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Abstract

Hominin birth mechanics have been examined and debated from limited and often fragmen-

tary fossil pelvic material. Some have proposed that birth in the early hominin genus Austra-

lopithecus was relatively easy and ape-like, while others have argued for a more complex,

human-like birth mechanism in australopiths. Still others have hypothesized a unique birth

mechanism, with no known modern equivalent. Preliminary work on the pelvis of the

recently discovered 1.98 million-year-old hominin Australopithecus sediba found it to pos-

sess a unique combination of Homo and Australopithecus-like features. Here, we create a

composite pelvis of Australopithecus sediba to reconstruct the birth process in this early

hominin. Consistent with other hominin species, including modern humans, the fetus would

enter the pelvic inlet in a transverse direction. However, unlike in modern humans, the fetus

would not need additional rotations to traverse the birth canal. Further fetal rotation is unnec-

essary even with a Homo-like pelvic midplane expansion, not seen in earlier hominin spe-

cies. With a birth canal shape more closely associated with specimens from the genus

Homo and a lack of cephalopelvic or shoulder constraints, we therefore find evidence to sup-

port the hypothesis that the pelvic morphology of Australopithecus sediba is a result of loco-

motor, rather than strictly obstetric constraints.

Introduction

Among primates, the mechanics of human birth are thought to be unique, typically involving

a vertex presentation of the fetal head and a multi-rotational pattern of the neonate through

the birth canal. The evolutionary explanation for the difficulty of human birth, termed the

“obstetrical dilemma” [1], posits that a large, encephalized infant combined with pelvic modifi-

cations adapted for bipedality result in an exceeding difficult parturition in humans. In partic-

ular, compared to the ape pelvis, the human pelvis is anteroposteriorly (AP) shorter and

mediolaterally (ML) broader, which effectively constricts dimensions of the birth canal relative

to the modern ape condition.

Humans have adapted to the obstetrical dilemma in part by recruiting attendants who aid

the mother in giving birth [2, 3]. Although recent research has found that the obstetrical

dilemma, as originally conceived, fails to explain the timing of human birth [4–8], it is
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generally accepted that humans experience more difficult births than do our closest living rela-

tives, the great apes, who typically labor for less time and without the assistance of others [2, 9–

12]. Non-human apes achieve this relative ease of parturition through a smaller neonatal size

(cranium and body), a more spacious birth canal, and a consistent orientation of the neonate’s

head throughout the birth canal [2, 12]. Although variable [9, 13], the majority of ape neonates

present in the occiput-posterior position.

Thus, the birth process in non-human apes is relatively simple compared to humans. The

birth canal and the neonate’s head are elongated in the same plane (anterior-posterior) and the

birth canal does not change shape or dimensions [2]. In contrast, the modern human pelvis is

shaped in a manner that typically requires fetal rotation, both of the cranium and shoulders [2,

14, 15]. As a human neonate descends into the pelvic inlet, its cranium is aligned obliquely, or

transversely, in the birth canal due to the shortened anterior-posterior dimension of the mater-

nal pelvic inlet [2]. Typically, the neonate’s head will flex, tucking the chin to its chest, to

achieve a shorter length along the suboccipito-bregmatic axis or plane, helping to alleviate the

tight fit [2]. In contrast, the AP expanded pelvic inlet of non-human primates allows the neo-

nate to align its head sagittally, without this initial rotation or need for neck flexion [2, 3, 14,

16, 17].

A further constraint is met in the midplane of the human maternal pelvis. The ischial

spines constrict the transverse diameter and the anterior-posterior dimension becomes rela-

tively elongated [2, 3, 14, 17]. Taking advantage of the maximum dimensions of the mater-

nal pelvis [18], the neonate’s head typically aligns the convex occiput against the

complementary surface of the female pubis, resulting in an occiput-anterior birth position

[2, 3, 14, 19]. In non-human primates, the occiput-posterior birth position allows the

mother to assist the neonate out of the birth canal without risking injury. In humans, the

baby is most commonly born occiput-anterior. In this position the mother may extend the

neonatal neck, risking spinal injury if she tries to help it out herself [2, 3, 14]. Modern

humans have overcome this predicament with birth assistants who aid the newborn safely

out of the birth canal.

A final challenge that is too often ignored is imposed by the neonatal shoulders. Birth com-

plications due to shoulder obstruction, or shoulder dystocia, occur in 1.4% of the U.S. popula-

tion [20], of which 24.9% result in fetal injury [21]. Like the neonatal head, the broad, rigid

shoulders follow the maximum dimensions of the maternal birth canal [2, 3, 14, 18]. After

transverse descent into the inlet, the shoulders twist to be sagittally-aligned with the greatest

axis of the maternal pelvis in the midplane. In exiting the birth canal, one shoulder will typi-

cally position under the pubic symphysis before the other shoulder, alleviating the tight fit [2,

3, 14].

