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Abstract

Brachiopods were thought to have dominated deep-sea hydrothermal vents and hydrocar-

bon seeps for most of the Paleozoic and Mesozoic, and were believed to have been outcom-

peted and replaced by chemosymbiotic bivalves during the Late Cretaceous. But recent

findings of bivalve-rich seep deposits of Paleozoic and Mesozoic age have questioned this

paradigm. By tabulating the generic diversity of the dominant brachiopod and bivalve

clades–dimerelloid brachiopods and chemosymbiotic bivalves–from hydrocarbon seeps

through the Phanerozoic, we show that their evolutionary trajectories are largely unrelated

to one another, indicating that they have not been competing for the same resources. We

hypothesize that the dimerelloid brachiopods generally preferred seeps with abundant

hydrocarbons in the bottom waters above the seep, such as oil seeps or methane seeps

with diffusive seepage, whereas seeps with strong, advective fluid flow and hence abundant

hydrogen sulfide were less favorable for them. At methane seeps typified by diffusive seep-

age and oil seeps, oxidation of hydrocarbons in the bottom water by chemotrophic bacteria

enhances the growth of bacterioplankton, on which the brachiopods could have filter fed.

Whereas chemosymbiotic bivalves mostly relied on sulfide-oxidizing symbionts for nutrition,

for the brachiopods aerobic bacterial oxidation of methane and other hydrocarbons played a

more prominent role. The availability of geofuels (i.e. the reduced chemical compounds

used in chemosynthesis such as hydrogen sulfide, methane, and other hydrocarbons) at

seeps is mostly governed by fluid flow rates, geological setting, and marine sulfate concen-

trations. Thus rather than competition, we suggest that geofuel type and availability con-

trolled the distribution of brachiopods and bivalves at hydrocarbon seeps through the

Phanerozoic.

Introduction

The idea of bivalves replacing brachiopods as the dominant benthic filter feeders over the

course of the Phanerozoic is one of the oldest macroevolutionary patterns discussed in paleon-

tology [1–3]. Originally observed in the rich fossil record of shallow marine environments, a
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similar pattern was also seen at deep-sea hydrothermal vents and hydrocarbon seeps [4]. These

ecosystems differ radically from all others in being based on chemosynthetic primary produc-

tion rather than photosynthesis [5]. The evolution of the chemosynthesis-based faunal com-

munities may therefore be buffered from mass extinctions and other disruptions of

photosynthesis-based food chains [6–8] and may instead be driven by events affecting the dis-

charge of the reduced chemicals (referred to as geofuels hereafter) that fuel the chemosynthe-

sis-based food chain [9]. The animals that dominate chemosynthesis-based ecosystems show

extensive physiological adaptations, commonly involving a symbiosis with chemotrophic bac-

teria, resulting in faunal communities with a low diversity but high abundance of highly spe-

cialized animals [10, 11].

A first compilation of Phanerozoic vent and seep sites with brachiopods and/or bivalves

indicated a pattern of a Paleozoic to middle Mesozoic dominance of brachiopods in these eco-

systems, and the chemosymbiotic bivalves became dominant from the Late Cretaceous onward

[4]. Subsequent research confirmed a number of Paleozoic and early Mesozoic seep deposits

dominated by brachiopods, including Septatrypa in the Silurian [12], Dzieduszyckia in the

Devonian [13], Ibergirhynchia in the Carboniferous [14],Halorella in the Triassic [15], and

Sulcirostra and Anarhynchia in the Jurassic [16–18], supporting this hypothesis. However, also

discovered were seep deposits at which inferred chemosymbiotic bivalves were a major faunal

element, including the modiomorphid genus Ataviaconcha at Silurian and Devonian sites in

Morocco [19, 20] and kalenterid and anomalodesmatan genera at Triassic sites in Turkey [21,

22]. These findings challenge the claim of predominantly brachiopod-dominated pre-Creta-

ceous vents and seeps, and raise the questions why some sites were dominated by brachiopods

and others by bivalves.

A further complication in this context is that the feeding strategy (or strategies) of vent and

seep-inhabiting brachiopods is essentially unknown. The large size of certain species and bra-

chiopod dominance at some sites may intuitively suggest that they were chemosymbiotic [18,

23, 24]. However, brachiopods are virtually absent from extant vents and seeps, and the few

known examples are filter feeder that take advantage of the hard substrate provided by authi-

genic carbonates exposed at some seeps [25]. Furthermore, the general brachiopod bauplan

lacks certain features, such as gills and a closed cardio-vascular system, which are important

for hosting chemosymbionts in bivalves or tube worms [26, 27] and make brachiopods ill-

suited for coping with the toxicity of hydrogen sulfide. Furthermore, the brachiopods that

formed mass occurrences at ancient seeps are not drawn randomly from the brachiopod tree

of life but instead belong, with one exception, to a single clade: the Dimerelloidea [28]. The

one exception is the genus Septatrypa from a Silurian seep deposit in Morocco [12], which

belongs to a different rhynchonellate order than the dimerelloids. Because insights into the

feeding strategy of seep-dominating brachiopods are only available for the dimerelloids (see

below), our study focuses exclusively on members of this clade. One intriguing feature of

many seep deposits dominated by dimerelloids is the sheer abundance of the brachiopods,

which by far exceeds the abundance of chemosymbiotic bivalves at fossil seep deposits ([13, 15,

17, 29], own observations).

