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Abstract

Colorectal cancer is one of the top three causes of cancer-related mortality globally, but no

predictive molecular biomarkers are currently available for identifying the disease stage of

colorectal cancer patients. Common molecular patterns in the disease, beyond superficial

manifestations, can be significant in determining treatment choices. In this study, we used

microarray data from colorectal cancer and adjacent normal tissue from the GEO database.

These data were categorized into four consensus molecular subtypes based on distinct

gene expression signatures. Weighted gene-based protein–protein interaction network

analysis was performed for each subtype. NUSAP1, CD44, and COL4A1 modules were

found to be statistically significant and present among all the subtypes and displayed though

similar but not identical functional enrichment results. Reference of the characteristics of the

subtypes to functional modules is necessary since the latter can stay resistant to platform

changes and technique noise when compared with other analyses. The CMS4-mesenchy-

mal group, which currently has a poor prognosis, was examined in the study. It is composed

mainly of genes involved in immune and stromal expression, with modules focused on ECM

dysregulation and chemokine biological processes. Hub genes detection and its’ mapping

into the protein–protein interaction network can be indicative of possible targets against spe-

cific modules. This approach identified subtypes using enrichment-oriented analysis in func-

tional modules. Proper annotation of functional analysis of modules from different subtypes

of CRC might be directive for finding extra options for treatment targets and guiding clinical

routines.

Introduction

Colorectal cancer (CRC) is a complex and heterogeneous disease and has a significant contri-

bution to cancer mortality [1,2,3]. One of the major drawbacks of the treatment of CRC is its

heterogeneity, as evidenced by multiple clinical manifestations, mutational profiles, and
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survival rates. This heterogeneity leads to variability in the efficiency of standard treatment

approaches [4]. Traditionally, CRC has been characterized using pathology and clinical pheno-

type [5,6], which sometimes works well; however, there is usually a delay in the detection prior

to the onset of symptoms. There are also problems in distinguishing diseases with complex

and overlapping clinical signs.

With the advancement of technology for genomic sequencing, heterogeneity can be identi-

fied at a molecular level. Previously, microsatellite instability (MSI) and chromosomal instabil-

ity were major criteria for molecular classifications. A third molecular subtype was later added

to the two well-characterized subtypes, taking into account microsatellite stability and molecu-

larly with a higher level of CpG island methylation. These classifications provided valuable

additional information [7]. It became apparent that the newly added subtypes exhibited che-

moresistance against epidermal growth factor receptor-targeted therapy [8]. Much more pre-

cise classifications of CRC were established using four biologically distinct consensus

molecular subtypes: MSI-immune, epithelial and canonical, epithelial and metabolic, and mes-

enchymal subtypes [9]. These four subtypes cover more than 85% of CRCs.

Despite the promising results of intrinsic subtype analyses, it’s transformation into person-

alized treatment strategies is still limited. Many patients underwent the same standard care

based on their pathological stage or clinical manifestations; however, discovering that these

approaches end up with variable survival rates is not uncommon [10]. The application of

promising results from research into actual clinical treatment are often delayed [11], leaving

many positive discoveries untrialed.

Because response feedback systems for targeted malignancy treatments are rather substan-

dard, the clear division of tumors into subtypes has gained practical importance as a way for

researchers to investigate the molecular features of malignancy and identify precise molecular

phenotypes [12], which can be used to inform decisions, such as treatment regimens and issues

pertaining to medical care. However, the interactions between the genes involved in each sub-

type of CRC are not fully understood. In particular, enriched functional analysis is a valuable

approach. Further, the extent to which processes which are enriched in these networks are

related to clinical outcomes is unclear.

PPI network is an original element we adopted in this study, and thesis that it can be infor-

mative in the target perspectives was established far early [13], although there is debate on the

aspects of whether a drug target protein can be represented as the hub of the PPI network. It

was also suggested that multiple specific motifs from the PPI networks can be meaningful in

detection of functional dependency of most drugs [14]. Meanwhile, the necessity of mapping

drug targets into the integrated biological networks to identify the optimal points of PPI for

drug discovery was reported [15]. There are other methodologies applied with PPI network

that can be helpful in predicting drug targets and finding hub genes [16], approaching a better

profile of interactions among molecular function in the whole system, among which, module

screening in the PPI was a must.

