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Abstract

Living vegetation volume (LVV), one of the most difficult tree parameters to calculate, is

among the most important factors that indicates the biological characteristics and ecological

functions of the crown. Obtaining precise LVV estimates is, however, challenging task

because the irregularities of many crown shapes are difficult to capture using standard for-

estry field equipment. Terrestrial light detection and ranging (T-LiDAR) can be used to

record the three-dimensional structures of trees. The primary branches of Larix olgensis

and Quercus mongolica in the Qingyuan Experimental Station of Forest Ecology at the Chi-

nese Academy of Sciences (CAS) were taken as the research objects. A new rapid LVV

estimation method called the filling method was proposed in this paper based on a T-LiDAR

point cloud. In the proposed method, the branch point clouds are divided into leaf points and

wood points. We used RiSCAN PRO 1.64 to manually separate the leaf points and wood

points under careful visual inspection, and calculated that leaf points and wood points

accounted for 91% and 9% of the number of the point clouds of branches. Then, the equa-

tion LVV = V1N (where N is the number of leaf points, and V1 is cube size) is used to calcu-

late LVV. When the laser transmission frequency is 300,000 points/second and the point

cloud is diluted to 30% using the octree method, the point cloud can be replaced by a cube

(V1) of 6.11 cm3 to fill the branch space. The results showed that good performance for this

approach, the measuring accuracy for L. olgensis and Q. mongolica at the levels of α = 0.05

and α = 0.01, respectively (94.35%, 90.01% and 91.99%, 85.63%, respectively). The results

suggest that the proposed method can be conveniently used to calculate the LVV of conifer-

ous and broad-leaf species under specific scanning settings. This work is explorative

because hypotheses or a theoretical framework have not been previously defined. Rather,

we would like to contribute to the formation of hypotheses as a background for further

studies.
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Introduction

In the 1990s, to evaluate the level of urban greening, Chinese scholars proposed the concept of

“tridimensional green biomass (TGB)”, which refers to the volume of space occupied by the

stems and leaves of all growing plants [1]. We describe TGB as “living vegetation volume

(LVV) [2]”. The study of LVV is based on the ecological function and physiological metabo-

lism characteristics of plant stems and leaves, which reflect the material flow, energy conver-

sion and utilization of plants. Since branches are the main site for photosynthesis in trees,

LVV can indicate the productivity of forest ecosystems and the accumulation of dry matter in

trees. Estimation of the LVV is essentially the measurement of volume, which is mainly

replaced by the crown volume at present. Crown volume can also be a good alternative predic-

tor for foliage biomass [3] and potentially for the whole tree biomass. In addition, crown vol-

ume, as one of the most difficult tree parameters to calculate [4], is also among the most

important factors indicating the biological characteristics and ecological functions of the

crown, and it directly influences the photosynthetic efficiency of the tree, which in turn influ-

ences forest productivity [5]. Therefore, the LVV of a forest is one of the most important statis-

tics in forest management.

Since the concept of the LVV was formally presented, much attention has been focused on

LVV estimations in major cities throughout China. To estimate large-scale LVV, previous

research has mainly applied remote sensing technologies [6, 7], which can be divided into the

following categories: 1. simulating the stereo quantity by the plane quantity [8, 9], in which the

crown breadth is used to estimate the crown height, and then the crown volume is deduced

based on the aerial image; and 2. estimating the tridimensional volume by the tridimensional

volume [10], in which the left and right parallaxes of two adjacent aerial photos are used to

determine the vegetation height; the area of the vegetation is measured on the aerial photos;

and then the LVV is calculated according to an empirical formula. Since the tridimensional

structure is derived from two-dimensional remote sensing images, so the above methods per-

form better at high resolution than at regular resolution. Optical aerial photography does not

directly provide information on 3D forest structure [11], and capturing individual tree charac-

teristics has limitations [12].