When rotational birth evolved in hominins is unclear, partially due to the scarcity of female

pelvic remains [2, 3, 14, 17, 22–24]. The platypelloid pelvis of the 3.18-million-year-old Austra-
lopithecus afarensis skeleton, A. L. 288–1, indicates that an A. afarensis neonate’s head would

probably have entered the pelvic inlet in a human-like transverse or oblique orientation [15–

17, 23, 25, 26]. The Berge et al. [23] reconstruction suggest a more human-like neonatal flexion

and rotation through the birth canal while the Tague and Lovejoy [17] reconstruction favors a

continued transverse, or asynclitic, passage of the neonate throughout the birth canal. Incorpo-

ration of the neonatal shoulder dimensions suggest that a semi-rotational oblique birth would

be most probable [15]. Another interpretation posits that this specimen is not a female, given

the close fit between a hypothetical A. afarensis neonate and the A.L. 288–1 birth canal [25]

(but see [27–29]). Although we do not agree with the conclusion that A.L. 288–1 is a male

specimen, obstetric dimensions from both Tague and Lovejoy [17] and Häusler and Schmid

[25] are utilized as a range.
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Hypothesized birth mechanisms of A. africanus are similarly contentious based on varied

pelvic reconstructions of Sts 14 [22, 23, 25, 30–32] and Sts 65 [33]. In A.L. 288–1, Sts 14, and

Sts 65, a transverse entry into the pelvic inlet illustrates a beginning to the modern human

birth mechanism [33], while midplane and outlet rotations remain debatable [2, 3, 14, 15, 17,

22–25].

The 0.9 to 1.4 Ma female Homo erectus pelvis, BSN49/P27, has a more gynecoid-shaped

birth canal, distinct from the platypelloid pelvic shapes of the previously discussed australo-

piths [34] (but see [35]). The more expanded birth canal has been interpreted as an adaptation

for birthing larger brained neonates in the genus Homo, although the mechanism of birth (i.e.

rotational) was not explicitly discussed [34].

Reconstructions of the female Neandertal Tabun 1 pelvis show an expanded mediolat-

eral dimension of the pelvic inlet and midplane combined with an expanded anterior-

posterior outlet [36, 37]. These pelvic dimensions, as well as an increased neonatal cranial

capacity in Neandertals, has led some researchers to infer a modern human-like rota-

tional birth in this population [36, 38] while others have suggested a more primitive non-

rotational transverse mechanism of delivery in their pelvic reconstruction [37]. Both

interpretations are included in our comparison of these reconstructions to the A. sediba
material.

This paper expands upon the female hominin pelvic sample to include Australopithecus
sediba [39]. Dated to 1.977 million years old [40], the two partial skeletons of an adult

female and juvenile male include pelvic material that combines australopith and early

Homo-like anatomies in a small-brained species [41, 42]. Unlike the platypelloid pelves of

A. afarensis and A. africanus, the A. sediba pelvis is more anterior-posteriorly expanded,

like the pelves of H. erectus and modern humans, albeit to a lesser degree [42]. Kibii et al.

[42] proposed that the presence of Homo-like features in a small-brained hominin implied

that pelvic adaptations may be related to locomotion rather than to birth constraints. Test-

ing this hypothesis necessitates a characterization of birth in A. sediba. Furthermore, even if

pelvic changes are driven by locomotion, they may still impact the mechanism of delivery,

as evidenced by the interplay between locomotion and parturition in early australopiths

[17].

Here, we reconstruct the birth canal of the A. sediba female (MH2) and characterize the

birth process based on a composite pelvis reconstruction and estimated neonatal cranial and

shoulder dimensions.

Materials and methods

Pelvic dimensions from female hominins Australopithecus afarensis (A.L. 288–1), Australo-
pithecus africanus (Sts 14 and Sts 65), Homo erectus (BSN 49/P27), Neandertal (Tabun 1),

modern humans (Homo sapiens), and chimpanzees (Pan troglodytes) were gathered [16, 17,

25, 30, 33, 34, 36, 37, 42–44] and compiled in Table 1.

To verify and supplement published dimensions for A. sediba [42], a composite pelvis was

reconstructed in AutoDesk Maya1 2015. The pelvic composite consisted of the adult female’s

(MH2) ilium, pubis, and sacrum and the juvenile male’s (MH1) ischium. The A. sediba fossil

specimens are housed in the Evolutionary Studies Institute (ESI) at the University of the Wit-

watersrand, Johannesburg, South Africa. Three-dimensional surface scans are downloadable

at www.morphosource.org. The ESI fossil access committee granted author JMD permission

to study the original fossil material discussed in this study. Additional composite pelves were

reconstructed with ischia from A. afarensis (A. L. 288–1), A. africanus (Sts 14), and H. sapiens
for comparison to the MH1 ischia measures.
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Composite pelvis reconstruction

A first generation cast of the reconstructed MH2 hemipelvis [42] and the left ischium of MH1

(U.W. 88–14) were scanned using a NextEngine™ laser HD desktop scanner using the highest-

quality settings, 360o scan rotation, macro precision scan exposure and distance, with 16 scan

divisions, to create a high-resolution scan. In ScanStudio™, an application of NextEngine™,

each scan was trimmed of excess background noise, exported as an .stl file, and processed

using AutoDesk Maya1 2015. The ischium was then attached to the MH2 pelvis to create an

A. sediba composite. To ensure the accuracy of the ischium’s placement, it was first aligned

with MH2’s acetabular notch, using comparative pelvic material from other hominins (A.L.

288–1, Sts 14) and modern humans. Additionally, an arc was created with the three-point cir-

cular arc tool in AutoDesk Maya1 2015 to align the lunate surfaces visible in both the MH1

and MH2 acetabula. This allowed us to create an accurate anatomical alignment of both speci-

mens. The acetabula were chosen for alignment because they are approximately the same size

in both MH1 and MH2, despite age and sex difference between the individuals [42, 45].

The mirror geometry tool in polygon mode was then used to mirror-image the hemipelvis

with the attached MH1 ischium. The two pelvic halves were then aligned at the vertices and

merged with the original to produce a single object, representing a full pelvis reconstruction

(Fig 1).