Module and function analysis can be important [17]. A module is a stable functional unit in

a gene expression set. For example, in breast cancer, therapy choices based on subtypes deter-

mined by clinical markers have proven to be effective compared with treatment based simply

on the pathological stage [18]. Each subtype can have its own unique functional subnetwork of

enriched genes. However, it is not known how the recently determined consensus CRC molec-

ular subtypes relate to clinically relevant pathological subtypes and treatment choices [19]. The

objective of this study is to discover enriched functional modules in each subtype of CRC, with

the aim of better identification of the variances at the molecular level. A crucial element of the

study was the use of unsupervised modules, which are robust to noise and tend to identify at

least a few member genes represented across multiple platforms. To the best of our knowledge,
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this is the first attempt to investigate modules for separate subtypes of CRC since the establish-

ment of consensus molecular subtype of CRC.

In this study, we analyzed biological functional modules and provided evidence that tar-

geted treatment selection based on modules at the molecular level can be realized as subtypes

of CRC and may be valuable for developing integrated models that can predict clinical

outcomes.

Materials and methods

Study design

This study focused on discovering functional modules in a CRC molecular network. The raw

data from CRC samples was classified into four categories based on consensus molecular sub-

types, then compared with normal samples. We used gene expression data from CRC samples.

Differentially expressed genes (DEGs) were categorized into upregulated and downregulated

groups, and network inference algorithms were used to construct protein–protein interaction

(PPI) networks, which were visualized using Cytoscape [20]. Significant modules in each part

of the CRC subnetwork were studied, with the aim of identifying promising targetable points

inside CRC modules. A complete workflow for this study is depicted in Fig 1.

Microarray data

The CRC gene expression profiles used in this study were downloaded from the NCBI data-

base with the accession number GSE39582, which was processed using the Affymetrix

HGU133A platform, and contained 462 samples, including 443 CRC samples and 19 normal

colon samples. Statistical analysis of the GEO dataset was performed using R (Version

1.1.453). All raw data were normalized and converted to log2 ratio format using the robust

multichip average algorithm [21]. RMA algorithm was often applied in generating matrix

from gene chip and microarray data, which consisted of three sections in dealing with large

amount of data: background subtraction, quantile normalization and summarization, and

exceeded in preparing data for numerous downward R packages analysis.

Identification of subtypes

The analysis of the raw CRC data was carried out using the R package CMScaller [22], which

implements an algorithm optimized for the comparison of consensus molecular subtypes.

CRC data were divided into four consensus molecular subtypes, and gene expression data that

were excluded in the four subtypes were removed from this study.

DEGs

The DEGseq R package [23], in which SAM algorithm is kernelled, was used to detect DEGs

with an absolute log fold change (FC) > 2, and a P-value< 0.05 was considered to be statisti-

cally significant. DEGs were used to sort genes with upregulated and downregulated expres-

sion in each CRC subtype data vs. the normal colon epitheliums.

Integration of PPI network and module detection

The PPI network was created using the online database STRING (Search Tool for the Retrieval

of Interacting Genes) [24], which holds data about known and predicted protein–protein

interactions. DEGs in each subtype were mapped using this tool. The criterion for retaining

interactions was a combined score > 0.4. The Cytoscape plug-in Molecular Complex

Modules in CRC subtypes by bioinformatics analysis
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Fig 1. Schematic workflow of the bioinformatics pipeline used for the search of significant modules in this study.

https://doi.org/10.1371/journal.pone.0221772.g001
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Detection (MCODE) was used to identify modules in the PPI networks. The criteria for the

identification of significant modules were MCODE score> 3 and number of included

nodes> 4.

Functional analysis of modules

All modules identified for each consensus molecular subtype were examined for overrepre-

sented GO categories [25,26,27]. The analysis of Gene Ontology term enrichment (GO) is

widely used for interpreting the biological significance of sets of genes and the processes in

which they are involved. The DAVID database [28] was used to map genes from modules to

detect the relevant biological annotations of GO terms. A P-value< 0.05 was considered to be

statistically significant. The PPI networks of CMS4 can also be visualized using REVIGO [29],

which helps to unveil the inner connections of all CMS4-enriched biological processes.