The traditional method for calculating the volume of an individual tree crown utilizes a vol-

ume equation that includes tree height (H) and diameter at breast height (DBH) [13] and an

expression of tree form or to match the regular geometry that is similar to the crown shape

[10]. Measurement methods include field inventories and aerial photography interpretation,

and the tree crown is simulated as a regular geometry in the measurement of the LVV. These

parameters are mainly acquired from field inventories, which can be labor-intensive, time-

consuming, and limited by spatial accessibility [14, 15]. Meanwhile, the crowns are randomly

formed, and the difference between the regular geometry and the real shape is large. Most of

these limitations of remote sensing images and the traditional method can be overcome by

using LiDAR measurements. Wei et al. [16] used LiDAR point cloud data and cone to measure

the crown volume of 45 Sabina chinensis and calculated the relative error of crown volumes

obtained by the two methods. The results showed that the average relative error was 44.75%

and the closer the crown of S. chinensis was to the standard cone, the smaller the relative error.

In addition, two trees with similar crown volumes would have different spatial densities of

leaves. Therefore, calculating the LVV based on the volume empirical formula would be unre-

liable considering the large differences between trees.

LiDAR is an active remote-sensing technology that can be used to record three-dimensional

(3D) information about objects [17–20]. According to the platform, LiDAR can generally be

categorized into three types: satellite-based LiDAR, airborne LiDAR, and terrestrial LiDAR
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(T-LiDAR) [21]. LiDAR has numerous advantages over optical remotely sensed imageries,

such as high sampling rate, extensive areal coverage, ability to penetrate the top layer of the

canopy, precise geolocation, and accurate ranging measurements [22]. In recent years, the use

of LiDAR technology to measure the biophysical characteristics of forests has rapidly

increased. Forest-related applications need different levels of detail [23]. The potential of air-

borne laser scanning (ALS), including laser scanning utilizing unmanned aerial vehicles

(UAVs), is well known in the literature for applications at the landscape and regional scales,

and several recent works and reviews provide important points of reference [24, 25]. Of all the

LiDAR platforms available, T-LiDAR operates underneath the canopy; therefore, it is able to

acquire dense point clouds that record detailed branch structures for both the canopy and

overtopped trees in the subcanopy layers [19]. During the last few decades, most of the

research on T-LiDAR in the forest environment has focused on developing automated algo-

rithms for plot-scale forest inventories, i.e., DBH and H estimates [26, 27]. Since a detailed

representation of single trees is important to forest ecosystem research, some studies have

focused on modeling individual trees using LiDAR data, for example, based on circle fitting

[28], cylinder fitting [29], voxel-based processing [30], tree meshing [31], and geometric fitting

[26]. These studies demonstrate the potential of using T-LiDAR to characterize the woody

structures of trees.

The crown volume of an individual tree can be calculated from T-LiDAR data using a voxel

method [32–34] or a Delaunay triangulation algorithm [35] as its representatives. The former

uses discretized cloud points in voxels to render discontinuous crown surfaces and the crown

volume can be calculated by counting the effective number of voxels [36]. Such algorithms are

well known for their robustness, but they are slow and suffer from discretization artifacts [35].

In addition, this method cannot completely prevent the occultation of points inside the crown

by external leaves and branches and the voxel size needs to be chosen carefully because it can

significantly influence the estimation accuracy of the volume [37, 38]. Any changes in sample

design and/or scan setup (e.g. number of scans, size of plants, distance away from tree, etc.)

could potentially affect the point cloud density and complexity and consequently the selection

of voxel size [23]. The latter progressively fits discrete point clouds to a continuous triangular

mesh, covering the whole surface of the crown to generate a 3D model and to extract the

crown factor. This method can better restore details on the continuous surface of the object

with less calculation time [39]. However, the classical Delaunay algorithm is generally sensitive

to these factors (e.g., size of plants, tree characteristics and structure, point cloud density, etc.)

and therefore lacks robustness. Furthermore, these methods are difficult to implement for

basic forest investigators who lack a programming background. Therefore, another simple,

inexpensive, rapid and reliable method for estimating LVV is required for investigators and

researchers.