To compensate for age and sex differences between the two A. sediba individuals, additional

hominin ischia were aligned to the MH2 reconstruction to produce a range of possible recon-

structions. Ischia of A.L. 288–1, Sts 14, and a small-bodied modern human female from the

Boston University Anthropology laboratory were scanned and attached to the MH2 pelvis

using the same techniques employed above to produce the reconstructions. All ischia were

Table 1. Female pelvic dimensions for fossil hominins, modern humans, and chimpanzees.

Specimen Inlet–AP Inlet–ML Midplane–AP Midplane—ML Outlet–AP Outlet—ML

A.L. 288-1a 76.0 132.0 72.0 101.0 71.0 96.0

A.L. 288-1b 79–81 123–126 112–115 86–89 90–92 83–86

Sts 14 83.0 116.8 73.3 93.1 NA 105.0

Sts 65 82.7–82.8 101.5–109.0 NA NA NA NA

MH2 81.7 117.6 97.9 NA 97.4 NA

BSN 49/P27 98.0 124.5 111.5 114.5 �111.5 133.3

Tabun 1c 109–121 143–145 131–141 114–122 123–134 116–126

Tabun 1d 104 131 NA NA 93 132

H. sapiense 104.0 (n = 106) 134.0 (n = 119) 123.0

(n = 101)

106.0

(n = 18)

118.0

(n = 97)

122.0

(n = 70)

H. sapiensf (n = 100) 91.0–112.0 123.0–135.0 112.9–138.0 NA NA 111.8–127.0

H. sapiensg (n = 6) 105.2 131.6 125.1 NA 119.4 NA

Pan troglodytes 136 90 117 71 122.4 105.0

Comparison of the pelvic dimensions reported for hominin and modern human female pelves [17, 25, 30, 33, 34, 36, 37].

A.L. 288-1a measures are from Tague and Lovejoy [17].

The range reported for A.L. 288-1b is from two versions of the Häusler and Schmid [25] A.L. 288–1 reconstruction. The sagittal midplane measure for Sts 14 is an

estimate from Berge and Goularas [30] as the Sts 14 sacrum is fragmentary and required reconstruction. Sts 65 measures from Claxton et al., [33]. MH2 measures from

Kibii et al. [42].

�BSN 49/P27 outlet A-P dimension estimated based on work by Bonmati et al. [44].

Tabun 1c measures from Ponce de León et al. [36] and the measures for Tabun 1d are from Weaver and Hublin [37].

Three published modern human samples are shown to encompass the range of variation in modern humans [e[17], f[34]; g[42]]. Pan troglodytes measures from Abitbol

[16] and Berge and Goularas [30]. All measurements are in millimeters.

https://doi.org/10.1371/journal.pone.0221871.t001
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scaled to MH2’s acetabular dimensions to control for body size differences and the lunate sur-

faces were aligned with the three-point circular arc tool. This approach allowed us to assess the

effect of using the MH1 male, juvenile ischium in our analysis of birth.

A recent study has called into question the reconstruction of the pelvic anatomy of A. sediba
[46]. Here, we briefly assess these critiques based on observations we have made on the original

fossil material. The criticism of the Malapa pelvis reconstruction [46] is centered around six

observations: 1.) The reconstruction is based on a single specimen. 2.) The ilia are “grossly”

internally rotated in part because there is “no auricular surface” preserved on the lateral

sacrum. 3.) The pubis is misaligned because the arcuate line is not continuous. 4.) The superior

elevation of the pubic symphysis cannot be assessed because the lower ischial ramus is not pre-

served. 5.) The symphyseal joint is externally rotated. 6.) Much of the acetabulum is not

preserved.

These are important observations and serious critiques that need to be addressed in turn

because, if true, they would fundamentally alter the measurements we use to assess the obstet-

ric pelvis of A. sediba. The critiques of the Malapa reconstruction are addressed in turn below:

1. There is pelvic material for two individuals, not one. MH1, a 12-13-year-old juvenile male

[41, 47] preserves four pieces of a pelvis, including two conjoining pieces of a right ilium

(U.W. 88–6 and 88–7), a left ilium (U.W. 88–102), and a left ischium (U.W. 88–14) [48].

Fig 1. Full pelvis reconstruction of Australopithecus sediba using the ischium from MH1. The MH2 hemipelvis was mirror-

imaged for the reconstruction. Composite pelvis shown in (A-D) anterior, lateral, superior, and inferior views. Notice that

although the MH1 and MH2 acetabulae align, the ischium from MH1 does not cleanly conjoin with the inferior pubis ramus of

MH2. This is likely a product of both sex and age differences between MH1 and MH2.

https://doi.org/10.1371/journal.pone.0221871.g001
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MH2, an adult female—and the basis of this critique and reevaluation—is better preserved

and consists of a nearly complete right ilium (U.W. 88–133), sacrum (U.W. 88–137), right

pubis (U.W. 88–52 and 88–136), and left pubis (U.W. 88–10) [48]. There are thus two pel-

vises (male and female) that can be used to assess pelvic anatomy in A. sediba—similar to

the situation in A. afarensis (A.L. 288–1 female; KSD-VP-1/1 male). We use both in our

reconstruction.

2. It is inaccurate that there is no auricular surface preserved on the lateral aspect of the

sacrum. There is damage to the specimen as clearly illustrated in Kibii et al. [42] and Chur-

chill et al. [48]. However, the inferior 11.6 mm of the auricular surface is preserved (Fig

2A). This represents about 1/4th of the total surface. While not ideal, some auricular surface

is preserved and anchors the contact between the ilium and the sacrum.