Here we present the hypothesis that dimerelloid brachiopods and chemosymbiotic bivalves

coexisted at hydrocarbon seeps during the Paleozoic and Mesozoic by partitioning the locally

available geofuels. We propose that the presence, absence, or relative abundance of each clade

at a given site was largely controlled by the chemical composition of the seep fluids (the pro-

portions of sulfide, methane, and/or oil), which in turn was influenced by seepage intensity

and perhaps seawater sulfate concentrations. Our hypothesis is based on (i) a tabulation of the

diversity of the ecologically dominant bivalve and brachiopod genera at seeps through the

Phanerozoic; (ii) recent improvements in geochemically assessing the composition of fluids

Paleoecology of seep-dwelling brachiopods and bivalves
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and the intensity of fluid flow at ancient seeps; and (iii) a set of derivations and assumptions

on the paleoecology of the dominant brachiopod and bivalve clades at ancient hydrocarbon

seeps.

Approach

Compilation of generic diversity of bivalves and brachiopods

Modern seep communities are characterized by the low diversity but high abundance of a few

taxa that are able to take advantage of the unique food resources at seeps [5, 30]. Thus our

compilation of brachiopod and bivalve diversity at seeps includes only the ecologically domi-

nant clades instead of the full range of genera known from fossil seep deposits to avoid the

results being blurred by chance occurrences or by local taxa fortuitously taking advantage of

the abundance of food at a seep site (known as ‘vagrants’ or ‘background taxa’, cf. [31] Sibuet

and Olu, 1998). Among bivalves, only chemosymbiotic or in the case of extinct taxa, inferred

chemosymbiotic taxa, were included. Although chemosymbiotic bivalves may occasionally be

rare, in general they dominate seep deposits numerically (cf. [9] Kiel, 2015; [32] Campbell,

2006).

Among brachiopods, only dimerelloid genera reported from geochemically confirmed seep

deposits are included because (i) with a single exception (see below), only dimerelloids

occurred at ancient seeps in rock-forming quantities; all other brachiopods reported from

ancient seeps (including various terebratulids, i.e. [33–37]) represent minor faunal elements

that most likely took advantage of exposed hard substrate [28], and (ii) the feeding strategies of

brachiopods at ancient seeps remain unclear except for the dimerelloids, for which some clues

are available [38]. The only exception to (i) is Septatrypa, which occurs in rock-forming quan-

tities in a Silurian seep deposit from Morocco [12]. This genus belongs to a different rhyncho-

nellate order than the dimerelloids, hence we refrain from extending the feeding strategy

inferred from the Cretaceous dimerelloid Peregrinella to this Silurian genus.

The dataset includes 42 bivalve and seven brachiopod genera; their stratigraphic distribu-

tions, life habits (epifaunal, semi-infaunal, and infaunal), and all relevant references are shown

in Table 1. To assess a potential sampling bias, we also compiled the number of seep-bearing

rock units at which these taxa were found (Table 2), as done in a previous quantitative study

on seep faunas [8].

Proxies for fluid chemistry and flow intensity at ancient seeps

Criteria used to reconstruct the composition of seep fluids and seepage intensity are based on

the mineralogy and microfabric of authigenic carbonate and sulfide minerals, stable isotope

signatures of authigenic minerals, and lipid biomarkers [133–140]. This set of methods, how-

ever, does not allow to reliably discern methane-seep and oil-seep deposits. The use of lipid

biomarkers seems an obvious approach for such discrimination, but is hampered by the facts

that (i) sulfate-driven anaerobic oxidation of methane occurs at oil seeps too [141] and (ii) the

prokaryotes responsible for anaerobic degradation of oil components in marine settings (i.e.

sulfate-reducing bacteria; [142]) may yield similar biomarkers like the sulfate-reducing bacte-

ria involved in anaerobic oxidation of methane. Even more problematic, the great abundance

of oil components in some seep deposits tends to mask the lipid biomarkers reflecting local

biogeochemical processes [143]. Such masking by oil-derived components is a particular prob-

lem for the recognition of possible ancient oil-seep deposits, since the timing of oil ingress

(syngenetic vs. epigenetic) is commonly difficult to constrain [13]. The sheer presence of pyro-

bitumen (i.e. metamorphosed oil) in ancient seep limestones is consequently not sufficient

proof for oil seepage. These problems prompted the development of an inorganic geochemical

Paleoecology of seep-dwelling brachiopods and bivalves
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Table 1. Dimerelloid brachiopod genera and (inferred) chemosymbiotic bivalve genera in ancient hydrocarbon-

seep deposits. New brachiopod and bivalve genera established since Mike Sandy’s review of dimerelloid brachiopods

as seep-inhabitants in 1995 [23] are marked by an asterisk (�); see section ‘Diversity pattern’ for reasoning.

NEOGENE

Dimerelloid

brachiopods:

none.

Infaunal bivalves: Acharax [39], Anodontia [40], Channelaxinus� [41], Cubatea� [42], Elliptiolucina�,
Elongatolucina� [43], Isorropodon [44], Lucinoma,Meganodontia� [41],Megaxinus [45],

Myrteopsis, Nipponothracia�, Pegaphysema [43], Pliocardia [46], Solemya [47], Thyasira
[48].

Semi-infaunal

bivalves:

Archivesica [41], Callogonia [49], Calyptogena [50], Conchocele [42, 47], Gigantidas� [51],

Notocalyptogena� [52], Pleurophopsis (= Adulomya) [42, 53, 54].

Epifaunal bivalves: Bathymodiolus [41, 51].

PALEOGENE

Dimerelloid

brachiopods:

none.

Infaunal bivalves: Acharax [42, 55], Amanocina�, Cubatea�, Elliptiolucina�, Elongatolucina� [43, 56],

Epilucina [57], Lucinoma [58],Maorityas [59], Nipponothracia� [43], Nucinella [55],

Nymphalucina [43], Pliocardia [42], Rhacothyas� [33], Solemya [60], Thyasira [59].

Semi-infaunal

bivalves:

Conchocele [59], Hubertschenckia [44], Pleurophopsis [42].

Epifaunal bivalves: Bathymodiolus, Idas, Vulcanidas� [60].

