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Abstract

While the punctuated equilibrium model has been employed in paleontological and archaeo-

logical research, it has rarely been applied for technological and social evolution in the Holo-

cene. Using metallurgical technologies from the Wadi Arabah (Jordan/Israel) as a case

study, we demonstrate a gradual technological development (13th-10th c. BCE) followed by

a human agency-triggered punctuated “leap” (late-10th c. BCE) simultaneously across the

entire region (an area of ~2000 km2). Here, we present an unparalleled, diachronic archaeo-

metallurgical dataset focusing on elemental analysis of dozens of well-dated slag samples.

Based on the results, we suggest punctuated equilibrium provides an innovative theoretical

model for exploring ancient technological changes in relation to larger sociopolitical condi-

tions—in the case at hand the emergence of biblical Edom–, exemplifying its potential for

more general cross-cultural applications.

Introduction

Archaeology is uniquely suited through its deep-time perspective to holistically and diachroni-

cally examine ancient human, social, and technological evolutions. Changes in technology pro-

vide unique opportunities for quantitatively measuring the refashioning of material culture

through time to monitor underlying social change. From the perspective of metallurgical tech-

nologies in the Southern Levant, for example, archaeological research has identified the incep-

tion and sustained growth of copper metallurgy since circa 5000–4000 BCE [1–3]. However,

while moments of radical metallurgical transformation, such as novel casting technologies and

the innovation of bronze, have also been identified [1], there has been little investigation of

small-scale changes in technological practices; although requiring considerable research

efforts, the identification and modeling of such technological evolutions have broad signifi-

cance in archaeological research, as technology can function as a proxy for otherwise indis-

cernible social processes [4]. Recent archaeological research in the Wadi Arabah [5, 6], one of
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the largest copper ore resource zones in the Levant, allowed for investigating in unprecedented

detail a continuous record of technological development that spans a period of significant

social changes in the transition between the Late Bronze Age (LB) to the Iron Age (IA).

Almost unharmed by modern exploitation, the industrial landscapes of Faynan and Timna

within the Wadi Arabah (Fig 1, S1 and S2 Figs) function as exceptional “field laboratories” for

examining developments in ancient metallurgical technologies [7, 8]. While previous research

has demonstrated that the IA witnessed the most intense industrial activity in the history of

the region—surpassing the later eastern Roman Empire operations, until now, it was impossi-

ble to measure technological change at the sub-century level to precisely map the peak in pro-

duction and associate changes with social and cultural processes. During the IA, both regions

were populated by large copper smelting centers supported by networks of smaller, ephemeral

mining camps [5, 6]. These smelting sites remain identifiable on the surface by significant

accumulations of metallurgical slag (>100,000/10,000 tons of slag in the Faynan and Timna

respectively) [7, 8]. Slag was typically deposited in mounds mixed with other metallurgical

Fig 1. Map of main copper producing regions in the Wadi Arabah (Israel/Jordan). Location of copper smelting sites discussed in text (detailed maps in

S1 and S2 Figs; analytical results of previous studies are compiled in S1 Dataset). Map produced using ArcGIS software by ESRI. Sentinel-2 (ESA) image

courtesy of the U.S. Geological Survey (public domain).

https://doi.org/10.1371/journal.pone.0221967.g001
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debris; these constitute a unique, quasi-continuous record of the smelting activities (S3 Fig) [7,

8] that can typically be dated by radiocarbon measurements of charcoal (fuel remains) [9, 10]

and archaeomagnetic investigation of the slag material itself [10, 11]. To explore these archaeo-

logical features, the Edom Lowlands Regional Archaeology Project (ELRAP—directed by T.E.

L. and M.N. [5]) and the Central Timna Valley Project (CTV—directed by E.B.-Y. [6], http://

archaeology.tau.ac.il/ben-yosef/CTV/) systematically excavated slag mounds in Faynan and

Timna respectively. Securely dated slag samples from these excavations were analyzed as part

of the current study, resulting in a robust archaeometallurgical dataset. In the following we

demonstrate how the application of evolutionary theory helps extract social insights out of the

new data and discuss the implications on our understanding of the genesis and structure of the

Edomite Kingdom.