3. The superior pubic ramus was collected in two pieces: U.W. 88-52a and U.W. 88-52b (now

called U.W. 88–52 and 88–136). While the reconstruction in Kibii et al. [42] appears to

show some infill between these two fragments and thus the potential for misalignment,

there is indisputable evidence for direct contact between these fragments. The clean contact

between these pieces occurs mostly inferiorly and posteroinferiorly making the contact

between these pieces smooth anteriorly and inferiorly (Fig 2B). Furthermore, in our recon-

struction, a plane was fit to the arcuate line, assuring that it is continuous (Fig 2C).

4. Lovejoy et al. [46] are correct that the lower ischial ramus is not preserved in MH2, making

it difficult to infer superior pubic ramus elevation from the preserved pieces. However,

superior deflection of the pubis (or not) would not necessarily alter the obstetric dimen-

sions presented in this study.

5. Kibii et al. [42] reconstructed the right pelvis of MH2 and then mirrored the result to pro-

duce their reconstruction. In doing so, the pubis appears externally rotated, perhaps exces-

sively so [46]. Fortunately, one does not have to rely on mirroring the right pelvis. U.W. 88–

10 is the left pubis of MH2 and this bone articulates cleanly with U.W. 88–52 (Fig 2D). There

is a more posteriorly positioned contact facet on both U.W. 88–52 and 88–10, which is verti-

cally oriented and would be the site of the interpubic disc (Fig 2E). In humans, the disc is

typically 1–3 mm thick [49]. Anteriorly, the bones flare outward relative to the vertical and

only appear externally rotated because of their orientation relative to the interpubic disc. The

anterior pubic ligament would attach here, and in humans is typically 5–12 mm thick [49].

Thus, an externally rotated anterior aspect of the pubic symphysis is normal morphology in

MH2 and is not a product of misalignment. The symphyseal joint is therefore not externally

rotated, but only appears that way because of the wide anterior spacing—an observation sup-

ported by the presence of the left pubis (U.W. 88–10) in MH2.

6. While it is true that the acetabulum of MH2 is not complete, there is enough preserved to

assess both the size and morphology, though neither are particularly relevant for this study

of obstetrics in A. sediba.

Thus, many of the criticisms of the MH2 reconstruction are unsupported after a careful

examination of the original material. However, as with even the well preserved A.L. 288–1 pel-

vis [17, 25], there are sure to be alternative versions of the MH2 pelvis (see [50, 51], for exam-

ple). Whether an alternative pelvic reconstruction will alter the obstetric dimensions used in

this paper is currently unclear. Ultimately, the issue for MH2 pelvic reconstruction anatomy is

the minimal contact between the U.W. 88–137 sacrum and the U.W. 88–133 ilium; and the

tenuous contact between the U.W. 88–133 ilium and the U.W. 88–52 pubis fragment.
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Fortunately, there is preserved contact at the pubic symphysis, which can be used to anchor

the reconstruction anteriorly (Fig 2D). Additionally, a plane has been fit to the arcuate line,

Fig 2. Detailed anatomy of the MH2 pelvis that informed the reconstruction used in this study. A. Preserved

auricular surface on the MH2 sacrum. B. Superior pubis showing tight, direct contact between U.W. 88–52 and U.W.

88–136 (previously called U.W. 88-52b). C. Plane fitted to composite pelvis showing the arcuate line is continuous. D.

Pubis of MH2 (U.W. 88–52 and U.W. 88–10) articulated. E. Comparison of the pubic symphysis between A. afarensis
(A.L. 288–1) and A. sediba (MH2). Outlined in gray is the articular surface for the contralateral pubis; outlined in

orange is the non-articular portion of the symphysis and presumed insertion for the anterior pubic ligament.

https://doi.org/10.1371/journal.pone.0221871.g002
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demonstrating its continuous nature in this reconstruction (Fig 2C). Nevertheless, MH2 is

missing the inferior portion of the ischium, as correctly pointed out by Lovejoy et al. [46].

Birth canal measurements

Anatomical landmarks referenced in Tague and Lovejoy [17] as markers of the pelvic inlet,

midplane, and outlet were identified on the pelvic reconstruction and marked with spherical

points in AutoDesk Maya1 2015. The AutoDesk Maya1 2015 distance tool was then used to

measure the sagittal and transverse dimensions of the three birth canal planes in the A. sediba
pelvis model. The preserved portion of the MH1 ischium was used for transverse midplane

measurement, as the MH2 ischium is fragmentary and lacks the ischial spines [42]. The origi-

nal description of the pelvis [42] created an estimation of the ischial spine protrusion. We used

the preserved portion of the ischium as the marker for our transverse midplane measures

because the distance difference between the reconstructed ischial spines and our measure-

ments were less than two millimeters. Each birth canal plane was independently and separately

measured by two authors (NML and FR) to ensure replicability. The resulting model produced

pelvic dimensions nearly identical to those reported by Kibii et al. [42] (see Tables 1 and 2),

though we note that the inlet mediolateral dimensions we calculated are 4.4% smaller than

those reported by Kibii et al. [42]. Nevertheless, our composite reconstruction allowed for

obstetrically critical measurements (ML midplane and outlet) not reported by Kibii et al. [42].

Measurements of the birth canal planes with the other hominin ischia were used to produce a

range of measures for comparison with the use of the male MH1 ischium.