LATE CRETACEOUS

Dimerelloid

brachiopods:

none.

Infaunal bivalves: Acharax [61], Amanocina� [43], Cubatea� [43],Miltha [61],Myrtea [61], Nucinella [62],

Nymphalucina [43], Solemya [63, 64], Tehamatea� [43], Thyasira [48, 59].

Semi-infaunal

bivalves:

Caspiconcha� [65, 66], Conchocele [59, 63].

Epifaunal bivalves: none.

EARLY CRETACEOUS

Dimerelloid

brachiopods:

Peregrinella [29, 38].

Infaunal bivalves: Acharax [67], Amanocina� [43], Cretaxinus� [68], Cubatea� [43], Nucinella [67–69],

Solemya [64, 68, 70], Tehamatea� [43], Thyasira [59].

Semi-infaunal

bivalves:

Caspiconcha� [65].

Epifaunal bivalves: none.

JURASSIC

Dimerelloid

brachiopods:

Anarhynchia [18], Cooperrhynchia [71], Sulcirostra [17].

Infaunal bivalves: Acharax [67], Beauvoisina� [43], Nucinella [68], Solemya [68], Tehamatea� [37].

Semi-infaunal

bivalves:

Caspiconcha� [65].

Epifaunal bivalves: none.

TRIASSIC

Dimerelloid

brachiopods:

Halorella [15, 21].

Infaunal bivalves: Nucinella [15], Aksumya� [22].

Semi-infaunal

bivalves:

Terzileria�, Kasimlara� [22].

Epifaunal bivalves: none.

CARBONIFEROUS

(Continued)
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Table 1. (Continued)

Dimerelloid

brachiopods:

Ibergirhynchia� [72].

Infaunal bivalves: ‘solemyid’ [14].

Semi-infaunal

bivalves:

none.

Epifaunal bivalves: none.

DEVONIAN

Dimerelloid

brachiopods:

Dzieduszyckia [13].

Infaunal bivalves: Dystactella [20].

Semi-infaunal

bivalves:

Ataviaconcha� [20].

Epifaunal bivalves: none.

https://doi.org/10.1371/journal.pone.0221887.t001

Table 2. Seep-bearing rock units or equivalents, sorted into the same geologic time bins as the genera in Table 1;

Fm = Formation.

Site(s) Rock unit or equivalent Reference

NEOGENE

Fukaura town Akaishi Fm [50]

Ogasawara’s slumped block Aokiyama Fm [47]

Stirone River seep complex Argille Azzurre Fm [73]

LACM loc. 6132, USGS M2790 Astoria Fm [44]

Akanuda Limestone Bessho Fm [74]

Bexhaven, Karikarihuata, Moonlight North, Rocky Knob,

Tauwhareparae, Waipiro

Bexhaven Limestone [51]

Liog-Liog Point Bata Fm [75]

Takangshan quarry Gutingkeng Fm [76]

Ikegami Hayama Fm [77]

Shimo-sasahara, near Yatsuo Higashibessho Fm [46]

Oinomikado & Kanehara 1938 loc. Higashiyama Oil field [47]

Saitama conglomerate Hiranita Fm [78]

Nagasawa & Oyamada’s 1996 loc. Hongo Fm [47]

Kamada’s Honya loc. Honya Fm [47]

Cantera Portugalete Husillo Fm [42]

Haunui, Ugly Hill, Wanstedt Ihungia Series [79]

slumped blocks, YDFAB 1993 Ikedo Fm [47]

Joban coal field Kabeya Fm [80]

Doguchi Bridge Kawazume Fm [47]

Izura Kanko Hotel Kokozura Fm [49]

Matsudai, Sugawa Kurokura Fm [81]

Freeman’s Bay, Godineau River, Jordan Hill Lengua Fm [42]

Casa Cavalmagra, Case Rovereti, Castellvecchio, Le Colline,

Montepetra

Marnoso-arenacea Fm [41]

Kanie’s 1991 juvenile Calyptogena loc. Misaki Fm [47]

Morai, Otatsume’s 1942 loc. Morai Fm [47]

loc. M2 of Shikama & Kase, 1976 Morozaki Group [47]

Limestone nodule in Kochi Muroto Fm [82]

Ozaki 1958 loc. Naari Fm [83]

(Continued)
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Table 2. (Continued)

Site(s) Rock unit or equivalent Reference

Nadachi Signal Station Nadachi Fm [84]

Amano et al 1994 loc. Nanbayama Fm [47]

Nakanomata seep deposit Nodani Fm [85]

Rekifune seep Nupinai Fm [86]

Kanno & Akatsu 1972 loc. Nupinaigawa mudstone [47]

Yokohama City Ofuna Fm [47]

Kita-Kuroiwa Ogaya Fm [74]

Sakurai’s 2003 loc. Ogikubo Fm [47]

Hayashi’s 1973 localities Ohno Fm [47]

Ogasawara 1986 Akita loc. Onnagawa Fm [47]

Huso Clay Member Pozon Fm [87]

Quinault seep Quinault Fm [88]

Hayashi & Miura’s 1973 loc. Ryusenji Fm [47]

Buton asphalt deposit Sampalokossa Beds [89]

Matsumoto & Hirata’s 1972 Shizuoka loc. Setogawa Group [82]

Oshima Shikiya Fm [90]

Kawaguchi/Kotto Shiramazu Fm [91]

SOFZ—Baths Cliffs fauna SOFZ [87]

Joban coal field Taira Fm [80]

Kanno & Ogawa 1964 loc. Takinoue Fm [92]

Kanno’s 1967 Tokyo loc. Tateya Fm [47]

Oinomikado & Kanehara’s 1938 loc. Teradomari Fm [47]

Sasso delle Streghe Termina Fm [41]

Abisso Mornig, Casa Carnè, Casa Piantè Tossignano marls [41]