The general aim of this study is thus to propose a method for quickly estimating LVV with

the support of terrestrial point cloud data. This paper takes the primary branches (containing

leaves) of Larix olgensis and Quercus mongolica in the eastern mountainous area of Liaoning

Province, China, as examples to estimate the LVV using point cloud data obtained via

T-LiDAR. The core idea of the LVV estimation method is to treat each point in the leaf point

cloud data as a cube; then, more space is covered by increasing the size of the cube, and when

the space of the covered branch is fulfilled by the cubes, the LVV is the sum of all regular geo-

metric volumes. Based on the assumption, the branch volume is ideally the product of the

number of leaf point clouds when the cube volume is reached; therefore, the key step of this

method is to find the regression relation between the number of leaf point clouds and the

LVV. This work is explorative as it is quite different from existing methods, and the results will

contribute to LVV estimations with point clouds.
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Datasets and methods

Study site

Experimental sampling was implemented in the Qingyuan Forest Chinese Ecosystem Research

Network (Qingyuan Forest CERN), Chinese Academy of Sciences (CAS). The Qingyuan For-

est CERN (41.84˚-42.86˚N, 124.89˚-125.95˚E) was founded in 2003 by the Institute of Applied

Ecology, CAS/Qing Yuan County and is located in southeastern Qingyuan Manchu Autono-

mous County, Liaoning Province, China. The area belongs to a continental monsoon climate

that is characterized by hot and rainy summers and long cold winters. The annual average

temperature is 3.9 ~ 5.4˚C, the maximum temperature is 36.5˚C, the lowest temperature is

-37.7˚C, the frost-free period is 120 ~ 125 d, and the annual precipitation is 700 ~ 850 mm.

The soil is brown forest soil, and the pH value is 5.5 ~ 6.5.

The Qingyuan Forest CERN has approximately 1350 ha of experimental forest consisting of

various types of natural secondary forest formed after intense disturbances to the original for-

ests in the 1950s. This area is an extension of Changbai Mountain with a height of 500 ~ 600 m

above sea level. The major plantations in the forests include Korean pine (Pinus koraiensis)
and larch (Larix spp.). The typical forest vegetation belongs to Changbai Mountain flora. The

regional vegetation climax is mixed broadleaved Korean pine forest.

Fig 1 illustrates the LVV estimation workflow, which consists of wood-leaf separation and

LVV estimation. The details are then presented.

Sample setting and standard tree selection

Three standard sampling plots of 20 m × 20 m were selected in the experimental forests of the

Qingyuan Forest CERN in September 2014. These plots were dominated by L. olgensis that

were more than 50 years old, but the plots had different plantation densities. Measurements

were carried out for all trees in the plots. The H, DBH, first live branch height (H1), and the

crown width (CW) in four directions were recorded for each tree, and then the forest average

H, DBH, CW and plant density were calculated for each plot and all trees (Table 1). A well-

grown, healthy L. olgensis tree with a uniform crown and average DBH and H was selected as

the standard tree in the vicinity of each standard plot. After harvesting and taking the whole

plant to the experimental station, we carefully marked and cut all branches to avoid further

damage to the branches and leaves. In addition to three standard woods of L. olgensis, we also

had one broad-leaf tree species, Q.mongolica. Since the Q.mongolica forest was the natural

secondary forest, so we only cut one primary branch of one selected well-grown Q.mongolica
tree.

Analysis of branches

Each branch of one L. olgensis standard tree was numbered consecutively from the bottom

stem to the crown. Overall, 174 branches of L. olgensis and 43 branches of Q.mongolica were

obtained. Then, we measured the diameter (d) and length (L) of all branches (Table 2, S1

Table).

Point cloud data acquisition

The point cloud data were acquired by a RIEGL VZ-1000 laser scanner system, which has a

horizontal scanning angle of 360˚ and a vertical scanning angle of 100˚ (60˚ on and 40˚ below

the horizontal plane) with a laser emission frequency of 300,000 points/second. The minimum

scanning distance of RIEGL VZ-1000 is 2.5 m, and the maximum scanning distance is 1400 m

(four scan maximum range options corresponding to point density or scan accuracy of 450 m,
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950 m, 1200 m, and 1400 m). The highest point density of the point cloud, or the distance

between two points, is 5–8 cm at the 100 m distance under a scan option of 450 m. At the same

time, a D700 Nikon camera was mounted on the top of the RIEGL VZ-1000 to simultaneously

obtain images of the scanning objects when scanning.