Pelvic shapes were examined using pelvic ratios of the sagittal:transverse dimensions of the

pelvic inlet, midplane, and outlet for female modern humans, hominins, and chimpanzees (Fig

3 and Table 4). These ratios allowed us to examine if there were any shape changes between

the pelvic planes in A. sediba. Rotational birth in modern humans occurs, in part, from the pel-

vic shape change from the transverse inlet to the more sagittal midplane [2, 3, 14, 17]. Evalua-

tion of pelvic shape change in A. sediba is therefore important for making a complete analysis

of the birth mechanism in A. sediba.

Neonatal cranial dimensions and volume

Neonatal cranial dimensions (length, breadth, and height) were calculated utilizing a catar-

rhine regression model [52] to estimate a neonate brain volume, from which we calculated the

fetal skull dimensions. The cranial dimensions from the regression model were then used to

construct an ellipsoid shape in AutoDesk Maya1 2015 to provide visual reference of the neo-

nate’s hypothetical progression through the birth canal.

To calculate the neonatal cranial length, breadth, and height, a regression-based estimate of

neonatal cranial capacity was applied to the published brain size of MH1 [41, 52]. Australo-
pithecus sediba cranial capacity (420cc) is known for only a single juvenile (MH1) aged 12–13

years old at time of death [41, 47] but is likely no different than an adult given that both chim-

panzees and humans attain adult brain mass by the age of six-to-seven years old [53, 54]. The

neonatal cranial capacity of an A. sediba was estimated using the least squares equation (from

[52]):

log ðneonatal brain massÞ ¼ 0:77 x log ðadult brain massÞ þ 0:19

The neonatal cranial volume from the regression formula was then used to calculate the

neonatal cranial length, breadth, and height using an ellipsoid volume formula

(4

3
p� r1 � r2 � r3) [33]. Cranial biparietal breadth (BP), fronto-occipital length (FO) and

height (H) were substituted into the ellipsoid formula, (4

3
p� BP

2

� �
� FO

2

� �
� H

2

� �
). Known
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human neonatal cranial ratios [34] were calculated using the biparietal breadth to then calcu-

late the fronto-occipital length (FO) and height (H): (4

3
p� BP

2

� �
� 1:22 BP

2

� �
� 0:65 BP

2

� �
) (see

Table 4).

An ellipsoid shape was then created to simulate the neonatal A. sediba’s head using the

polygon primitives tool in AutoDesk Maya1 2015. The ellipsoid dimensions (length, breadth,

and height) were measured to the dimensions specified from the above calculations. The digi-

tal head was then inserted into the composite pelvis with the MH1 ischium. Birth mechanisms

were simulated by aligning the ellipsoid sagittally, transversely, and obliquely at all birth canal

planes (inlet, midplane, outlet). A motion path arc allowed for an animation of the full "birth"

process of the ellipsoid through the pelvis and to provide a visual representation of any

obstruction.

Table 2. Composite A. sediba pelvic measures.

Specimen Midplane Outlet Percent change

A. sediba w/MH1 ischium 96.9 104.2 Midplane Outlet

A. sediba w/ A.L. 288–1 ischium 99.4 103.3 2.6% 0.8%

A. sediba w/ Sts 14 ischium 98.7 107.2 1.9% 2.9%

A. sediba w/ Modern female ischium 100.4 106.8 3.6% 2.5%

Comparison of computed pelvic midplane and outlet transverse measures when using ischia from: 1. A. sediba (MH1), 2. A. afarensis (A.L. 288–1), 3. A. africanus (Sts

14), 4. Homo sapiens (BU 12).

https://doi.org/10.1371/journal.pone.0221871.t002

Fig 3. Pelvic indices (AP/ML) for hominin measures reported in Table 3. Notice that the chimpanzee pelvis remains AP elongated throughout the birth canal.

Modern humans, in contrast, have a transversely oriented inlet that broadens (AP) at the midplane and becomes rounder at the outlet. Early australopiths (A.L. 288–1

and Sts 14) have transversely wide obstetric dimensions throughout. Notice, however, how similar the birth canal ratios of A. sediba are to BSN 49/P27, thought by many

to belong to fossil Homo. The human values incorporate a range based on unpublished data provided by H. Kurki (n = 187, 1 standard deviation) and reported measures

in Tague and Lovejoy [17], Simpson et al. [34], and Kibii et al. [42]. The A. sediba ranges are based on the different ischia (MH1, A.L. 288–1, Sts 14, and small-bodied

human) that were used in the different composite pelves reconstructed. Notice that use of these different ischia does not significantly alter the estimated obstetric ratios.

https://doi.org/10.1371/journal.pone.0221871.g003
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Shoulder constraints

Because ephalopelvic constraint is not the only potential obstruction faced during birth, neo-

natal biacromial breadth was estimated to test if shoulder dystocia was a risk during birth in A.

sediba. There is no neonatal A. sediba clavicle known; however, there is an adult clavicle,

which at 107.5 mm long is considerably shorter than the average clavicular length in an adult

chimpanzee, gorilla, or human [55]. In primates, adult clavicle length is a strong predictor of

neonatal biacromial breadth [15]. Therefore, we were able to estimate a neonatal biacromial

breadth from the adult clavicle using the least squares regression equation: y = 0.68x + 0.49

where y = log(neonatal biacromial breadth) and x = log(adult clavicular length). The resulting

estimated neonatal biacromial breadth for A. sediba is 74.3 mm.

Results

Composite pelvis reconstruction with MH1 ischium

The composite Australopithecus sediba pelvic reconstruction is shown in Fig 1. The MH2 por-

tions of the pelvis illustrate the mix of derived and primitive features described in the original

Table 4. Ratio of pelvic planes (AP/ML x 100) based on measures reported in Tables 1 and 3.