Tanaka’s Matsumoto City loc. Uchimura Fm [47]

Katto & Masuda’s 1978 pyrite loc. Uematsu Fm [47]

Matsumoto’s 1966 & 1971 Shizuoka locs. Wappazawa Fm [47]

Kanehara’s 1937 loc. Yunagaya and Shirado

Groups

[93]

PALEOGENE

Fossildalen Basilika Fm [35]

Buje petrol station Central Istria flysh [94]

Diapiric mélange, Joes River Diapiric melange [87]

Angela Elmira asphalt mine Elmira Asphalt [95]

Bear River (LACMIP loc. 5802) equivalent of Lincoln Creek

Fm

[96]

Belen Heath shales [95]

LACMIP loc. 12385, CSUN loc. 1583 Humptulips Fm [96]

LACMIP loc. 17101 Jansen Creek Member [60]

Rock Creek Oregon, Vernonia-Timber Road Keasey Fm [97]

CR2, UWBM loc. B-7451, LACMIP loc. 5843, LACMIP loc.

16504, SR1-SR4

Lincoln Creek Fm [60, 98–100]

Bullman Creek, LACMIP loc. 6958, Shipwreck Point Makah Fm [58, 59, 101]

Cima Sandstone lentil Moreno Fm [102]

Kami-Atsunai railway station Nuibetsu Fm [103]

Urahoro concretion Oomagari Fm [47]

Palmar-Molinera-Road Palmar-Molinera [95]

Huberschenkia-loc. (Yayoi site) Poronai Fm [104]

(Continued)
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Table 2. (Continued)

Site(s) Rock unit or equivalent Reference

East Twin River, LACMIP locs. 15621, 6295, Whiskey Creek Pysht Fm [59, 100, 101,

105]

North Slope Sagavanirktok Fm [32]

Kiritachi Sakasagawa Fm [59]

Tanami Shimotsuyu Fm [55]

Columbia River, UWBM loc. B-7446 Siltstone of Shoalwater Bay [60]

West Fork of Grays River Siltstone of Unit B [59]

Lomitos Talara Fm [95]

Wagonwheel seep CSUN loc. 1580 Wagonwheel Fm [57]

LATE CRETACEOUS

Awanui GS 688, Waipiro I, Waipiro III East Coast Allochthon [69]

Guenoc Ranch Great Valley Group [64]

Maeshima Himenoura Group [59]

Seymour Island Lopez de Bertodano Fm [63]

Romero Creek Moreno Fm [64]

Sada Limestone Nakamura Fm [106]

Omagari lens, Yasukawa seep Omagari Fm [107, 108]

Tepee Buttes Pierre Shale [109]

Snow Hill Island Snow Hill Island Fm [63]

Alton Sink, North & South Cottonwood Wash Tropic Shale [110]

Obira-cho Yezo Supergroup [61]

EARLY CRETACEOUS

Sassenfjorden carbonates Agardhfjellet Fm [111]

near Freiberg Beskidy Range [112]

Eagle Creek Budden Canyon Fm [65]

Yongzhu bridge Chebo Fm [113]

Bonanza Creek Chisana Fm [114]

Prince Patric & Ellef Ringnes isl&s Christopher Fm [115]

Bear Creek, Foley Canyon, Rocky Creek Crack Canyon Fm [64]

Awanui I & II East Coast Allochthon [69]

Novaya Zemlya III sandy limestone float [116]

Little Indian Valley Fransiscan Complex [64]

Gravelly Flat Gravely Flat Fm [64]

East Berryessa, Knoxville, Rice Valley, West Berryessa, Wilbur

Springs

Great Valley Group [64]

Baska Hradiště Fm [117]

Cold Fork of Cottonwood Creek Lodoga Fm [118]

Musenalp Musenalp [119]

Ispaster Ogella unit [120]

W. Kuban Oubine Valley [121]

Planerskoje Planerskoje section [122]

East of Lhasa Sangxiu Fm [123]

Sinaia Beds Sinaia Fm [124]

Koniakov, Koniakover Schloss, Raciborsko Upper Grodziszcze beds [29, 125]

Curnier, Rottier Vocontien Basin [38]

Kuhnpasset Beds Wollaston Forland [70]

Ponbetsu, Utagoesawa Yezo Supergroup [66, 126]

(Continued)

Paleoecology of seep-dwelling brachiopods and bivalves

PLOS ONE | https://doi.org/10.1371/journal.pone.0221887 September 5, 2019 7 / 22

https://doi.org/10.1371/journal.pone.0221887


proxy for oil seepage. Molybdenum to uranium ratios in conjunction with rare earth element

contents of seep limestones have been shown to allow oil-seep and methane-seep deposits to

be discriminated [144]. The application of this proxy resulted in the confirmation that Late

Devonian limestones from Morocco with the dimerelloid brachiopod Dzieduszyckia formed at

oil seeps. Future work will have to reveal if some of the other seep limestones with dimerel-

loids, for which the presence of pyrobitumen was documented, are oil-seep deposits as well.

Another crucial aspect for our reconstruction of the adaptation of bivalves and brachiopods

to seep ecosystems concerns the mode in which methane was predominantly oxidized (i.e.

anaerobic vs. aerobic methanotrophy). It seems straightforward that episodes of low seawater

sulfate concentration favor the release of methane into bottom waters [9, 145], with less meth-

ane being oxidized at the sulfate-methane transition zone and more methane available for aer-

obic methane-oxidizing bacteria. Interestingly, also the mode of seepage (i.e. advective vs.

diffusive) is likely to affect the relative proportions of anaerobic and aerobic methanotrophy.