Punctuated equilibrium and technological change

Proposed as an alternative to phyletic gradualism, the Darwinian process entailing new species

evolving through gradual and steady transformations, punctuated equilibrium suggests biolog-

ical evolution is characterized by rare, rapid, and episodic events of speciation (cladogenesis)

[12, 13]. Between these speciation events, biological organisms and communities are believed

to exist in stability or stasis, essentially unchanging [12]. This reinterpretation of the evolution-

ary process provided an improved explanation for the discontinuous fossil record which lacks

the long sequences of intermediate forms between origin and ancestral species expected by

phyletic gradualism [12]. Paleontologists continue to find punctuated equilibrium a useful

model for identifying and explaining rapid speciation in the fossil record (e.g., [14], often com-

plementing phyletic gradualism based on the recognition of stasis as a meaningful and pre-

dominant pattern within the history of species [15]. As with the fossil record, this evolutionary

approach can assist in interpreting change or “evolution” within the “deep-time” archaeolog-

ical record, contributing to a macro history understanding of parts of the world. In following,

evolutionary perspectives based in biology and paleontology have significantly influenced the

history and growth of archaeological theory [16, 17]. Traditionally, this theoretical borrowing

was archaeologically applied to cultural phenomena in place of biological species, using evolu-

tionary models to interpret/understand developments in material culture and social complex-

ity [16].

Punctuated equilibrium in archaeology has been predominantly applied to cases from the

Paleolithic period. Kolodny et al. [18] review a wide range of studies going back to the 1940s,

that illustrate how gradually accumulated changes in prehistoric human stone tool assemblages

can culminate in empirically punctuated “events” of invention/innovation or loss. However, as

these studies deal with deep-time prehistory and processes of change, it is difficult to identify

the role of human agency. Human agents driving punctuated change were identified by Schif-

fer [19], who—as part of his study of 19th century electromagnetic technology—refers to tech-

nological change as invention “cascades” that produce new technologies, each cascade being a

punctuated change that can be linked with specific inventors (human agents). O’Brian and

Bentley [20] review a wide range of studies on the tempo of technological and social evolution

in relation to Schiffer’s Behavioral Archaeology use of cascade models to explain the evolution

of “complex technological systems”. Regarding ancient metallurgical technologies, evolution-

ary theory was only rarely applied, such as in the work of Charlton et al. [21, 22] concerning

iron production in Wales. In the case at hand we apply evolutionary theory—and in particular

punctuated equilibrium—in order to highlight, better characterize and make sense of detect-

able changes in copper production technologies, and in particular a “leap” in copper smelting

efficiency that occurred during a very short period of time within a longer sequence of gradual
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changes. By considering the historical context, high precision radiometric dating and recent

epigraphic finds, we identify a possible mode of change, i.e. the punctuation event that inter-

rupted the preceding quasi-stasis.

Investigating technological change in the Wadi Arabah

For this study, 154 slag samples collected from stratigraphically controlled contexts in Faynan

and Timna were pulverized for homogenization and analyzed with a pXRF (n = 109), ICP-OES

(n = 10) and ICP-MS (n = 35). The conceptual framework for investigating technological

change in the Wadi Arabah was to diachronically and synchronically map slag chemical com-

positions in a period of seemingly continuous production in the region. The Cu contents of

slag can function as a proxy for the efficiency of the smelting technology, especially in compar-

ative observations (less Cu reflects improved efficiency, assuming no change in ore quality),

while other elements can reveal additional technological information (e.g., flux usage) [7, 8].

Results

Our results fall within the range of previously analyzed samples from LB and IA smelting sites

of the Wadi Arabah (n = 72, S1 Dataset). The latter, lacking stratigraphic information and

poorly dated, can be used only for a broad characterization of the period as a whole. Our new

data, coupled with a tight control over well-dated stratigraphic contexts, enable investigation

of technological change in a high resolution of time and space. A list of all radiocarbon dates

used in this study, including ages modeled by Bayesian statistics where stratigraphic observa-

tions allowed, is provided in S2 Dataset.

Based on Cu content in slag, we were able to identify and contextualize a gradual improve-

ment in technology within the LB-IA sequence that was followed by a “leap” that occurred

sometime in the second half of the 10th c. BCE (S3 Dataset, Figs 2 and 3); the correlation

between Cu contents in slag and stratigraphic contexts is striking (Fig 2A–2C). This trend is

evident, for example, in the deep sounding excavated in the slag mound of Khirbat en-Nahas

(KEN), Area M (S3 Fig). The average Cu content in slag decreases gradually according to stra-

tigraphy (Fig 2A, from 1.49±0.50 wt.-% [M4-5] to 01.14±0.58 wt.-% [M3]), with a rapid drop

in the transition to the youngest layers (0.69± 0.22 wt.-% [M2] and 0.47±0.24 wt.-% [M1]).