Specimen Inlet (AP/ML) Midplane (AP/ML) Outlet (AP/ML)

A. L. 288-1a 57.6 71.2 74.0

A. L. 288-1b 64.3 129.7 108.3

Sts 14 71.2 78.7 NA

BSN 49/P27 78.7 97.4 83.6

A. sediba 71.9 97.1–100.6 91.2–94.3

Tabun 1c 79.9 115.3 106.2

Tabun 1d 79.4 NA 70.5

Modern Humane 73.2–83.0 116–127 96.7

Modern Humanf 86.6 120.7 103.7

Chimpanzee 151.1 164.8 116.6

A.L. 288-1a measures from Tague and Lovejoy [17].

A.L. 288-1b ratios are the average of two reconstructions from Häusler and Schmid [25]. The range reported for A.

sediba’s midplane and outlet indices reflect the estimated measures derived from utilization of the other hominin

ischia.

Tabun 1c average measurements used from range reported by Ponce de León et al. [36].

Tabun 1d measures from Weaver and Hublin [37].

The modern humane range encompasses the average values reported in Tague and Lovejoy [17], Simpson et al. [34],

and Kibii et al. [42].

Modern humanf is the average of data (unpublished) provided to the authors by H. Kurki (n = 187).

https://doi.org/10.1371/journal.pone.0221871.t004

Table 3. Estimated obstetric plane measures for A. sediba.

Specimen Inlet–AP Inlet–ML Midplane–AP Midplane—ML Outlet–AP Outlet–ML

A. sediba w/MH1 ischium 80.8 112.4 97.5 96.9 97.4 104.2

A. sediba w/ A.L. 288–1 ischium 80.8 112.4 97.5 99.4 97.4 103.3

A. sediba w/ Sts 14 ischium 80.8 112.4 97.5 98.7 97.4 107.2

A. sediba w/ Modern female ischium 80.8 112.4 97.5 100.4 97.4 106.8

MH22 estimated measurements taken for this study from the composite reconstruction of the MH1 and MH2 pelvic remains with ranges from other hominins (A.L.

288–1, Sts14, and H. sapiens).

https://doi.org/10.1371/journal.pone.0221871.t003
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reconstruction by Kibii et al. [42] and again by Churchill et al. [47]. The MH2 pelvis shares

with other australopiths a relatively long pubis, small sacral joints, and a relatively wide biace-

tabular diameter [42]. The MH2 pelvis shares with Homo an AP expansion at the pelvic inlet

[42] and at the midplane (this study). The addition of the MH1 ischium allows for a more

complete analysis of the birth canal pelvic planes, as the transverse dimension of the midplane

is important in determining whether the neonatal head rotates through the birth canal, as it

does in modern humans. The ischiopubic rami of the two specimens (MH1 and MH2) are not

perfectly aligned, probably reflecting a sex difference, but the acetabula are the same size and

conjoin without any scaling of either specimen. This reconstruction, and the obstetric results

derived from it, should be reassessed should the MH2 ischium, or a more complete adult

female A. sediba pelvis, be found.

Composite pelvic reconstruction with other hominin ischia

The ischia of A. afarensis, A. africanus, and H. sapiens also show incongruence with the inferior

rami of the MH2 model, in this instance, probably reflecting species differences (Table 2).

Midplane and outlet transverse dimensions from these female hominin specimens illustrate

that there is less than a 4% difference than when using the MH1 specimen (see Table 2). Only

in one measure, the outlet transverse dimension with the A. afarensis ischia, is the measure

smaller (<1mm) than when using the MH1 ischium.

Obstetric measurements

The sagittal and transverse measurements of the pelvic inlet, midplane, and outlet are reported

in Table 3. The indices of these planes are shown in Table 4 and graphed in Fig 3 to illustrate

the pelvic shapes of different hominins.

Australopithecus sediba exhibits a pelvic shape unlike the consistently platypelloid pelvis of

A. afarensis (A.L. 288–1) and A. africanus (Sts 14) (Fig 3). At the pelvic inlet, the pelvic ratio of

A. sediba are nearly identical to A. africanus (Sts 14, Sts 65), midway between Homo and A.

afarensis. However, the pelvic midplane in A. sediba exhibits a Homo-like anterior-posterior

expansion, not seen in the other australopiths. The outlet is more rounded, with an index simi-

lar to modern humans.

Fetal cranial volume and dimensions

Using the LSQ regression equation [51], Australopithecus sediba most likely birthed infants

with a brain of 162.1 cc (range based on 95% CI of regression equation: 145.8 cc-180.4)

(Table 5). Given the values from the LSQ regression equation, the A. sediba neonate would

have a cranium with a biparietal breadth of ~73 mm and a frontal-occipital length of ~89 mm,

only slightly larger than a neonatal chimpanzee cranium.

Digital neonatal cranium

A digital cranium for an A. sediba neonate was simulated with an ellipsoid shape in AutoDesk

Maya1 2015 (Fig 4). As expected from comparing the cranial dimensions to the pelvic inlet

measures, the fronto-occipital length of the neonate cranium (89.2 mm) was too long to pass

Table 5. Estimated neonatal cranial dimensions for A. sediba. Regression-based estimate of neonatal cranial

capacity using the published brain size of MH1 from methods in [52].

Volume (cm3) Biparietal Breadth (mm) Fronto-occipital length (mm) Cranial height (mm)

162.1 73.1 89.2 47.5

https://doi.org/10.1371/journal.pone.0221871.t005
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sagittally through the AP diameter of the inlet (80.8 mm). Aligning the cranium transversely in

the inlet (112.4mm), the cranium could pass through without constraint, similar to birth

reconstructions in other hominins and humans [15–17, 23, 26, 30].