Although possibly counterintuitive at first glance, it has been shown that more methane tends

to permeate the barrier at the sulfate-methane transition zone formed by sulfate-driven anaer-

obic oxidation of methane at diffusive seeps compared to advective seeps [146–148]. This

circumstance agrees with the observation of more abundant biomarkers of aerobic methano-

trophic bacteria in seep deposits reflecting diffusive seepage (Natalicchio et al., 2015) and the

inferred affinity of Peregrinella to diffusive seepage and aerobic methanotrophy [38]. Likewise,

seeps with advective flow will tend to be characterized by high concentrations of hydrogen sul-

fide–resulting from pronounced sulfate-driven anaerobic oxidation of methane at the sulfate-

methane transition zone–whereas at seeps with diffusive flow more methane will be oxidized

with molecular oxygen by aerobic methanotrophs.

Table 2. (Continued)

Site(s) Rock unit or equivalent Reference

JURASSIC

Sassenfjorden carbonates Agardhfjellet Fm [111]

Gateway Pass Limestone Bed Atoll Nunataks Fm [127]

Novaya Zemlya I & II float [116]

Charlie Valley Fransiscan Complex [64]

NW Berryessa, Stony Creek Great Valley Group [64]

Copper Island Inklin Fm [18]

Seneca Keller Creek Fm [17]

Paskenta Stony Creek Fm [128]

Beauvoisin Terres Noires Fm [129]

TRIASSIC

Terziler and Dumanlı Kasimlar shales [21]

Graylock Buttes Rail Cabin mudstone [15]

CARBONIFEROUS

Tentes Mound Calcaires de l’Iraty [130]

Ganigobis Ganigobis Shale Member [131]

Iberg seep Iberg reef [14]

DEVONIAN

Sidi Amar Devonian-Carboniferous

mélange

[13]

Hollard Mound Pinacites limestone [132]

https://doi.org/10.1371/journal.pone.0221887.t002
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Assumptions on chemosymbiosis in fossil bivalves

For the sake of our hypothesis, we assume that all bivalve clades that dominated seep deposits

before the Cenozoic era were hosting thiotrophic (i.e. sulfide-oxidizing) symbionts only. For

most clades, including the Solemyidae, Nucinellidae, Thyasiridae, and Lucinidae, this is a fair

assumption based on the actualistic principle: members of these families host thiotrophic sym-

bionts only [149]. The only bivalve clade known to harbor methanotrophic symbionts is the

Bathymodiolinae [150, 151]. A detailed study on their evolutionary history [152] showed that

the path to methanotrophic symbiosis is difficult: first, only 13 out of 52 investigated species

harbor methanotrophs; second, intracellular rather than extracellular symbiont location seems

to be required to host methanotrophs; and third, methanotrophic symbiosis was acquired

fairly recently in the evolutionary history of the bathymodiolins (in the early Miocene), while

the original thiotrophic symbiosis goes much further back in time [152]. Remarkable in this

context is that other bivalve families with intracellular symbionts have apparently not devel-

oped methanotrophic symbiosis, despite having a similarly long (Vesicomyidae; cf. [153] Kiel,

2010) or much longer evolutionary history (Solemyidae, Lucinidae; cf. [20] Hryniewicz et al.,

2017; [154] Taylor et al., 2011).

Inferring chemosymbiosis or even symbiotic types is much harder in extinct taxa such as

the modiomorphids–a clade commonly found at ancient vents and seep [20, 155]–because

there is presently no way to proof chemosymbiosis in the fossil record. However, some clues

may be drawn from the geologic history of the modiomorphid/kalenterid genus Caspiconcha,
which is found in many Late Jurassic to Late Cretaceous seep deposits around the world [66,

70, 122]. Caspiconcha was common during most of the Early Cretaceous but declined in abun-

dance and eventually disappeared after marine sulfate concentrations–and hence sulfide avail-

ability at seeps–dropped in the Aptian [9, 66, 145]. If Caspiconcha had had methanotrophic

symbionts, it should not have been affected by the low sulfate concentrations; on the contrary,

it should have thrived due to the higher availability of methane at seeps (see above). But Caspi-
concha responded to the mid- to Late Cretaceous low sulfate concentrations in a way expected

for a taxon with thiotrophic symbionts. Based on this observation, we assume that Caspi-
concha, and seep-inhabiting modiomorphids/kalenterids during the Phanerozoic in general,

had thiotrophic rather than methanotrophic symbionts. Furthermore, because virtually all

extant bivalves taking up geofuels for their symbionts from pore water have thiotrophic symbi-

onts [11, 149], the infaunal and semi-infaunal lifestyle of the inferred chemosymbiotic bivalves

at pre-Cenozoic seeps suggests that they relied on thiotrophy rather than methanotrophy.

The resource partitioning hypothesis: Outline and arguments

Diversity pattern

The bivalve genera at seeps are of low diversity during the Paleozoic followed by a continuous

increase in diversity since the Triassic (Fig 1). Prior to the Cenozoic, this increase in diversity

is mostly among infaunal genera, plus a few semi-infaunal ones; epifaunal bivalves appeared

only in the Cenozoic (Fig 1). The continuous rise in bivalve diversity at seeps, at least since the

Mesozoic, appears to mirror the general Phanerozoic increase in bivalve diversity [2]. But the

low diversity of semi-infaunal and epifaunal bivalves at seeps and their rapid diversification in

the Cenozoic are unlike the general Phanerozoic pattern of bivalve ecospace occupation with

its similar proportions of infaunal, semi-infaunal, and epifaunal taxa in the Mesozoic and

Cenozoic [156]. This bias toward infaunal taxa might result from our focus on chemosymbio-

tic bivalves. Indeed, the bivalve diversification pattern at seeps is quite similar to that of the

most diverse clade of shallow-water chemosymbiotic bivalves–the Lucinidae [157]–which also
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shows low diversity during the Paleozoic and a continuous increase starting in the Mesozoic

[158]. One may thus argue that bivalve diversity at seeps follows the diversity of chemosymbio-

tic bivalves in shallow water. Epifaunal and semi-infaunal chemosymbiotic bivalves such as

bathymodiolins and vesicomyids are virtually absent from shallow water [149] and appear to

be a unique feature of vent and seep environments.