There is also a correlation between stratigraphy and the tightness of distribution of Cu con-

tents, represented by the standard deviations [SD] of the measurements, suggesting a better

control on the smelting technology through time. This pattern is definitely the case in

KEN-Area M, where the transition between the “pre-leap” (ca. 1300–925 BCE) technologies

(represented by M4-5 and M3, SD = 0.50 and 0.58 respectively) and “post-leap” (ca. 925–830

BCE) technology (represented by M2 and M1, SD = 0.22 and 0.24 respectively) was accompa-

nied by a tightening of the standard deviation by a factor of two. That said, these observed

trends are even more pronounced when all contemporaneous contexts across the Wadi Ara-

bah are considered together (Fig 3).

A comparison between data from Faynan and Timna reveals another striking correlation,

as the two regions, separated by ~105 km, demonstrate the exact same trend of technological

changes (Figs 2 and 3; note for example the results from the contemporaneous sites of Timna

30 [T30] L2 and Khirbat al-Jariya [KAJ] A3-4 [1.55±0.93 wt.-%, 1.58±0.93 wt.-%, respectively],

and T30 L1 and KEN M1 [0.40±0.15 wt.-%, 0.47±0.24 wt.-%, respectively]). In Timna, the ele-

mental analysis revealed an abrupt change in the use of flux from Fe oxides to the more effec-

tive Mn oxides that accompanied the “leap” in efficiency (Fig 2D). In Faynan, where

manganese oxides are associated with the main source of copper ore and more readily avail-

able, fluxing was done using these minerals throughout the period [8].
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Fig 2. Elemental composition of slag samples by stratigraphic context at selected sites (data in S3 Dataset). A-C) Cu content of

samples from Khirbat en-Nahas (KEN) Area M (A), Timna Site 30 [T30] (B), and Khirbat al-Jariya (KAJ) (C). Note the “leap” in efficiency

and standardization between KEN M3 and M2, and T30 L2 and L1 (not represented at KAJ as the site was abandoned at the time). D) Mn

and Fe content of samples from T30. The abrupt change between L2 (n = 3) and L1 (n = 4) reflects a deliberate replacement of the fluxing

material (in Timna) that corresponds to the “leap” in efficiency noted in the Cu content.

https://doi.org/10.1371/journal.pone.0221967.g002
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When copper content averages in slag samples are plotted by context (Site/Area/Layer), dis-

tinct clusters can be distinguished (Fig 3; see more on the chronological boundaries below).

The large sample number enables further, statistical conclusions: (1) the low copper-content

group discussed above (T30-L1, KEN-M1, KEN-M2, KEN-F2A, and KEN-A2-3) are not only

tight at the context level, but also in the inter-context level (average of all samples from low

copper-content contexts is 0.51±0.18 wt.-%); this means that in addition to having more con-

trol over smelting processes in the level of each individual workshop, there was a standard, and

well-established technology across sites in the entire Wadi Arabah. (2) KEN-M3, KAJ-A1,

KAJ-C1, and Timna Site 34 [T34] represent a cluster, with an average content of copper in slag

of 1.03±0.57 wt.-%; also here there is an excellent agreement across contexts of similar dates

Fig 3. Average Cu content in slag samples by context plotted against associated radiocarbon dates (S2 and S3 Datasets; points from Timna are outlined in black,

the rest are from Faynan). Points represented by a diamond are based on XRF data whereas circles are ICP-OES/MS data. The error bar of the x-axis represents the

standard deviation, and the error bar of the y-axis is the maximum age range allowed by the available radiocarbon dates at 1σ (modeled by stratigraphy where

applicable). Red error bars indicate a point that does not mark the median of the radiocarbon range, but is still within 68.2% probability. There are three distinct

groups (marked by rounded rectangles) that demonstrate a gradual development in technology punctuated by a technological “leap”. This leap is represented here by a

substantial reduction in average Cu content (a 55.5% change) and a significant decrease in the standard deviation, which is three times tighter for the post-leap average;

note that the extent of the rounded rectangles along the x-axis represents the standard deviation. The dashed lines at 1140 and 925 BCE represent historical events (the

Egyptian withdrawal from Timna and the military campaign of Pharaoh Sheshonq I, respectively), while the dashed line at 1000 BCE represents a time of general

changes in the organization of production in the Wadi Arabah (see text and Fig 5).

https://doi.org/10.1371/journal.pone.0221967.g003
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across the Wadi Arabah, with technological tradition that lasted about a century around the

turn of the 1st millennium BCE. (3) The highest copper-content group (1.65±0.87 wt.-%),

which is also the most scattered one, spans the transition between the LB and IA (ca. 1140 BCE

[23]). Key observation here is that the transition is not reflected in the technology (note in par-

ticular the results of Timna Site 3 [T3], which—based on finds at the site—is considered to rep-

resent LB technology [23]).