Survival analysis of hub genes

The HCAR3 module of CMS4 was selected for further analysis. This module included 32

genes. The top ten ranked genes determined by the number of interactions it formed in this

module were selected as the signature gene set representative of the module. The relationship

between recurrence-free survival and possession of the HCAR3 module signature gene set was

assessed using Cox regression survival analysis in SurvExpress [30], and Kaplan–Meier sur-

vival plots stratified by these ten genes were constructed.

Validation of the workflow using bioinformatic approach

The applicability of this workflow in our study was partially examined using a bioinformatic

approach with another dataset from the GEO database, with the accession number of

GSE20916. This dataset included both malignant samples and paired normal tissue. DEGs

were screened by comparison with normal tissue gene expression levels, following the identifi-

cation of CMSs. Modules with a high proportion of enriched processes were investigated in

depth in CMS4.

Results

Identification of DEGs

Using a CMS classification of GSE39582, a total of 2930, 2846, 2286, and 2627 DEGs were

identified in CMS1, CMS2, CMS3, and CMS4 for each subtype, respectively. Heat maps of the

50 top-ranked genes with respect to DEGs expression in each subtype are shown in Fig 2(A)–2

(D).

PPI network construction and module analysis

DEGs in each subtype were mapped using the STRING database to construct a PPI network

with a total of 2163 nodes and 23939 edges in CMS1, 2163 nodes and 23939 edges in CMS2,

1699 nodes and 16578 edges in CMS3, and 1974 nodes and 12939 edges in CMS4. The mod-

ules identified for each subtype are shown in Table 1, which briefly summarizes some of the

key differences in modules between subtypes. The number of significant modules for each sub-

type varied, and the structure of the networks for each subtype differed in node composition

and number of links in a component. The number of links in a module is the number of con-

nections between nodes and represents the interactivity of the component. In Fig 3, we show a

visualization of the PPI network for each subtype, with nodes colored based on modules. It is

easy to observe the contrasts in the architectures of the PPI network between each network
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subtype. Both the number of colors and the structure of each module were unique for each

CRC subtype.

GO terms are associated with modules for each CRC CMS

All of the components of each subtype were analyzed using GO term enrichment (Table 2).

Each module was named after the top-ranked gene. Consistent with the results shown in Fig 3,

most of the enriched modules varied across subtypes, with respect to the number of enriched

modules and the gene composition in the modules, as well as the number of processes

observed to be enriched in each module. Gene composition was not directly correlated with

the number of enriched processes in a module. For instance, the IFITM2 module from CMS3

Fig 2. Heat maps visualization of the pattern of expression change for the top 50 differentially expressed genes. The upper row

of each heat map consisted of the detailed configuration of the left 19 normal samples and corresponding CRC subtype samples. The

right column was the 50 up-regulated and 50 down-regulated DEGs among each subtype vs normal samples, represented in red and

blue respectively in the map. Software meV. (version 4.7, http://mev.tm4.org/) was used for heat map display.

https://doi.org/10.1371/journal.pone.0221772.g002

Table 1. Module configuration in each subtype.

DEGs Subtypes Number of Connected Components of

Significant Modules

Number of Modules of

Significance

Number of Nodes in the

Largest Component

Number of Links in the Largest

Component

Up-Regulated CMS1 7 19 122 6347

CMS2 5 20 109 5145

CMS3 5 15 106 4925

CMS4 9 16 48 1074

Down-

Regulated

CMS1 16 17 72 601

CMS2 11 20 21 210

CMS3 12 18 21 210

CMS4 12 14 36 301

https://doi.org/10.1371/journal.pone.0221772.t001
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contained only four genes, yet ten processes were enriched in this module; in contrast, the

RSL1D1 module from the same subtype, which was composed of 38 genes, had only three

enriched processes.

