. These two

limiting models make very different predictions about the effect of ligand binding on the
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conformational dynamics of the protein, and thus configurational entropy components of the

binding free energy. The induced fit model involves the ligand encouraging the protein to visit

conformational states it did not sample in the apo state–configurational entropy may tend to

increase. In contrast, the conformational selection model involves the ligand discouraging the

protein from adopting certain conformations, so configurational entropy may tend to

decrease. Molecular simulation methods can provide powerful insights into this process, [39,

40], and so rationally guide ligand design.

Here we use molecular dynamics simulations to investigate the effects of a range of nitrile-

based cysteine protease inhibitors, with affinities ranging from the micromolar to nanomolar

range, on the conformational dynamics of the active sites of cathepsin K, cathepsin L, and cru-

zain. We hypothesised that analysis of the ways in which different ligands perturb and limit

the intrinsic dynamics of the apo enzymes might give insights into the origins of affinity and

selectivity, and indeed this proves to be the case. Our approach is somewhat different from

that described by Waldner et al. but the outcomes are similar: with the aid of principal compo-

nent analysis (PCA), we identify and quantify patterns of ligand-induced conformational

selection that enable the construction of a decision tree which can predict with high confidence

a low-nanomolar inhibitor of each of three proteins and determine the selectivity for one

against others.

Methods

Ligand and protein data set

To evaluate the capacity of molecular dynamics simulations to discriminate between inhibitors

of cruzain, cathepsin K and cathepsin L, four ligands with known potency against all three pro-

teins were chosen from the literature. These ligands were selective for cruzain over cathepsin L

(compound 26 from Beaulieu et al. [13], here called “ICR”), cathepsin K over cathepsin L (oda-

nacatib [41], “ICK”), cathepsin L over cathepsin K (compound 17 from Asaad et al. [42],

“ICL”) and cathepsin K over cruzain (compound 8 from Black et al. [43], “IKR”). A fifth

ligand, BCR, was added to the data set so it included at least one molecule known to be inactive

against cruzain. (Fig 1 and Table 1). To test the decision tree that this work ultimately pro-

duced, we additionally selected four ligands from our own laboratory: Neq0409, Neq0544,

Neq0538, and Neq0539, that have known Ki against cruzain. The protein crystal structures

used were 2OZ2 (cruzain [44]), IMEM (cathepsin K, [45]) and 2YJ2 (cathepsin L [46]).

Docking studies

Protein and ligand preparation and docking was done using tools from the Schrodinger soft-

ware suite [49]. For the proteins, all non-protein atoms were removed and disulfide bond and

missing sidechain atoms added using the ProteinPreparationWizard tool. Protonation states of

residues were calculated at pH 5.8 using the PropKa algorithm implemented in Maestro. The

catalytical diad Cys25 and His159 in cruzain (and the equivalents in the cathepsins) were con-

sidered as deprotonated and protonated, respectively. Also, cruzain Asp57 was defined as pro-

tonated. A default minimization implemented on ProteinPreparationWizard tool was

performed to relax the systems.

The ligand K777 (complexed with cruzain in PDB code 2OZ2) was used as the reference

molecule to define a box of 15 Å from its centroid for the docking procedure. Furthermore, it

was also used to define three hydrogen bond constraints: between the ligand and the backbone

N and O atoms of G66, and between the ligand and the backbone O atom of D158 (cruzain

numbering). During the docking procedure, using the StandardPrecision parameters, poses

were only selected if they formed at least one hydrogen bond with any of these atoms. Glide
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was permitted to return a maximum of 10 different poses; other parameters were set at default

values. The ligands were prepared using LigPrep for pH 5.8, the same as used in cruzain enzy-

matic assays [14].

Molecular dynamics simulations

Ligand parameterisation. All simulations were performed using Amber14. Electrostatic

potentials for each ligand (formal charge predicted by LigPrep for a pH of 5.8) were calculated

at the HF/6-31G+ level using Gaussian09 [50]. No geometry optimization was done, so as to

preserve the docked pose of ligand. Then, RESP [51] partial atomic charges were derived using

R.E.D-vIII.4 [52] and Ante-RED-1.4 scripts. The Antechamber package implemented in

AmberTools14 was used to generate the gaff (general amber force field) [53] library and topol-

ogy parameters for each ligand. For covalent ligands, we initially generated a molecule consist-

ing of the studied ligand covalent bounded to a cysteine residue, which has its N and C

Fig 1. Structure of dipeptidyl nitriles used in this work. Top, left to right: ICR, ICK, ICL. Centre, left to right: IKR

and BCR. Bottom, left to right: Neq0409, Neq0544, Neq0568, Neq0569.

https://doi.org/10.1371/journal.pone.0222055.g001

Table 1. IC50 values, in nM, of dipeptidyl nitriles against cruzain, cathepsin K and cathepsin L. Values in italics are Ki values rather than IC50s.