Finally, the technological leap is evident also when considering the bulk chemical composi-

tion of the analyzed slag (Fig 4). Although the major chemical components were basically the

same throughout the period (an observation that strengthens the use of Cu content as a proxy

Fig 4. Results of Iron Age Mn-rich slag from the current study (all contexts in Faynan and T30 L-1 in Timna, S3 Dataset) and Hauptmann 2007 [8] (S1 Dataset)

displayed in the system SiO2-CaO-MnO (after Glasser 1962 [24]). Primary phase boundaries are shown as solid black lines (values of nearby isotherms are also

indicated), and the ternary liquidus minimum is marked by a grey star (~1200˚C); also indicated are the lines of metasilicates (1) and orthosilicates (2). Most of the

samples fall within and around the low melting temperature zone (the few data points plotted in the “forbidden” quartz-rich liquidous zone are likely derived from slag

containing inclusions of unreacted quartz). The technological leap of the late 10th century BCE is visible here by the tightening of the scatter around the area that

represents the more efficient smelting process (lower temperatures, lower viscosity). That said, all three datasets overlap, indicating that there was no major change in

the main components of produced slag throughout the period. This understanding of the slag composition more generally supports using the Cu content in slag

samples as a measure of smelting efficiency (cf. Figs 2 and 3). It is also worth noting the striking agreement between Hauptmann’s dataset (produced by Atomic

Absorption techniques) and ours (the plotted data here were produced by pXRF).

https://doi.org/10.1371/journal.pone.0221967.g004
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for technological change), the improvement in standardization and the overall efficiency of the

smelting process is readily apparent.

Discussion

Archaeological and historical context

The technological record studied here represents half-a-millennium of continuous copper pro-

duction in the Wadi Arabah (~1300–800 BCE), which was preceded and followed by centuries

of hiatus [5, 10, 25] (Fig 5). As such, this record provides a unique window into evolutionary

processes of a given society; this society, identified with the Edomites of the Old Testament

(Hebrew Bible) and non-biblical sources (Assyrian and Egyptian) [9, 26, 27], was based on the

local tribes of the region that practiced a (semi-)nomadic way of life throughout the period

[26]. The beginning of copper production took place in Timna under the control of the Egyp-

tian New Kingdom [7]. The technologies, which were disparate from the wind-based ones

used in the preceding Early Bronze production in the region (3rd millennium BCE), were

introduced from the outside, possibly based on developments in the Sinai Peninsula or the

Hijaz [5, 28]. The subsequent, local technological developments were based on these technolo-

gies, in the center of which there were furnaces operated by sack-bellows [5].

The Egyptian-controlled production phase in Timna has no equivalent in Faynan and

should probably be understood as an extension of the Egyptian activities in the Sinai Peninsula

[28]. The absence of a New Kingdom Egyptian activity in the northern Wadi Arabah may be

due to distance-parity and the inability of this core civilization to project their power in this

area [29]. The degree of the Egyptian ‘hands-on’ involvement in the production activities is a

matter of active discussion; however, it is evident that the labor force was predominantly based

on the local tribes, working under the Egyptian hegemonic power that at the time was exer-

cised over the core regions of the Southern Levant (Canaan). Following the collapse of the

Egyptian civilization at the end of the LB [30] and the consequent Egyptian withdrawal from

Timna (ca. 1140 BCE [23]), metal production spread throughout the Wadi Arabah at an indus-

trial scale [5, 10]. From this time until the end of the large-scale industry around ca. 800 BCE,

two major transformations are evident in the archaeological record (Fig 5): (1) An introduc-

tion of fortifications around the turn of the 1st millennium BCE (e.g., the large fortress at

KEN), which also entailed abandonment of unprotected sites (e.g., Timna Site 15) and the

establishment of new ones in naturally fortified locations (e.g., “Slaves’ Hill” [T34] [31, 32]).