The midplane of the A. sediba pelvis shows a shift in pelvic dimensions with the transverse

dimension becoming constrained due to the ischial spines. However, a transverse orientation

of the fetal head is possible even with a minimum transverse midplane dimension of 96.9mm

using the MH1 ischium (Table 5, Table in S1 Table). Therefore, the fetal head may have

remained transversely oriented at the midplane.

Comparison of the midplane shape to other hominins represented in Fig 3 shows that the

AP elongation in A. sediba is more similar to the shift seen in genus Homo than other australo-

piths (A. afarensis and A. africanus). This result holds when the MH1 ischia is replaced by

female hominins of A. afarensis, A. africanus, and H. sapiens (Fig 3).

The outlet of the pelvis shows a slight transverse expansion with a continued constrained

AP dimension and the simulated cranium was able to pass through transversely. However,

again the outlet shape was more consistent with members of the genus Homo than the other

australopith (A.L. 288–1), even substituting the other hominin ischia (Fig 3).

Neonatal biacromial breadth

The estimated biacromial breadth for an A. sediba neonate would be 74.3mm. When the neo-

natal shoulders are at the pelvic inlet, the fetal head would be at approximately the midplane

and in a transverse orientation. The fetal shoulder breadth is small enough enter the pelvic

Fig 4. Ellipse representing a neonatal A. sediba head at the pelvic. A. inlet, frontal view B. inlet, superior view C. midplane, superior

view. Reconstructed pelvis is shown with the MH1 ischium. Notice that the modeled A. sediba neonatal cranium can descend into the

midplane without bony constraints, unlike the condition typically found in modern humans.

https://doi.org/10.1371/journal.pone.0221871.g004
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inlet sagittally, maintaining a perpendicular orientation to the fetal head. The pelvic inlet sagit-

tal dimension is the most constrained dimension of the pelvis, resulting in the shoulders not

needing to change orientation throughout the rest of the pelvic planes.

Discussion

The discovery of female hominin pelvic remains helps to inform how the complex mechanism

of human birth evolved. Chimpanzees, our closest living relatives, have relatively easy births.

Small neonatal head size combined with a more spacious and uniformly shaped birth canal

makes birth a rapid and relatively easy event that does not benefit from birth assistance.

Humans, however, pair an enlarged neonatal cranial capacity with a birth canal that changes

dimensions, resulting in fetal rotation in the birth canal. However, when rotational birth arose

in human evolution remains unknown. Comparison of the birth mechanisms in fossil homi-

nins has yielded varied results [15, 17, 23, 25, 30, 34, 37]. The composite pelvis achieved in this

study allowed us to evaluate how birth may have occurred in A. sediba, a species that possesses

a small cranial capacity, yet a more Homo-like pelvis with AP expansion of the birth canal. If

A. sediba possessed obstetric challenges beyond that found in other australopiths, then perhaps

these changes are related to obstetrics. This reconstruction of birth permits a test of the

hypothesis that pelvic morphology in A. sediba was adapted for locomotion, rather than

obstetrics [42].

The cranial dimensions and capacity for an A. sediba neonate were estimated using a

regression-based analysis. With the LSQ regression equation, an estimated A. sediba neonatal

brain volume of 162.1cc was predicted. The calculated cranial dimensions of biparietal

breadth, fronto-occipital length, and brain height were then compared to the pelvic inlet, mid-

plane, and outlet dimensions of the MH2 reconstruction to examine if rotational birth in A.

sediba occurred.

Our results indicate that a neonate of A. sediba would have had a transverse entry into the

pelvic inlet, as has been suggested for other species of Australopithecus [17, 23, 26, 33]. The

anterior-posterior dimension of the A. sediba pelvic inlet is too constrained to allow a frontal-

occipital passage of a neonatal cranium, making a transverse or oblique entry the most likely

option.

After the transverse descent through the pelvic inlet, the fetal head would have room to con-

tinue transversely through the pelvic midplane. The MH1 ischium provides the most con-

stricted dimensions due to the age and sex of the specimen. Although MH1 is a male specimen

and therefore its use in an obstetrics analysis is unconventional, it is the only ischium assigned

to A. sediba. The utilization of the MH1 ischium provides a minimum estimation of obstetric

dimensions in MH2. However, even with these minimum dimensions (96.9mm), the fetal

head length (89.2mm) would occupy 92.1% of the transverse dimension of the midplane, pro-

viding sufficient space for the fetal head to pass in a transverse orientation. If the fetal head

and shoulder breadth can fit through these dimensions, it can be assumed that the neonate

would also fit through the expanded dimensions a female ischium would afford. For midplane

rotation to be necessary for the composite reconstructions in this study, the A. sediba neonatal

brain size would need to increase 28.2–42.6% beyond the estimated 162.1cc. Back calculating

from the LSQ regression equation, such an increase would predict an adult A. sediba brain vol-

ume of 572-664cc. This adult brain volume considerably exceeds the one known A. sediba
brain volume (420cc) and is greater than any known australopith. As rotational movement by

the fetus could result in a more difficult and complex birth, it is possible that fetal descent

remained transversely oriented at the midplane. The pelvic outlet in A. sediba also does not

exhibit bony obstruction relative to the neonatal cranial dimensions. The neonate would have
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had room to continue transversely, or obliquely out of the pelvic outlet. The transverse dimen-

sion of the outlet expands slightly to a length 7% longer than the estimated A. sediba neonatal

cranium, not accounting for soft tissues. Any flexion of the neonate’s head would further

decrease the diameter of the fetal head during the fetal exit of the birth canal under the pubic

symphysis [3].