Ligand Cruzain Cathepsin K Cathepsin L Ref

ICR 0.4 2 1060 [13]

ICK 40 0.2 2995 [41]

ICL - >10000 20 [42]

IKR 1,8 0.005 47 [13],[47]

BCR 6300 - - [48]

Neq040 453 - - [48]

Neq054 159 - - [48]

Neq056 56 - - [48]

Neq056 25 - - [48]

https://doi.org/10.1371/journal.pone.0222055.t001
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terminal capped by ACE (acetyl) and NME (methyl amine) groups respectively. The ligand

portion of the cross-linked molecule was named using gaff nomenclature while cysteine atoms

were named using FFF14SB nomenclature. All steps were done as previously described, except

for the RESP derivation step. On this procedure, the N, H, C and O atoms had charges fixed to

-0.4157, 0.2719, 0.5973 and -0.5679, respectively (as per standard AMBER amino acids). In

addition, the caps ACE and NME were defined to have final charge zero and to be removed

from final molecule. After the charge derivation, a connectivity table was generated using

Antechamber and the missing parameters due to the interfaced gaff-FF14SB nomenclature

were estimated from comparable connections in the gaff force field. The C and N terminal of

the non-natural residue was defined in tleap as being the C and N atom of the cysteine.

Protein preparation. The protein structure created for the docking procedure was used

as the starting point to prepare the molecular dynamics complex. Initially, all hydrogen atoms

were removed to avoid nomenclature incompatibility. The disulfide cysteines were renamed to

CYX, and the catalytic C25, to CYM. Histidine residues were renamed as HIP, HID or HIE

according to it tautomer/protonation state. The only CONECT lines kept from the .pdb file

were those relating to disulfide bonds. Noncovalent ligand information was included at the

end of file for complexes where covalently cross-linked adducts replaced the standard C25 resi-

due, with the same nomenclature used in the library file previously prepared.

Parameterisation of protein-ligand complexes. Once the .pdb file of each complex

(covalent or non-covalent) was prepared and all the ligands were parametrised, prmtop (topol-

ogy file) and inpcrd (initial coordinate files) for each complex were generated based on

FF14SB (protein atoms) and gaff (ligand atoms) force fields using a tleap script. Systems were

neutralised by the addiction of Na+ or Cl- ions and then solvated with TIP3P [54] water in a

truncated octahedral box extending at least 10 Å beyond any protein atom.

Equilibration. Prior to production MD, the equilibration process started with 2000 cycles

of minimization of solvent and ions. A position restraint of 500 kcal.mol-1 was applied to pro-

tein and ligand atoms. After that, the whole system was minimized for 3500 cycles without any

restraints. All MD simulations were done using a cut-off of 10 Å for non-bonded interactions

and a time step of 2 fs, SHAKE [55] was used to constrain bonds to hydrogen atoms and the

Langevin approach to control the temperature (collision frequency 2 s-1). First, the system was

heated to 310 K over 50ps using the NVT ensemble and a position restraint of 10 kcal.mol-1 on

protein and ligand atoms. After the heating procedure, a density equilibration at NTP were

carried out over 300 ps followed by an extended equilibration phase of 5 ns. The 100 ns pro-

duction simulations were run in the NTP ensemble in 5 ns “chunks”, with a new seed for Lan-

gevin dynamics to restart each simulation. Coordinates were saved every 50ps.

Data selection and collection. To minimize artefacts that might be due to imperfect con-

struction of the initial systems, we adopted a two-stage simulation strategy. First (round 1) we

ran five replicate 100ns simulations on each complex, with randomized initial velocities. The

final structure from the replicate that showed the greatest conformational stability over the

first 100ns was then used as the start point for five further 100ns simulations (round 2), again

each beginning with a new randomized set of velocities. In cases where all five replicates in

round 1 showed stable behaviour, round 2 was not performed.