The need for defense was manifested simultaneously in Timna and Faynan, and probably

reflects changes in the ultra-regional geopolitical situation at the time [31]. Based on macro

observations, these changes are not reflected in the technological practice, and the basic

‘toolkit’ remained the same [5]. (2) A substantial reorganization of the industry at the second

half of the 10th century BCE [5], which included efforts for centralization (abandonment of

most sites except one in Timna and two in Faynan), decommissioning of defensive features

(e.g., the transformation of KEN fortress into metallurgical workshops), the introduction of

camels as draft animal [33], and major changes of organization on an intra-site level (e.g.,

establishment of a building in an area previously used for dumping metallurgical waste [KEN

Area M]). These changes were accompanied by the introduction of a new technological

‘toolkit’, which consisted of larger furnaces and tuyères, and produced a visually-different type

of slag [5]. It has been suggested that this major transformation should be associated with the

campaign of Sheshonq I to the Southern Levant [5, 10].

Pharaoh Sheshonq I, one of the few Egyptian pharaohs identified by name in the Hebrew

Bible (there “Shishak”), was the founder of the 22nd Dynasty in Egypt. Following his ascension,

he dedicated efforts to reunifying Egypt and incursions abroad [34]. His military campaigns
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Fig 5. Main features of the organization of production and detailed chaı̂ne opératoires for the copper industry in the Wadi Arabah

during the Late Bronze and early Iron Ages (dashed arrows and boxes indicate optional components with weak or no evidence).

Although attempts for improvements were probably inherent to the technological practice throughout the period, except from the

“punctuated change” they were limited and contained within a given system of feedbacks (both positive and negative). These stabilizing

feedbacks are associated with the various components of each chaı̂ne opératoire, from constraints imposed by co-dependency of

Detecting the emergence of the Edomite Kingdom in the Southern Levant

PLOS ONE | https://doi.org/10.1371/journal.pone.0221967 September 18, 2019 9 / 16

https://doi.org/10.1371/journal.pone.0221967


included an invasion into Judah and Israel “5 years after the death of King Solomon” (1 Kings

14:25, 2 Chronicles 12:1–12) in response to hostile incidents on Egypt’s eastern border. This

event is commonly dated to around 925 BCE, although difficulties with the biblical back-

ground for this date and insecurities regarding the exact years of Sheshonq I’s reign gave rise

to slightly different (usually earlier) suggestions (e.g., [35]). Based on the appearance of names

from the Negev region in the description of this event in Egypt (topographical list at the Tem-

ple of Amun in Karnak) it has been suggested that one of the destinations of Shoshenq I’s cam-

paign was the Wadi Arabah and its copper industry [36]. This hypothesis was strengthened

recently by the accidental discovery of a rare scarab bearing the throne name of Sheshonq I in

Faynan [5].

The coincidence of Shoshenq I’s campaign to the region and the major reorganization of

the copper industry mentioned above, together with the assumption that Egypt’s interest was

to secure its supply of Arabah copper [28], suggests that Egypt had a certain role in bringing

about these observable changes in the copper production industry. The new data presented

here, coupled with punctuated evolution theory, help shed light on that role vis-à-vis internal

processes within the local society.

Technological evolution and the Edomite society

Treating technological developments from an evolutionary perspective assumes that a positive

feedback for improvements in efficiency (= less efforts spent per unit of outcome) exists in a

given techno-social system. This assumption should be treated with caution in the study of

technological trajectories in human societies [40], as discrete cases within the longue durée of a

given region can easily deviate from a unilinear development model [41]. However, for a con-

tinuous record of the same system such as the one studied here, this assumption seems valid,

and an evolutionary model can be suggested.

Prior to the present study only two copper smelting technologies were identified in the LB/

IA archaeological record of the Wadi Arabah, the one represented by the “Small Tuyères”

(~1300–925 BCE) that was followed by the one represented by the “Large Tuyères” (~925–800

BCE) [5, 7, 8] (Fig 5). A ‘stasis’ in technological development was assumed for the duration of

each of the technologies, and the advantages of the newer technology was discussed only in

relation to increased production intensity based on the amount of slag. The new data (Fig 3)

provide quantifiable observations on the efficiency of the two technologies; they also reveal

hitherto indiscernible diachronic technological changes and help characterizing the macro-

scopically visible technological transformation.