Although this trend in increasing generic diversity among bivalves is roughly mirrored by

an increase in the number of seep-bearing rock units (Fig 1), this pattern does not hold when

seen in detail: (i) there is an increase in bivalve diversity from the Early to the Late Cretaceous

despite a>50% decrease in the number of seep-bearing rock units; (ii) there are roughly iden-

tical numbers of seep-bearing rock units in the Early Cretaceous and in the Paleogene, but

almost twice as many bivalve genera in the Paleogene; (iii) the number of seep-bearing rock

units doubles from the Paleogene to the Neogene, accompanied by only a minor increase in

bivalve diversity. Thus, we are confident that the observed pattern in bivalve diversity at seeps

represents a real phenomenon, rather than being a sampling bias, although it is clear that the

Paleozoic and early Mesozoic are still undersampled and likely contained higher numbers of

bivalves at seeps.

Fig 1. Phanerozoic generic diversity of chemosymbiotic bivalves and dimerelloid brachiopods at hydrocarbon

seeps, and the number of seep-bearing rock units. Note break in scale and that the Permian was omitted because no

confirmed seep deposits have been reported from this period to date. E. = Early, L. = Late.

https://doi.org/10.1371/journal.pone.0221887.g001
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Seep-dwelling dimerelloids are of low diversity during the Paleozoic, show a slight increase

during the Jurassic and disappear after the Early Cretaceous (Fig 1). This pattern does not mir-

ror the general Phanerozoic brachiopod diversity pattern of Paleozoic dominance, end-Perm-

ian decline, and low post-Paleozoic diversity [2]. Two observations indicate that this pattern is

not significantly affected by sampling biases: first, despite the large number of seep-bearing

rock units in the Early Cretaceous, there is only a single dimerelloid genus at seeps in this

epoch. Second, since the first review of dimerelloid genera as potential seep-inhabiting bra-

chiopods in 1995 [23], only a single new dimerelloid genus has been described: the Carbonifer-

ous Ibergirhynchia [72]. During the same time interval, 18 new genera of seep-inhabiting

bivalves have been described, including nine from the Mesozoic and Paleozoic (indicated by

asterisks in Table 1). This indicates that despite being undersampled, the relative proportions

of brachiopod and bivalve genera at Paleozoic and early Mesozoic seeps shown in Fig 1 are

fairly robust. The diversity pattern also does not confirm the paradigm that vents and seeps

were dominated by brachiopods during the Paleozoic and most of the Mesozoic and that che-

mosymbiotic bivalves took over only in the Late Cretaceous [4]. Instead, dimerelloid brachio-

pods and chemosymbiotic bivalves have coexisted at seeps for nearly half of the Phanerozoic

(Late Devonian to Late Cretaceous, ~240 million years [19]). This raises the question whether

chemosymbiotic bivalves have indeed “exploited these habitats better than brachiopods” ([4]

Campbell and Bottjer, 1995, p. 323).

Ecology of seep-inhabiting brachiopods

At modern seeps, coexisting taxa tend to be spatially separated because different organisms

require different types and amounts of geofuels, and the distribution of these geofuels is in

turn controlled by flow rates and the resulting geochemical gradients [31, 159]. For example,

among two species of vesicomyid clams at seeps in Monterey Canyon, Archivesica kilmeri
requires 10 times higher ambient sulfide concentrations than Calyptogena pacifica, and conse-

quently C. pacifica occupies the periphery of the seep where sulfide flux is low, whereas A. kil-
meri lives in the sulfide-rich center of the seep [160]. Analogous faunal distribution patterns in

relation to geochemical gradients can be traced into the fossil record: mollusks at Cretaceous

seeps show similar zonation as their modern analogs [108, 109], and predation scar frequen-

cies in Oligocene chemosymbiotic bivalves are inversely related to the different, assumed sul-

fide requirements of these species, most likely because the more sulfidic areas were avoided by

predators and hence the bivalves with the highest sulfide requirements were spared from pre-

dation [161].

The Cretaceous seep-inhabiting dimerelloid brachiopod Peregrinella provides a particularly

intriguing case of a geochemically controlled distribution pattern: Peregrinella was shown to

have grown to much larger size at seeps with slow, diffusive fluid flow compared to sites with

strong, advective fluid flow [38]. Because advective fluid flow releases more sulfide to the sea-

bed than diffusive flow [146, 159], this pattern was interpreted as evidence that sulfide-rich

seep sites were not ideal for Peregrinella and that bacterial, aerobic methane oxidation might

have played a more prominent role in its nutrition [38]. That study used the abundance of

early diagenetic fibrous cement in the seep limestone as a proxy for seepage intensity–with

cement abundance positively correlated with seepage intensity [135]–and the authors pointed

out that various other dimerelloids, including the very large Dzieduszyckia, lived at sites with

very abundant seep cement (Anarhynchia even at an ancient hydrothermal vent site), and con-

cluded that different dimerelloids might have had different feeding strategies [38].