Molecular dynamics simulation analysis

Data regarding the RMSD of the ligand and the distance between the ligand nitrile carbon and

the sulfur of C25 (distance C-N) data were calculated for production simulations using cpptraj
as implemented within the AmberTools14 package. Frame alignment and RMSD calculation

used the docked conformation as the reference. Graphs were generated using xmgrace.
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Principal component analysis, was performed using PyPcazip [56]. The calculations were done

using default parameters. One PCA was performed for each of the ligands studied. Each PCA

included all relevant simulation data, taking a sample every 100ps. Thus, for each of ligands

ICR, ICK, ICL, and IKR, the PCA included: a) the data from the five replicate simulations of

cruzain, cathepsin K and cathepsin L in apo form; b) the data from the simulations of the same

three proteins when non-covalently complexed to the ligand; and c) the data from the simula-

tions of the same three proteins when covalently cross-linked to the ligand. In the case of

ligand BCR, since we only have binding data for the interaction of this ligand with cruzain, the

dataset for PCA contained just apo-cruzain, plus the non-covalent and covalent complexes of

BCR with cruzain.

To permit a full comparison of PCA results, a common subset of atoms was selected from

every trajectory as follows. Firstly, all residues in the reference cruzain-K777 complex

(PDB:2OZ2), that had at least one atom within 7 Å of the ligand were selected. Then by struc-

tural alignment the corresponding residues in cathepsin K (PDB code 1MEM) and cathepsin L

(PDB: 2YJ2) were identified. At positions where the amino acid differed between one protein

and another, the maximum common subset of structurally equivalent atoms was retained.

Conformational distribution analysis

For each ligand, we analysed the PCA data to observe, in the PC1/PC2 plane, the conforma-

tional space sampled by the common subset of protein binding site atoms in the apo, non-

covalently bound, and covalently bound complexes. We found that for every ligand, the sam-

pling of the PC1/PC2 plane lay within a bounding box of -20–20 Å in each dimension. There-

fore we calculated 2D histograms for each dataset within these limits, with a 1 Å2 resolution

(thus 20 x 20 bins). For each ligand we then defined three (potentially overlapping) sets. The

first, A, contains all bins that are sampled by the apo protein. The second, N, similarly contains

all bins sampled by the protein when non-covalently bound to the ligand. The third, C, con-

tains all bins sampled in the simulation of the relevant covalent complex. For all sets, bins with

less than 1% occupancy were ignored. Using standard set theory notation, the number of sam-

ples in A is |A|, etc., the set of bins sampled in both the apo- and non-covalent simulations is

A\N, etc., and the number of samples in this intersection is |A\N|, etc.

Results

Structural analysis of molecular dynamics simulations

Our 2-round, 5-replicate, MD protocol was designed to maximize the chance of obtaining a

“well-behaved” trajectory data set for each non-covalent ligand simulation. We expected that

simulations of ligand complexes that were known to have a high binding affinity would be

more likely to be stable than those where it was known the ligand was a poor inhibitor of the

protein, and in general this was what was observed. The two quality metrics were a) the dis-

tance between the S atom of the catalytic cysteine and the C atom of the warhead nitrile; and

b) the RMSD of the ligand from its original, docked, conformation. The results obtained are

summarized in Table 2 and in S1–S5 Figs. For ligands IKR, ICR, and ICL, there appears some

relationship between these metrics and binding affinity. However for ICK the simulations sug-

gest a poor geometry for the non-covalent complex with cruzain, and a poor warhead geome-

try for the complex with CatK, despite the fact it is a good (or reasonable) inhibitor of both

enzymes. Conversely, the complex of BCR with cruzain appears to have a good stability and

geometry but is known to be a poor inhibitor. In this last case, close inspection of the binding

pose shows that though the nitrile-cysteine distance is not long, the relative orientations of the

groups are not conducive to nucleophilic attack, so this may explain this anomaly. In
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summary, neither of these simple quality metrics provides a reliable guide to ligand potency/

selectivity.