technological habits (for example, specific preparation of a smelting mixture dictated a specific smelt) to those of the existing trade

organization and market demands. While some degree of gradual improvement in the period preceding the technological leap (Systems

0–2) is detectable in the slag chemistry (cf., Fig 3), it is only the latter that left macro evidence for changes (marked here in red and

illustrated by tuyères and slag types [more on the macro evidence and the archaeometallurgical material culture associated with this leap, see

[37]; on slag types, see [10]]). Radiocarbon dating and other archaeological observations indicate no significant break in production during

the technological transformation; the change was based on the existing system that was striving for improvements and was “given the

opportunity” to break loose from previous constraints by an external intervention (Shoshenq I’s campaign). There is no reason to assume

that the change was orchestrated by any others than the Edomites themselves, as a positive response to disruption; the latter provided a

“window” for incorporating “foreign” innovations (which included improvements in other technologies as well, most notably the

introduction of camels to facilitate transportation, see [33]). It should also be noted that the techno-social evolution presented here is

bounded by centuries of hiatus in the preceding and following periods: it started earlier in the south as a result of Egyptian initiative during

the days of Seti I [38] and ended with the rekindling of Cypriot monopoly on Eastern Mediterranean copper trade, probably with the

support of the Aramaeans [25]. The industry in the south probably ended somewhat earlier because of rapid deforestation caused by the

practice of the intense, post-leap industry in the extreme arid region of Timna (where in contrast to Faynan there is no immediate sources

of hydrophilic flora, see [39]).

https://doi.org/10.1371/journal.pone.0221967.g005
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The analytical data (Fig 3) demonstrate that the earlier technology was not entirely static,

and that during the ca. 400 years of use it went through changes, indicating that efforts to

improve its efficiency were deliberately—and probably constantly—invested. The changes

were gradual and thus are best discernable in the general trend; however, within this trend the

data suggest that significant technological changes were associated with the reorganization of

the industry around the turn of the 1st millennium BCE. The appearance of fortifications and

redistribution of smelting sites at this time coincides with a tighter control over the smelting

protocol (cf., SD of averages of Cu-High and Cu-Low in Fig 3), and an overall more efficient

technology. Prior to these changes the standardization of production across the Wadi Arabah

was rather poor, reflecting a different practice for each smelting site. Furthermore, the seam-

less transition from the Egyptian-controlled industry to the local (Edomite) one around ca.

1140 BCE supports the hypothesis that the tribes of the region were responsible for operating

the industry even when it was orchestrated by the Egyptians; it reveals that under the Egyptian

auspices the local tribes had a high degree of independence, a situation that constituted a fertile

ground for them to emulate Egyptian political practices that would later serve as the basis for

the consolidation of their own polity (cf., [6, 26].

The new technological observations also shed light on the latter process, the formation of

the tribal confederation of the Edomite Kingdom. While the biblical narrative describes an

early, pre-10th century BCE kingdom (“. . .the kings who reigned in Edom before any Israelite

king reigned” [Genesis 36:31]), the archaeological record has been subjected to conflicting

interpretations, even after the publication of the new chronology that clearly demonstrates the

flourishing of the region during the 12th– 11th centuries BCE [5, 10, 42]. Here, the striking syn-

chronous agreement between the technology in Timna and Faynan, evident as early as the 11th

century BCE (note in particular T30-L2 and KAJ-A3-4 in Fig 3), suggests that an overarching

political body existed in the region already at this time. Further centralization of this political

body is evident in the changes observed towards 1000 BCE mentioned above.

The ca. 400-years of gradual technological improvements, which from an evolutionary per-

spective can be regarded as a quasi-stasis, was “punctuated” by a technological “leap” in the

second half of the 10th century BCE. The major, macro-scale changes described above are

reflected in the analytical results, which indicate a much more efficient technology that was

practiced with unprecedented control over the smelting protocol (Fig 3); after the “leap”,

the technology reached an “equilibrium”, continuing for more than a century with no discern-

able changes. The historical context makes human agency a key factor in explaining this

“punctuation event”: after generations of internal efforts to better the technology—with lim-

ited success—the techno-social system was receptive of extraneous influences that facilitated

the same cause. Thus, changes imposed or triggered by the Egyptian intervention at the time

of Shoshenq I’s campaign resulted in unparalleled flourishing of the industry, rather than a cat-

astrophic clash. This is evident not only in the industrial landscapes but also in the nearby

regions that thrived as a result of trade with Egypt [43] and even further destinations such as

Greece [25, 44].