Contrary to this claim, here we argue that seep-inhabiting dimerelloids in general relied on

hydrocarbon-oxidizing bacteria for nutrition, rather than on sulfide oxidation. The presence
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of methane and oil in the water column results in rapid growth of bacterioplankton that takes

advantage of these energy sources [162, 163]. We put forward the hypothesis that dimerelloids

thrived by feeding on the abundant bacterioplankton at seeps where high amounts of hydro-

carbon geofuels effused into bottom waters. To the best of our knowledge, there is no present-

day example of a species at seeps with this feeding strategy. The closest modern analogs are

probably certain species of stalked barnacles (Cirripedia) living at vents in the West Pacific

Ocean [164] and near the Antarctic Peninsula [165], which are adapted to feeding on very fine

particles such as bacteria and fine debris [164]. In the following, we go through all pre-Creta-

ceous (that is: pre-Peregrinella) instances of dimerelloids at hydrocarbon seeps to outline our

arguments for (i) fluid composition and flow intensity at each site, and (ii) their implications

for the dimerelloids’ preference for hydrocarbons over sulfide.

Cooperrhynchia. The Late Jurassic dimerelloid Cooperrhynchia is known from a single

deposit only, were it is not superabundant but instead occurs in patches ([71] Sandy and

Campbell, 1994; SK, own observation). The most common chemosymbiotic bivalve at this site

is a solemyid [67], a group known to tolerate only low sulfide concentrations [159]. Similarly,

the scarcity of 13C-depleted crocetane and the presence of 13C-depleted biphytane in the

deposit with Cooperrhynchia [166] is typical of seep limestones that resulted from diffusive

seepage [135], which would have come along with low sulfide concentrations close to the

seabed.

Anarhynchia. This is the only dimerelloid genus yet known from both seeps and vents.

An Early Jurassic seep deposit in northern British Columbia is dominated by Anarhynchia
smithi and contains virtually no other fossils [18]. Despite the presence of early diagenetic

fibrous cement, Anarhynchia smithi probably lived in a low-sulfide environment. It occurred

during a geologic time interval known for its particularly low seawater sulfate concentration

[167], which most likely resulted in reduced sulfide availability at seeps (cf. [9] Kiel, 2015;

[145] Wortmann and Paytan, 2012) and hence also increased methane availability. Also of

Early Jurassic age is a hydrothermal vent deposit in the Franciscan Complex in California,

USA, at which Anarhynchia cf. gabbi is quite common [16, 168]. This occurrence at a hydro-

thermal vent site undoubtedly indicates that Anarhynchia was able to live at or near a strong

sulfide source. But this does not necessarily contradict our hypothesis: hydrothermal vents are

known to emit considerable amounts of methane, to the extent that for example the Rainbow,

Snake Pit, and Logatchev vent sites on the Mid-Atlantic Ridge are inhabited by Bathymodiolus
species hosting both thiotrophic and methanotrophic symbionts [169, 170].

Sulcirostra. Also of Early Jurassic age are seep deposits with Sulcirostra in eastern Oregon,

USA; these are monospecific mass occurrences of Sulcirostra paronai that apparently lack

bivalves and other fossils [17]. Analogously to the reasoning for the seep-inhabiting Anar-
hynchia above that lived in a low-sulfate ocean, we consider these occurrences low-sulfide

environments. The great abundance of early diagenetic fibrous cement on the other hand is in

accord with advective seepage, which is in favor of high sulfide production; but such produc-

tion was necessarily still limited by the sulfate concentration of pore waters. Maybe even more

interestingly, the Sulcirostra deposit contains pyrobitumen and its authigenic carbonate phases

are only moderately 13C-depleted (δ13C values as low as –23.5‰), both agreeing with oil seep-

age [17].

Halorella. An argument for a preference for low-sulfide, diffusive seeps with abundant

hydrocarbons in the bottom water analogous to that for Peregrinella can be made for the Trias-

sic dimerelloid Halorella. In seep deposits in Oregon,Halorella occurs in rock-forming quanti-

ties, reaches almost 10 cm in size, and chemosymbiotic bivalves are rare or absent [15]. In

contrast, in seep deposits in Turkey,Halorella is rare to common but never abundant, it never

exceeds 45 mm in size, and it co-occurs with abundant inferred chemosymbiotic bivalves,

Paleoecology of seep-dwelling brachiopods and bivalves

PLOS ONE | https://doi.org/10.1371/journal.pone.0221887 September 5, 2019 12 / 22

https://doi.org/10.1371/journal.pone.0221887


including two species of Kalenteridae and one anomalodesmatan [21, 22]. Assuming that the

abundant inferred chemosymbiotic bivalves relied on thiotrophy rather than methanotrophy,

this indicates a stronger sulfide flux at the seeps with abundant bivalves compared to those

without. Consequently, alsoHalorella appears to have preferred seeps with less sulfide and

more methane or other hydrocarbons.

Ibergirhynchia. Early Carboniferous limestones with a mass occurrence of the dimerel-

loid Ibergirhynchia on top of a drowned atoll reef probably represent the most unusual Phaner-

ozoic seep deposit reported to date [14]. Oil–as indicated by the presence of abundant

pyrobitumen in the reef and seep limestones–passed through fissures of the Devonian atoll

reef and fueled a chemosynthesis-based community on top of the reef. Migration of abundant

oil through the Iberg reef apparently occurred in the latest early Carboniferous when the

potential source rock, the Middle Devonian Wissenbach black shale, was in the oil window

[171]. Due to the lack of a sedimentary cover, a large amount of the emitted geofuels necessar-

ily entered the bottom water and consequently favored bacterioplankton growth, which, in

turn, would have been suitable for the filter-feeding brachiopods.