Binding free energy calculations using the MMGBSA method

Moving beyond simple structural metrics, the relative binding free energy of complexes was

estimated using the MMGBSA approach. Since these nitrile inhibitors are covalent-reversible

inhibitors of these enzymes, the application of this approach requires some justification. The

chemistry of the cross-linking reaction is the same for all the ligands and all the enzymes stud-

ied here–nucleophilic attack of the protein cysteine sulfur atom at the ligand nitrile carbon,

with the formation of a thioimidate adduct. Thus, while the energetics of this process are likely

to be a major contribution to the overall thermodynamics of ligand binding, they are unlikely

to be the source of observed patterns of selectivity/affinity. The assumption of the MMGBSA

approach as used here is that this term is in effect a constant, so that the other terms the calcu-

lation takes into account–desolvation terms and non-covalent interactions–should correlate

with observed binding affinity. However this did not prove to be the case; the method did not

satisfactorily differentiate between the low nanomolar and low micromolar complexes (see S7

and S8 Figs). Rather than put this down to our assumption that the covalent term is more or

less constant, we hypothesized that part of the reason for the poor performance of the

MMGBSA method in this case could be due to incomplete consideration of the entropic term,

particularly ligand-induced changes in the flexibility of the proteins. It is well known that the

conventional MMGBSA approach does not handle such terms well, so we decided to investi-

gate this aspect in detail.

Principal component analysis of cysteine protease active site conformations

in presence of noncovalent and covalent ligands

Using the meta-trajectory PCA approach described in the methods section, we analysed, for

each protein, how the conformational space sampled by the active site region was perturbed

(shifted, and/or constricted) by both non-covalent, and then covalent, binding of each ligand.

Results are presented in Fig 2, and in more detail in S9–S13 Figs. In each case the PC1/PC2

space sampled by the apo protein is indicated by the black dots, by red dots for when the pro-

tein is bound non-covalently to the ligand, and by green dots when there is a covalent complex.

Broadly speaking, we would expect conformational selection-type behaviour to be manifested

by a shrinkage in the sampling within the boundaries of the previous state, while induced fit-

type behaviour would lead to a shift in the distribution so that previously unsampled states

became populated, and previously populated ones not.

Table 2. Summary of metrics extracted from the MD simulations of the non-covalent ligand-protein complexes: Distance C-N (distance between thiolate of Cys25

and nitrile carbon of ligand, in Ångstroms) and RMSD of ligands from the initial docked conformation (in Ångstroms) during the second round of simulations.

Cells are colour coded according to experimentally determined inhibitory activity, orange:< 5 nM; tan:< 50 nM; red:> 1000 nM; white: not determined.

Distance C-N RMSD

Protein

Ligand

cruzain cathepsin K cathepsin L cruzain cathepsin K cathepsin L

ICL 4.9 5.1 4.7 1.9 4.9 2.0

IKR 6.4 4.1 8.0 6,6 2.5 5.9

ICR 5.1 3.4 6.1 5.5 3.6 5.7

ICK 10.0 7.7 6.1 6.8 3.1 9.2

BCR 5.4 - - 5.4 - -

https://doi.org/10.1371/journal.pone.0222055.t002
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Our results can be divided into complexes with activity below and above 500 nM, respec-

tively. The first class is composed of the complexes ICR-cruzain, ICR-cathepsin K, ICK-cru-

zain, ICK-cathepsin K, ICL-cathepsin L, IKR-cruzain, IKR-cathepsin K, IKR-cathepsin L. In

this class, we observe a common pattern for the changes in the conformational space sampled

by the active site of the enzymes as we transit from apo form to noncovalent and then covalent

complexes (black, red and green dots respectively). This is characterized by a gradual reduc-

tion of flexibility of the protein active site. The black dots cover a largest space and the red dots

are contained into this space. Furthermore, the green dots are in turn contained into noncova-

lent space delimited by red dots. The fact that this behaviour was observed for all three proteins

allows us to make a well-substantiated proposal that these cysteine proteases adopt the confor-

mational selection model of flexibility when complexed with low nanomolar dipeptidyl nitrile

inhibitors.

In contrast, the second class (ICL-cathepsin K, ICK-cathepsin L, ICR-cathepsin L, IKR-

cathepsin L, BCR-cruzain) does not present a common pattern for different complexes with

respect to the conformational space covered by protein active site in each kind of simulation.

This second class can be subdivided into three different subclasses according to the behaviour

of protein active site in presence of noncovalent and covalent form of ligand.