The triggering of the technological leap by extraneous intervention is best explained when

considering the characterization of periods of stasis in punctuated equilibrium theory. Such

periods are stable a result of feedback systems that prevent change, and the punctuation is a

result of destabilization of these systems. The feedback systems in the case at hand (Fig 5) are

related to the complexity of the technological operation—which was based on multitude of co-

dependent components—and the embeddedness of the industry in an existing trade system(s);

only when these were destabilized by a military campaign (that probably also reflects changes

in markets and trade) an opportunity emerged for the Edomites to adopt innovations and

make technological changes that no doubt had—in turn—profound effects on their society.
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The case study of the Wadi Arabah demonstrates how technological developments can be

interpreted through the lens of punctuated evolutionary theory; this not only helps in extract-

ing social insights on a given society (in our case, Edom), but is a useful tool for comparative

studies; its potential depends on its application to other detailed, high resolution records of

technological change across time and cultures, world-wide.

Materials and methods

Slag samples for the present study were obtained by excavation methods detailed in [5] and

[6], and their dating is based on previously published radiocarbon results (S2 Dataset). As slag

is typically a heterogeneous material, all samples were pulverized into a very fine homogenized

powder (particles of several tens of microns) that provides a reliable average of the bulk chem-

istry of a sample. The chemical analysis was based principally on the use of a portable X-ray

fluorescence (pXRF) instrument (n = 109). Inductively coupled plasma optical emission spec-

trometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were also

used for additional 10 and 35 samples respectively; the agreement between the results strength-

ens their accuracy.

1. pXRF: Instrument used: Bruker TRACeR III-V+ (Levantine Archaeology Laboratory,

University of California San Diego). In order to gain quantitative results from the produced

XRF spectra, we calibrated the instrument using samples of slag with known elemental val-

ues (all of the samples were Mn-rich slag in order to account for this unique quality of slags

in Faynan). Samples were pulverized using an agate mortar and pestle and a SPEX alumina

ceramic grinder, in the Petrographic Laboratory of Scripps Institution of Oceanography.

Powdered samples were collected in specialized cups with transparent thin-film bases (four

microns thick). Focusing on heavier elements, copper and above on the periodic table, the

Bruker pXRF was set to 40Kv, 15μA, no vacuum, and the green filter for timed assays of 300

seconds. Cu values discussed in this paper are much greater than the estimated detection

limit for Cu using these settings.

2. ICP-OES, ICP-MS: All samples were pulverized using Retsch Jaw Crusher BB200 and

Retsch Vibratory Disc Mill RS200, both equipped with tungsten components (Archaeome-

tallurgical Laboratory, Institute of Archaeology of Tel Aviv University). The homogenized

powders were stored in sealed bags and transferred to the Geochemistry Laboratory of the

Institute of Earth Science, the Hebrew University of Jerusalem (headed by Y. Erel). From

each sample, 0.1g was put into separate beakers and dissolved using multiple acids (HNO3

[69% concentration], HF [49% con.], HClO4 [35% con.]). After vaporizing the acids, all bea-

kers were filled with 0.5ml of nitric acid and 49.5ml of distilled water. The chemical compo-

sition of 10 samples was then analyzed by Perkin Elmer Optima 3000 Inductively Coupled

Plasma Optical Emission Spectroscopy (ICP-OES) and due to machine availability the rest

36 samples were analyzed using Agilent (HP) 7500cx ICP- Mass Spectroscopy (MS).

Provenience of archaeological samples used in the current study:

1. Samples stored in the University of California San Diego Levantine Archaeology Labora-

tory (available for study, metadata for Khirbat en-Nahas is available as a digital collection

at- https://library.ucsd.edu/dc/collection/bb41653353):

a. Samples excavated under license number 2006/74 of the Department of Antiquities of

Jordan: L170-1, L174-1, L193-1, L180-1, L180-1-C, L192-1, L816-1, L842-1, L859-1,

L860-1, L860-1-C, L893-1, 10482, 10483, 10250, 10484, 10485, 10487, 10478, 10479,

10481, 10486, 10488, 10489, 10256, 10475, 10476, 10477, 10490, 10492, 10493, L602-1,
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L606-1, L615-1, L620-2, L620-1, L622-1, 10259, 10260, 10262, MAR0904, 10267, 10270,