NUSAP1, CD44, and COL4A1 are present in all four consensus molecular

subtypes

NUSAP1, CD44, and COL4A1 are present in all subtypes. NUSAP1, the gene coding for

nuclear and spindle-associated protein 1, plays an important part in the process of spindle

microtubule organization; CD44 encodes a cell-surface protein that is involved in cell–cell

interaction; COL4A1 is the gene for collagen alpha-1(IV), a flexible protein that provides

instructions for making integral components of the basement membrane. The gene composi-

tion of the three modules shared few similarities besides overexpression pattern. The Venn

diagram shown in Fig 4 depicts the gene composition of NUSAP1(A), CD44(B), and COL4A1

(C) for each CRC subtype.

Fig 3. Construction of PPI and module networks in CRC subtypes. Nodes of a module forming subnetworks of PPI were colored

differently on a subtype basis (same color across different subtypes didn’t represent similar groupings of module function). The

images of CMS1(A), CMS2(B), CMS3(C), CMS4(D) were shown accordingly.

https://doi.org/10.1371/journal.pone.0221772.g003
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Table 2. Enriched modules (score>3) found in each subtype network.

Subtypes Number of Enriched Modules Module that Enriched Number of Genes Number of Enriched Processes

CMS1 15 NUSAP1 122 49

COL4A1 22 11

XPO1 36 19

HCAR3 56 25

CEP152 38 19

SNRPB 35 55

IFIT3 9 3

SPP1 26 9

IL8 42 3

CASC5 19 1

CD44 21 6

CSGALNACT2 5 6

BMP7 10 25

SCD 6 2

NMB 14 4

CMS2 15 NUSAP1 109 37

RSL1D1 78 16

COL4A1 18 3

POM121C 15 24

CCT4 42 30

PPIL1/PRPF4 27 7

MTHFD1 22 1

BRCA1 22 8

EXOSC8 11 16

MRE11A/SKP2 8 1

WNT5A/AXIN2/WNT2 10 3

CD44 10 10

SCD 5 4

PLCB1 11 1

MRPL36 24 4

CMS3 12 NUSAP1 106 31

RSL1D1 38 2

CXCL2/CXCL1 13 11

IMPDH2 23 3

BMP7/COL4A1/PLCB1 20 6

SNRPB 14 23

TIMELESS/RFC3/BRCA1 21 6

CPS1/MTHFD1 13 1

BRCA2 8 1

SHH/CD44 15 18

IFITM2 4 10

PAICS 10 2

(Continued)

Modules in CRC subtypes by bioinformatics analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0221772 August 30, 2019 8 / 16

https://doi.org/10.1371/journal.pone.0221772


The NUSAP1 module had the same 47 genes among subtypes, with 21 enriched processes

shared across subtypes, most of which included protein phosphorylation, ubiquitin-protein

ligase activity, and microtubule-based movement processes. In the CD44 module, gene com-

position shared little resemblance between subtypes and was dependent on each subtype. Two

common processes are enriched in the COL4A1 module among all subtypes: ECM structural

constituent and metal ion binding.

One of the significantly enriched processes in the CD44 module of CMS3 was negative reg-

ulation of canonical Wnt signaling pathway. CMS3 is often referred to as the subtype with the

least variance; thus, the Wnt pathway tended to be the canonical transduction signal pathway

overstimulated in the progression of CMS3.

Analysis of modules in CMS4

There were 16 modules detected in CMS4, of which 12 were enriched. All of the enriched bio-

logical processes were evaluated using REVIGO, as shown in Fig 5. It is clear that the modules

with the most interacting enriched processes consist of inflammatory and immune response

and apoptosis processes. This may indicate that although numerous sets of nodes model mod-

ules, there can be stronger interactions formed between certain modules, as in the case of the

Table 2. (Continued)

Subtypes Number of Enriched Modules Module that Enriched Number of Genes Number of Enriched Processes

CMS4 12 NUSAP1 48 29

COL4A1 27 8

HCAR3 32 32

CD44/SPP1 20 9

ENG 35 6

HSPG2 31 2

CSGALNACT2 6 5

SNRPB 5 2

GPC6 19 10

GART 36 11

IFITM2/FLNA 19 9

ENTPD1 4 1

https://doi.org/10.1371/journal.pone.0221772.t002

Fig 4. Venn diagram of overlapping results of gene compositions among subtypes. Overlaps of gene organization of three

modules from each molecular subtype were shown as NUSAP1(A), CD44(B) and COL4A1(C); a number represented the number of

genes shared between/among subtypes or unique to its’ own.

https://doi.org/10.1371/journal.pone.0221772.g004
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HCAR3 module, which was the only module in which the chemokine-associated process was

observed.