The first subclass is comprised by the complexes ICR-cathepsin L, IKR-cathepsin L, and

BCR-cruzain, in which the noncovalent form of ligand stabilizes a distinct conformation of

protein active site when compared with conformations accessed by this site in (the maybe only

theoretical) complex with the corresponding covalent ligand. In these cases, we propose that

low inhibitory activity is due to the fact that the protein must undergo two different conforma-

tional changes (apo! noncovalent complex, then noncovalent complex! covalent com-

plex), and the noncovalent ligand is not able to stabilize a conformation in the active site in

which the nucleophilic attack is favourable.

Fig 2. Projections onto the first two principal components of cruzain (first row), cathepsin K (second row) and

cathepsin L (third row) simulations in their apo form and complexed with noncovalent and covalent forms (black,

red and green dots, respectively) of ligands ICR, ICK, ICL IKR and BCR. Each panel is at the same scale (40

Ångstroms in both X and Y).

https://doi.org/10.1371/journal.pone.0222055.g002
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The second subclass is represented by complex ICK-cathepsin L, where the conformational

space of protein in presence of noncovalent form of ligand is almost the same of the apo form,

meaning that protein does not appear to ‘feel’ the presence of the ligand. The weakness of the

ICK-cathepsin L interaction is also evident from the observation that of all the studied com-

plexes, this is the one with the highest ligand RMSD, indicative of the ligand tending to leave

the active site over the period of the MD simulations.

It is interesting to observe that the behaviour of this ligand in complex with both cruzain

and cathepsin L protein is almost the same, but the PCA analysis here shows two different pat-

terns. The cruzain-ICK complex shows two sequential reductions in conformational space

covered by simulation, the first after noncovalent ligand binding and the second one after the

formation of the covalent bond, suggesting the ligand induces a conformational selection from

all possible states of the protein to a specific one that permits a better interaction with the

ligand. In contrast, the conformational spaces covered by cathepsin L in both the free state and

in noncovalent complex with ICK are almost the same, suggesting the protein does not prop-

erly recognize the ligand. In the (maybe hypothetical) covalent complex, the enzyme is forced

to adapt to ligand because of the imposition of bond formation between Cys25 and ligand

nitrile.

Lastly, in the case of the ICL–cathepsin K system we see that, remarkably, the conforma-

tional space accessed by the noncovalent complex smaller than that for the covalent complex,

what may suggest the covalent form ligand induces the protein to a less stable conformation in

comparison with noncovalent complex, maybe due to some steric repulsion.

Development of a decision tree to identify strong and weak complexes

We hypothesised that it might be possible to convert our observations regarding the effects of

strong and weak ligands on the dynamics of cysteine protease active sites into a predictive tool.

From the parameters obtained by application of set theory to the PCA data (see methods sec-

tion and S1 Table), a decision tree to identify strong and weak complexes (pKi or pIC50 above

and below 7, respectively) was built (Fig 3) that classified correctly all twelve complexes from

training set.

The main metric of the decision tree, (|A\N\C|)⁄(|C|), measures the fraction of conforma-

tional space of protein active site in the covalent complex that is accessible in all three states

(apo, non-covalently bound, and covalently-bound). A high value for this parameter means

the covalent form of ligand only restricts the conformational space of apo and noncovalent

state of protein active site without the emergence of a new conformation, i.e. it fits the confor-

mational selection model of flexibility. In fact, a value for this parameter above 60% is found

for ICR-cruzain, ICR-cathepsin K, ICK-cruzain, ICK-cathepsin K, ICL-cathepsin L and IKR-

cathepsin K, all of which are considered strong complexes. On the other hand, if the protein-

ligand pair presents a low overlap between the conformational space covered by each three

states (|A\N\C|)⁄(|C| < 60%) and a high overlap between the conformational space covered

by apo and covalent system (|A\C|)⁄(|C| > 80%) this implies a large conformational change

occurs in the protein active site between the non-covalent and covalent states. The three com-

plexes that presented this kind of behaviour: ICK-cathepsin L, ICR-cathepsin L, and BCR-cru-

zain, are all examples of weak inhibitors.