We have shown that this mechanism of birth—one predicted for A.L. 288–1 [17]—would

increase the risk of shoulder dystocia in A. afarensis and is thus problematic [15]. In A.L. 288–

1, the estimated neonatal shoulder breadth greatly exceeds the obstetric dimensions [15]. How-

ever, shoulder breadth would not have contributed to obstetric constraints with any pelvic

dimensions in A. sediba. Even at their most constrained location (the AP pelvic inlet

[80.8mm]), shoulder breadth (predicted to be 73.4 mm wide) could still pass unimpeded and

may have been further reduced by cranially elevating the clavicles, “shrugging” to enter the

birth canal [14]. The other pelvic planes had ample room for shoulder passage without the risk

of dystocia.

A similar birth mechanism has been suggested for other australopiths where the baby enters

the pelvic inlet aligned transversely, but requires no further rotations [16, 17, 23, 25, 26] (but

see [15, 30]) and is perhaps unsurprising given some of the primitive anatomies of A. sediba
[42]. With the estimated neonatal cranial and maternal pelvic dimensions utilized in this

study, non-rotational birth is possible in A. sediba. Nevertheless, the interspecific differences

in fossil hominin pelvic morphology and fetal dimensions show that there is not a linear, grad-

ual change from an “easy” birth to a “difficult” birth. Instead, the morphology of each speci-

men exhibits its own set of obstetric challenges.

Hominin pelvic morphology is thought to be influenced by both locomotion [42] and

obstetrics [34, 56]. The increase in encephalization throughout the hominin lineage has previ-

ously been thought to be the driving factor in expanding the AP dimensions of the pelvis (i.e.

[34]). However, A. sediba possesses an AP expanded, Homo-like pelvis, with little evidence for

obstetric constraints. This finding suggests that at least in A. sediba, the morphology of the pel-

vis was probably shaped by locomotion factors rather than solely obstetrics.

Rotational birth

The more gynecoid pelvis of early Homo may have been a result of obstetric requirements [34]

and may have resulted in rotational birth [56]. However, A. sediba also possesses AP expansion

in the pelvic midplane and raises the possibility of rotational birth in this taxon. To accommo-

date this interpretation, we describe fetal descent following determinations of Joulin’s Law

which states that the neonate would rotate to coincide with the maximum dimension of the

bony anatomy [18]. In the A. sediba pelvis, the maximum bony dimensions are not always in

the transverse dimensions (Table 3). Therefore, following the assumption that the neonate

would align to these maximum dimensions, a non-rotational birth pattern may not be the

default for A. sediba. Following passage through the ML broad pelvic inlet, the midplane of A.

sediba shows an anterior-posterior expansion to an even greater degree than other australo-

piths, making it more Homo-like. While the A. sediba neonate could pass through this plane

transversely, there would be more space if it rotated and aligned the fronto-occipital length of

the skull with the wider anteroposterior dimension of the maternal pelvis.

Australopithecus midplane rotation has been proposed for A. africanus (i.e. Sts 14) by Berge

et al. [23] and Berge and Goularas [30] who cite not only the increased AP expansion of the

bony anatomy, but also uterine forces that will direct the neonate to rotate in this plane. As

exhibited in Fig 3, the pelvic shape changes more dramatically from the inlet to the midplane

in A. sediba than either the A. africanus or even H. erectus specimens. Instead, the shape
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change is more consistent with what is seen in Neandertals (Tabun 1) and modern humans.

Additionally, this shape change is notable since A. africanus and A. sediba start at similar inlet

indices.

The final component to a difficult modern human birth is the fact that rigid shoulders can-

not pass through the changing shape of the birth canal without some rotation [2, 3, 14]. Using

the estimated neonatal shoulder breadth, the shoulders would not contribute to obstetrical

obstruction in A. sediba in either a transverse or rotational birth scenario.

We caution that our results are contingent on our reconstruction of the MH2 pelvis. As

mentioned previously, the tenuous contact between the ilium and the sacrum in addition to

the use of the MH1 ischium introduce the potential for error. We therefore anticipate that the

findings presented here will be revisited should new pelvic fossils of A. sediba be found or

should another team reconstruct the available material in a manner morphologically distinct

from that presented here and elsewhere [42, 47].

Conclusion

Reconstructing the pelvis of a female Australopithecus sediba (MH2) provides an assessment of

the birth process in this Early Pleistocene hominin species. At the pelvic inlet, the neonatal

head aligned with the maximum dimension of the pelvic inlet to enter the birth canal trans-

versely. Lack of bony impingement into the birth canal, combined with a small neonatal head

size would not necessitate further rotation of the fetus as it descended through the canal,

though AP expansion of the maternal pelvis still indicates that rotational birth may have

occurred. It is possible, even, that there was considerable variation in the birth mechanism in

early australopiths, with varying amounts of neonatal rotation. Interestingly, the shape of the

obstetric planes in A. sediba align more closely with the genus Homo than with the other aus-

tralopiths. These findings imply that the anteroposterior expansion of the birth canal can

occur without neonatal brain expansion in early hominins.

Supporting information

S1 Table. This table shows all the data used for this study. BP: neonatal cranium biparietal

breadth FO: frontal-occipital length of neonate cranium. AP: anterior-posterior dimension of

maternal pelvis or composite pelvis ML: transverse dimension of maternal pelvis or composite

pelvis.
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