HCAR3 module and mesenchymal invariance

As seen in Fig 6, there were two subgroups in the HCAR3 module of CMS4, centered on ECM

dysregulation and chemokine-associated processes. Subgroup centralities in the HCAR3 mod-

ule indicated that some genes related to functional variance and coordination overview were

involved. The tightly concentrated module of chemokine-associated processes and the ECM

dysregulation process are often linked together as common mesenchymal traits in malignancy,

with a synchronized mutual regulation.

The HCAR3 module is associated with survival in CRC

Using TCGA COAD clinical data as references, survival analysis of every gene contained in

the HCAR3 module was performed. No significant differences were observed using single-

Fig 5. Interactive relationships among enriched GO terms processes in CMS4. The color and size of the nodes indicated the input

p value and the frequency of the GO term generated from GOA database; edges that linked nodes in the graph indicated similarity.

https://doi.org/10.1371/journal.pone.0221772.g005
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gene analysis; however, survival analysis using multiple genes from the HCAR3 module indi-

cated that colorectal cancer patients with higher expression of multiple genes from HCAR3

module had worse survival outcomes (Fig 7). As a potential new signature in the context of

CRC survival analysis, the hazard ratio was 2.09, indicating a worse hazard of death from the

patients possessing these genes. A Kaplan–Meier curve was generated, the log rank P-value of

which was 0.002143 and the concordance index 0.64, suggesting a relatively good interpreta-

tion of survival prediction.

Bioinformatic validation of possible biomarkers

DEGs generated from comparisons of cancer samples in each subtype and 24 paired normal

tissues were further mapped to the PPI network; the details are shown in S1 Table. In CMS4,

the IL-6 module had a relatively higher number of enriched processes compared with the

number of genes included in the module. Thirteen of the 22 genes in this module were part of

the HCAR3 module of CMS4 in the analysis of GSE39582. Among them, genes with high

weight included several from the CXCL family and the HCAR3 gene. Survival analysis of mul-

tiple genes in the IL-6 module was performed (S1 Fig) confirming the possible value of mod-

ules as biomarkers.

Discussion

Efforts have long been made to understand the heterogeneity of CRC, starting with the initial

polymerase chain reaction-based method, in order to establish effective treatment strategies.

Previous subtypes have, to some extent, achieved this purpose [31]. For example, MSI+ tumors,

which have genomic mutation and exhibit immune cell infiltration, respond well to chemo-

therapy, including immune checkpoint inhibitors. CMS classification is the method applied in

this study and is formed through the merging of information from weighted analyses of major

subtypes as classified at that time. Retrospective analysis of clinical trials, for instance, those

Fig 6. HCAR3 module contained two subgroups. The color and size of the nodes indicated the input p value and the frequency of

the GO term generated from GOA database; edges that linked nodes in the graph indicated similarity.

https://doi.org/10.1371/journal.pone.0221772.g006
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involvingCMS4 with a mesenchymal-like phenotype which benefits less from chemo-regimes

containing anti-EGFR ingredients, has demonstrated the potential predictive value of the CMS

classification.

Three genes, NUSAP1, CD44, and COL4A1, were shared among the four subtypes identi-

fied, despite their molecular differences. NUSAP1 plays an important role in regulating

BRCA1 protein levels [32] and is reported to be a predictor of poor prognosis in CRC [33]. In

our findings, the expression level of the NUSAP1 module was upregulated in all CRC subtypes.

Even though gene composition varied among different subtypes, they were involved in similar

processes, such as mitosis and microtubule movement dysfunction. CD44, which is a well-

known immune membrane factor, coordinating alteration of signal expression during the pro-

gression of malignancy, acts as a “marker molecule” in the process of EMT: a common process

for majority of malignant transformations [34]. COL4A1, a tumor angiogenesis indicator, is

regulated by the p53 gene and functions in association with endothelial cells with destabilized

matrix [35]. All three genes have vital roles to play in CRC progression.