The last parameter chosen, for the third branch of the decision tree, was (|N\C|)⁄(|N|). A

high value for this parameter indicates (if account is taken of the partitioning of examples

higher up in the decision tree) that the noncovalent form of ligand may be forcing the protein

to a conformation not accessed by apo form. This would be an indicative of induced-fit model

for the system. In our case, for cysteine proteases in complex with dipeptidyl nitriles, a value
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above 50% for this rule identifies the ICL-cathepsin K complex, which is defined as a weak

complex. This result strengthens the hypothesis that conformational selection behaviour for

ligands of cysteine proteases is a mark of strong inhibitors, though more examples of com-

plexes that follow this apparent induced-fit behaviour are required to support a general conclu-

sion that this correlates with poor binding.

Test of the decision tree

To test the decision tree, we applied it to four ligands from our in-house collection of dipepti-

dyl nitriles (Fig 1 and Table 1). Two of these are potent inhibitors of cruzain, one is moderate

(but on the basis of our <500nM cut-off, is classified as active), and one is poor. Simulations of

these ligands bound both non-covalently and covalently to cruzain were conducted using

exactly the same protocol as described above, and the data analysed in the same way. The deci-

sion tree predicts Neq0409-cruzain complex as active at the first node, as (|A\N\C|)⁄(|C| for

this system is 71%. The other three cruzain complexes, with Neq0544, Neq0568 and Neq0569,

pass through to the third node, as they have values of (|A\N\C|)⁄|C| of 58%, 38% and 33%

respectively, and values for (|A\C|)⁄(|C| of 75%, 63% and 38% respectively. At this node, (|

N\C|)⁄(|N| of 52%, 37% and 26% classifies Neq0544, Neq0568 and Neq0569 as inactive, active

and active, respectively. In this way the potencies of all four test molecules against cruzain are

also successfully classified by the decision tree.

Conclusions

In this work, we demonstrate the use of molecular dynamics simulations to identify low nano-

molar complexes of dipeptidyl nitriles and cysteine protease by the analysis of the conforma-

tional space accessed by protein active site during simulations of free form of protein and

noncovalent and covalent complexes.

Fig 3. Decision tree for identification of low nanomolar cysteine protease–dipeptydil nitrile complexes on the

basis of conformational space overlaps.

https://doi.org/10.1371/journal.pone.0222055.g003
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We predict that these cysteine proteases make use of the conformational selection model

for ligand selectivity. We observe that the active site in its free form accesses an extended con-

formational space that is reduced stepwise by the noncovalent, then covalent, binding of

ligands. Besides the space reduction, we observe the covalent space lies within the noncovalent

space which in turn lies within the free protein space, a typical behaviour of proteins that obey

the conformational selection model. Furthermore, this pattern is only observed for complexes

with IC50 or Ki below 500 nM. For weak complexes, the conformational space sampled by

protein active site in covalent simulations is not a subset of the noncovalent space. This mode

of analysis has predictive power: a set theory treatment of PCA distributions can generate a

decision tree capable of categorizing the activity of different dipeptidyl nitriles against at least

papain-family proteins.

Simpler metrics based purely on analysis of the non-covalent complexes, e.g. RMSD of the

ligand from the conformation suitable for cross-linking, or distance between the key cysteine S

and nitrile C atoms, are not reliable. At a higher level, MMGBSA binding energy calculations

are also not predictive. In part this is not unexpected, since these approaches do not deal in

any detail with the process of transforming from the non-covalent to the covalent complex.

What our studies reveal is that this step has energetics that do not necessarily correlate with

those of the previous step. Though considerably more compute intensive that simple non-

covalent docking, the approach described here is has the potential to be applied in a medium-

throughput way more realistically than, for example, QM/MM investigations of the cross-link-

ing reaction. We hypothesise that the success of our approach is due to the fact that it captures

most of the sources of energetic variation in the dataset–the variation in the structure of the

ligands, and the variation in the structure of the receptors. The only terms that is ignored is the

actual energy of cross-link formation, and since all ligands and receptors feature the same reac-

tive groups, this is more or less constant. Of course, if in the future we wished to extend the

approach to other classes of ligands with different warheads, some modification of the

approach would be required as the assumption of a constant cross-link energy term would not

hold. One could imagine adding a QM-derived term to the model to account for this. Note

that as the chemistry of cross-linking would be the same for all target proteins, we would only

need to calculate this term once, and potentially using a small model system.