Dzieduszyckia. The Moroccan deposit with Dzieduszyckia contains abundant early diage-

netic fibrous cement [13]. If the seepage fluids had been dominated by methane, such a pattern

would suggest a sulfide-rich environment; a context similar to that of the Sulcirostra deposits

of eastern Oregon. However, the presence of pyrobitumen and trace metal patterns reveal that

the Upper Devonian limestone with Dzieduszyckia represents an oil-seep deposit [13, 144]. At

oil seeps, where both oil and accessory methane escape the seabed, these geofuels facilitate bac-

terioplankton growth [162, 163], resulting in conditions favorable for the colonization by

dimerelloid brachiopods. The Middle Devonian Hollard Mound seep deposit is also typified

by abundant early diagenetic fibrous cement [132], but contains a mass occurrence of modio-

morphid bivalves (Ataviaconcha) instead of dimerelloids [19]. Unlike the Dzieduszyckia oil-

seep deposit, thermogenic or abiogenic methane, deriving from the underlying volcaniclastics,

have been inferred as dominant geofuels of the Hollard Mound seep [172, 173]. The patterns

found for the Devonian seep deposits consequently agree with the hypothesized resource parti-

tioning between hydrocarbon-dependent brachiopods and sulfide-dependent bivalves.

In summary, there are several lines of evidence suggesting that, unlike most bivalves, dimer-

elloid brachiopods at Paleozoic and Mesozoic seeps were dependent on hydrocarbon rather

than sulfide oxidation. Although we have made a strong case for filter-feeding on bacterio-

plankton for dimerelloid brachiopods, we cannot exclude the possibility that dimerelloids

hosted episymbiotic bacteria on the surface of the lophophor instead of feeding on bacterio-

plankton. However, we do not consider this further because (i) such adaptation is unknown

from living brachiopods, (ii) it would be very difficult to proof based on fossil evidence, and

(iii) it does not change or add much to our hypothesis. Like episymbiosis, endosymbiosis can-

not be fully excluded either. A few animals with symbionts oxidizing short-chain alkanes are

known [174]. Yet, because of the lack of features in the brachiopod bauplan that are essential

for endosymbiosis in other groups of animals, we consider it unlikely that the seep-dwelling

dimerelloids harbored chemosymbiotic bacteria in their soft tissue.

Perhaps contrary to the scenario proposed here might be the lack of brachiopod-dominated

seeps during the mid-Cretaceous to early Eocene period of low marine sulfate concentrations

[9, 145]. If our scenario is correct, this time interval should have been favorable for dimerelloid

brachiopods at seeps. The only explanation we can offer is that dimerelloids went extinct in

the Barremian with the disappearance of Peregrinella [38], so that simply no suitable brachio-

pods were around to take advantage of the methane-rich seeps. This hypothesis is based on the

following lines of evidence:
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i. the inclusion of the Cretaceous to present-day Cryptoporidae in the dimerelloids is ques-

tionable, so that Peregrinella is probably indeed the geologically youngest dimerelloid [175];

ii. save for the Silurian Septatrypa, only dimerelloids have been able to dominate fossil seep

sites, indicating that they possessed some pre-adaptation to successfully invade this habitat;

iii. although other brachiopods, namely various terebratulids, have been found at fossil seeps

[28, 33, 34, 37], they never formed mass occurrences like dimerelloids, and hence did not

fill the same ecologic niche as dimerelloids;

iv. the stratigraphic ranges of seep-inhabiting dimerelloids rarely overlap; this is particularly

obvious for the three very large-sized genera Dzieduszyckia,Halorella, and Peregrinella,
which are considered phylogenetically closely related ([28] Sandy, 2010, fig 9.6 therein) but

are separated stratigraphically by 80 to 130 million years. This suggests that the genera dis-

cussed above represent repeated and temporarily very successful radiations into seep envi-

ronments, which must be derived from as-yet unknown ‘ghost dimerelloids’ that may have

been small and may have lived in cryptic or erosional settings (as suggested earlier for

dimerelloids, cf. [176] Ager 1965).

Thus, the apparently only brachiopod lineage with the ability (or a trait) to colonize and to

become a dominant member of vent and seep communities became extinct during the Early

Cretaceous. This could explain why no brachiopod mass occurrences have been found at seeps

during the theoretically favorable ‘low sulfate interval’ in the mid-Cretaceous to early Eocene.

Furthermore, this also argues against the possibility that in the Cenozoic brachiopods were

outcompeted at seeps by epifaunal bivalves or by bivalves with methanotrophic symbionts.

An analogous case of partitioning of resources instead of competition for them was recently

made for Phanerozoic shallow-water brachiopods and bivalves in general [3]. This allows us to

put forward the following scenario: resource partitioning controlled the evolutionary relation-

ship between brachiopods and bivalves both in shallow marine habitats as well as at deep-

water hydrocarbon seeps. But in seep environments, the animals were partitioning resources

whose availability was controlled by fluid composition and flow intensity rather than by photo-

synthetic primary production, and hence the Phanerozoic diversity pattern of seep-dwelling

animals differs from that of their shallow water relatives.

Conclusions

The diversity patterns of brachiopods and chemosymbiotic bivalves at seeps through the Phan-

erozoic indicate an interesting combination of evolutionary trajectories. The diversity of infau-

nal chemosymbiotic bivalves at seeps mirrors their diversity in shallow-marine environments,

whereas epifaunal and semi-infaunal chemosymbiotic bivalves are unique to vent and seep

ecosystems and are not found in shallow water. Brachiopod diversity at seeps is unlike the

global shallow-marine trend, is unrelated to the diversity of seep-dwelling bivalves, and instead

indicates long-term coexistence of the two clades. Therefore, bivalves and brachiopods have

probably not been competing for the same resources but instead partitioned the food sources

resulting from the two most common categories of geofuels in seepage fluids: (i) hydrogen sul-

fide and (ii) methane and oil-derived components. Chemosymbiotic bivalves mostly relied on

sulfide-oxidizing symbionts for nutrition, for the brachiopods bacterial aerobic oxidation of

methane and of other hydrocarbons played a more prominent role. The distribution and avail-

ability of hydrogen sulfide and methane at seeps is governed by geochemical gradients and

ocean chemistry, which in turn should ultimately have controlled whether bivalves or brachio-

pods dominated hydrocarbon seeps, both in space and through geologic time.
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