CMS4 is the only subtype in which adjacent mesenchymal expression is involved. Often,

patients diagnosed with CMS4 have the worst prognosis. In this study, CMS4 had 16 modules

after PPI network screening, of which 12 were statistically significant in Gene Ontology

enrichment analysis. Processes concerning inflammation, the immune system, and apoptosis

are the most highly enriched categories. Among all the enriched modules, the HCAR3 module

consisted of 32 genes but had relatively higher number of enriched processes per gene com-

pared with other modules, although the HCAR3 gene alone was not a significant factor in the

Fig 7. Kaplan–Meier Plotter of relapse-free survival evaluating genes expressed in HCARS module from CMS4 using TCGA

COAD clinical data. Red curve represented high expression level and indicated the poor prognosis, while green curve represented

low expression level of the prognosis signature.

https://doi.org/10.1371/journal.pone.0221772.g007
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survival of CRC patients. The ten top-ranked genes in this module were shown to be essential

in the prediction of survival. Patients with upregulated expression of these genes have lower

rates of survival. Most of the ten genes share a gene signature common to metastatic traits:

ECM1 is expressed throughout the intestine, and overexpression of ECM1 suggests malignant

epithelial cancer as in CRC [36]; CXCL2 [37] and CXCL1 [38] mediate metastatic processes;

cells with CXCR4 upregulation shows less sensitivity toward radiotherapy [39]; ACTN1 [40]

and S1PR3 [41] aid in invasion enhancement [36]; and C5AR1 can increase cell permeability

[42]. In contrast, CXCL9 has been shown to predict good outcomes for cancer patients [43];

HCAR3 and GNG4 exhibit suppressor effects on the process of tumorigenesis in mammary

cancer [44, 45] and in GBM [46]. The function of HCAR3 in CRC remains to be elucidated;

however, a member of the same HCA receptor family with similar structure, named, HCAR2,

which functions as a tumor suppressor gene, has been reported to have reduced expression lev-

els in colorectal cancer cell lines [47]. In this study, HCAR3 was one of the most upregulated

genes, forming the largest amount of interactions inside a module, so it is worth investigating

as a potential novel target for a drug acting on oncogenic or suppressor processes.

Many bioinformatic pipelines exist, based on different assumptions and algorithms, and

produce varying results. Results generated via the methodology applied in this study can be

combined with those of other bioinformatic workflows and experimental conclusions to join

information from a range of origins to build a solid framework for exploring these issues. The

modules in the CMSs of CRC have not been explored in detail, but attempts have been made

in studies using weighted correlation network analysis (WGCNA) on CRC microarray data

[48], and recurrence-associated modules have been identified.

In the validation section, in which a different expression dataset was used, similar results

were found during the detection of CMS4 modules. The major gene composition had a similar

trend as the HCAR3 module at the level of enriched functional processes. The CXCL family

has long been reported as prognostic biomarkers in colon cancer [49], being involved with

inflammatory processes, including genes such as IL-6, C5AR1, and C3 in the IL-6 module. We

applied strict rules on the use of datasets in this study; they must have cancer samples that are

paired with normal tissue. In this way, we minimized the effects of timing and different data

sources.

There is an urgent need for the elucidation of key oncogenic modules to provide an unbi-

ased molecular classification of CRC in order to help tailor treatment choices in the future. In

our research, not only modules but also the composition of modules varied among CRC sub-

types. Despite these variances, NUSAP1, CD44, and COL4A1 were present in all subtypes.

They share processes related to protein phosphorylation, ubiquitin-protein ligase activity,

microtubule-based movement, ECM structural constituent, and metal ion binding, all of

which are key pathways involved in the progression of malignancy. In CMS4, ten genes from

the HCAR3 module are associated with the prediction of patient survival, and the HCAR3

gene is especially important, as it is engaged in multiple interactions and thus might be worthy

of further attention with respect to the development of drugs against colorectal cancer.
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