The workflow used here could be readily automated and should provide a useful tool for

the optimisation of high affinity cruzain inhibitors that avoid cross-reactivity with host cyste-

ine proteases. The approach is also quite generic and could be explored for any drug design

project that wishes to exploit the covalent modification of the target.

Supporting information

S1 Table. Auxiliary metrics derived from two first principal components obtained for sys-

tem all systems studied. A, N and C are defined as the set of bins occupied by Apo, noncova-

lent and covalent simulations and \ the intersection of set.

(PDF)

S1 Fig. Distance between ICR nitrile and sulfur from Cys25 residue (first column) and

RMSD of IKR ligand (second column) complexed with cruzain, cathepsin K and cathepsin

L (first, second and third row respectively). Black vertical bars delimit the replicates. Black

and red lines represent respectively Round 1 and 2 simulations.

(PDF)

S2 Fig. Distance between ICK nitrile and sulfur from Cys25 residue (first column) and

RMSD of ICK ligand (second column) complexed with cruzain, cathepsin K and cathepsin
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L (first, second and third row respectively). Black vertical bars delimit the replicates. Black

and red lines represent respectively Round 1 and 2 simulations.

(PDF)

S3 Fig. Distance between ICL nitrile and sulfur from Cys25 residue (first column) and

RMSD of ICL ligand (second column) complexed with cruzain, cathepsin K and cathepsin

L (first, second and third row respectively). Black vertical bars delimit the replicates. Black

and red lines represent respectively Round 1 and 2 simulations.

(PDF)

S4 Fig. Distance between IKR nitrile and sulfur from Cys25 residue (first column) and

RMSD of IKR ligand (second column) complexed with cruzain, cathepsin K and cathepsin

L (first, second and third row respectively). Black vertical bars delimit the replicates. Black

and red lines represent respectively Round 1 and 2 simulations.

(PDF)

S5 Fig. Distance between BCR nitrile and sulfur from Cys25 residue (first column) and

RMSD of the ligand (second column) complexed with cruzain. Black vertical bars delimit

the replicates. Black and red lines represents respectively Round 1 and 2 simulations.

(PDF)

S6 Fig. Distance (first column) between ligand nitrile and sulfur from Cys25 residue and

RMSD of ligand (second column) complexed with cruzain. Black vertical bars delimit the

replicates. Black and red lines represent respectively Round 1 and 2 simulations. The rows are

respectively Neq0409, Neq0544, Neq0569, Neq0568.

(PDF)

S7 Fig. Binding free energy over the time of round 1 of simulations for ligands ICR, ICK,

ICL and IKR (first, second, third and fourth column respectively) complexed with Cruzain

(first row), Cathepsin K (second row) and Cathepsin L (third row). Different colors repre-

sented different replicates of the same system.

(PDF)

S8 Fig. Binding free energy over the time of round 2 of simulations for ligands ICR, ICK,

ICL and IKR (first, second, third and fourth column respectively) complexed with cruzain

(first row), cathepsin K (second row) and cathepsin L (third row). Different colors repre-

sented different replicates of the same system.

(PDF)

S9 Fig. Projection over the first two principal components of cruzain (first row), cathepsin

K (second row) and cathepsin L (third row) simulation frames in it apo form and com-

plexed with noncovalent and covalent forms of ligand ICR (black, red and green dots,

respectively).

(PDF)

S10 Fig. Projection over the first two principal components of cruzain (first row), cathep-

sin K (second row) and cathepsin L (third row) simulation frames in it apo form and com-

plexed with noncovalent and covalent forms of ligand ICK (black, red and green dots,

respectively).

(PDF)

S11 Fig. Projection over the first two principal components of cruzain (first row), cathep-

sin K (second row) and cathepsin L (third row) simulation frames in it apo form and
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complexed with noncovalent and covalent forms of ligand ICL (black, red and green dots,

respectively).

(PDF)

S12 Fig. Projection over the first two principal components of cruzain (first row), cathep-

sin K (second row) and cathepsin L (third row) simulation frames in it apo form and com-

plexed with noncovalent and covalent forms of ligand IKR (black, red and green dots,

respectively).

(PDF)

S13 Fig. Projection over the first two principal components of cruzain simulation frames

in it apo (black dots) form and complexed with noncovalent (red dots) and covalent forms

(green dots) of ligands Neq0409 (first row), Neq0544 (second row), Neq0569 (third row)

and Neq0568 (fourth row).

(PDF)
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