10474, 10468, 10460, 10461, 10462, 10480, L629-1, L647-1, L659-1, L660-1, 10463,

10465, 10467, 10471, L666-2, L666-1, 10277, 10280, 10282, 10283, L667-1, L670-1, L670-

2, L671-1, 10464, 10466, L674-1 // 3275, 3262, 3263, 3278, 3261, 3283, 3276, 3287, 3266,

3267, 3281, 3282, 3280, 3279, 3277, 3269, 3274, 3272, 3271

b. Samples excavated under license number 2014/60 of the Department of Antiquities of

Jordan: B10314_1, B10314_2, B10338_1, B10338_2, B10233, B10234, B10235, B10236,

B10237, B10238, B10502, B001

2. Samples stored in the Tel Aviv University, Laboratory of Archaeometallurgy (available for

study):

a. Samples excavated under license number G-38/2009 of the Department of Antiquities of

Israel: L809-1, S2-510, S2-51, S2-52, L902-1, L903-1, L907-1, L808-1

b. Samples excavated under license number G-3/2013 of the Department of Antiquities of

Israel: oyT3;02;P, oyT3;03;C, oyT3;04.1;C/P, oyT3;04.2;C/P, oyT3;04.3;C/P, oyT3;04.4;

C/P, oyT3;05.1;C/P, oyT3;05.2;C/P, oyT3;05.3;C/P, oyT3;05.4;C/P, oyT3;06.1;C/P,

oyT3;06.2;C/P, oyT3;06.3;C/P, oyT3;06.4;C/P, oyT3;07.1;C/P, oyT3;07.2;C/P, oyT3;07.3;

C/P, oyT3;07.4;C/P, oyT3;08;C/P, oyT3;09;C/P, oyT3;10;C/P, oyT3;11;C/P, oyT3;12;C/P,

oyT3;13;C/P, oyT3-14-C/P, oyT3-15-C/P, oyT3-16-C/P, oyT3-17-C/P // oyT34;10.1;C/

P, oyT34;11/1;C/P, oyT34;11/2;C/P, oyT34;12.1;C/p, oyT34;12/2;C/P, oyT34;13.1;C/P,

oyT34;13/2;C/P, oyT34;14.1;C/P, oyT34;14/2;C/P, oyT34;15/1;C/P, oyT34;15/2;C/P,

oyT34;16/1;C/P, oyT34;16/2;C/P, oyT34;17/1;C/P, oyT34;17/2;C/P, oyT34;18/1;C/P,

oyT34;18/2;C/P

Supporting information

S1 Fig. Detailed map of Iron Age copper production and related sites in Faynan, Jordan.

The white square represents the extent of the map provided in Fig 1. WF = Wadi Fidan,

RHI = Rujm Hamra Ifdan, RAM = Ras al-Miyah. Map produced using ArcGIS software by

ESRI. Sentinel-2 (ESA) image courtesy of the U.S. Geological Survey (public domain).

(TIF)

S2 Fig. Detailed map of the Late Bronze and Iron Age copper production and related sites

in Timna, Israel. The white square represents the extent of the map provided in Fig 1. The site

numbers are based on the work of the Arabah Expedition. Map produced using ArcGIS soft-

ware by ESRI. Sentinel-2 (ESA) image courtesy of the U.S. Geological Survey (public domain).

(TIF)

S3 Fig. Students excavating metallurgical debris in a deep sounding of a slag mound in

Faynan, Jordan (Khirbat en-Nahas [KEN], Area M). The rapidly-accumulating slag consti-

tutes a quasi-continuous record of technological change (in this case, spanning 300 years) that

can be tightly tied to chronology based on radiocarbon dating of charcoal (remains of fuel)

and archaeomagnetic investigation of the slag material itself. The technological “leap” detected

by the current study is represented here by the reorganization of the area during the second

half of the 10th century BCE: the construction of the building on the left, and the leveling-up of

the earlier slag mound represented as a ‘disruption’ in the section at the level of the building’s

foundation.

(TIF)
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S1 Dataset. A compilation of all previously published analytical data of Late Bronze and

Iron Age slag samples from the Wadi Arabah.

(XLSX)

S2 Dataset. Radiocarbon dates (original, calibrated and modeled) from contexts discussed

in the text and their sources.

(XLSX)

S3 Dataset. Analytical data from current study of Late Bronze and Iron Age slag samples

from the Wadi Arabah by archaeological context (cf., S2 Dataset for dating).

(XLSX)
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