The scanning process was carried out in the yard of the research station, and there were no

other trees nearby that would affect the scanning objectives (Fig 2). To obtain more detailed

information, we made a seven-sided bracket with a height of approximately 1 m, placed the

bracket upright and fixed all branches to the bracket with enough space between two branches

to avoid overlaps. After fixation, the positions of the branches were photographed and

recorded to identify each branch in the further point cloud analysis. Five target pieces with

diameters of 5 cm were placed in locations where they were easily recognized from the scan

sites, and at least three identical targets occurred in two scan positions. These target pieces

were circular and reflected at high intensities; thus, they were more easily recognized as red

points in the point cloud data. Therefore, these pieces can be used for co-registration among

the point data from different scan positions. Five scanning positions were selected: four posi-

tions outside the bracket in four directions and one positions inside the bracket with a distance

less than 10 m from the branches (Fig 2).

Fig 1. Flowchart of branch LVV estimation.

https://doi.org/10.1371/journal.pone.0221734.g001

Table 1. Information on the standard plots in the L. olgensis plantation.

Plot Average H/(m) Average DBH/(cm) Average CL/(m) Average CW/(m)

A 30.71 24.85 16.34 6.57

B 23.41 28.01 12.33 7.76

C 24.44 24.05 12.17 5.42

https://doi.org/10.1371/journal.pone.0221734.t001
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After scanning, the original point cloud data were preprocessed using the RiSCAN

PRO1.64 software, including splicing, removing outliers and thinning. Fig 3 and S1 Fig shows

the data form the L. olgensis and Q.mongolica branches point cloud.

Wood-leaf separation

A manual method is used for wood-leaf separation, which aims to classify LiDAR points into

wood and leaf components, and it is an essential prerequisite for deriving individual tree char-

acteristics [40].

The leaf points and wood points were clipped manually under careful visual inspection

using RiSCAN PRO 1.64, which is able to rotate and scale the branch point cloud data to better

identify leaf points and wood points. We focus on only the first-order branches in this analysis

(Fig 4, S2 Fig), and the number of cloud points was counted after wood-leaf separation

(Table 3, S2 Table). Seventy percent of the branches were randomly selected as training sam-

ples to calculate the ratio of leaf points and wood points to the total points. To assess the above

proportions accuracy, 30% of the branches were used as test samples and the relative error was

calculated.

LVV measures of branches

LVV measures of branches by 3DS Max. First, the point cloud data are exported to PTS

format in RiSCAN PRO 1.64; then, the data in PTS format are imported into Autodesk ReCap,

which converts PTS to RCS format, and finally, the RCS format is imported into Autodesk

3DS Max using the point cloud modeler plug-in. In 3DS Max, a standard model was created

based on a selected cuboid model rather than a cylinder or sphere. According to the actual

branch size, we manually adjusted the length, width and height of the cuboid. We initially set

the height of the cuboid to the length of the branch and set the length and width to 1 m to

make the cuboid adequately fit the branch outline (for larger and smaller branches, the lengths

and widths of the cuboids will increase or decrease correspondingly). The “subsection” param-

eter information of the cuboid model is modified to form a mesh. The cuboid model is trans-

formed into an editable mesh, and the shapes of branches are established by adjusting the

Table 2. Basic information of L. olgensis branches.

Branch factors Mean Min Max Std

d/(mm) 25 6.28 57.48 8.91

L/(cm) 224.5 88 480 78.83

Note: d: diameter of the branches, L: length of the branches

https://doi.org/10.1371/journal.pone.0221734.t002

Fig 2. Position layout.

https://doi.org/10.1371/journal.pone.0221734.g002
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vertexes of the cubes to make the vertexes close to the points on the branches. The results of

this method for one branch are shown in Fig 5. Theoretically, the more segments, the more

accurate the shape of the branches representation, although the corresponding operation is

more complicated. To ensure accuracy and efficiency, we initially divided the length of the

cuboid equally into 10 segments, and the width and height were divided into 5 segments (the

number of segments were increased or reduced for larger or smaller branches). Finally, the cal-

culation function in the Autodesk 3DS Max software was used to calculate the model volume.

LVV measures of branches by triangulated irregular network (TIN). In this paper, a

spatial triangulated irregular network (TIN) was established by RiSCAN PRO (Fig 6(A)), and

then, the volume of the closed TIN was calculated according to the spatial geometry method.

Assuming that the three vertex coordinates of any of the triangles are A (xa, ya, za), B (xb, yb,

zb), and C (xc, yc, zc) in the model, the tetrahedral volume is then composed of4ABC as the

bottom (ABC counterclockwise order), and the coordinate origin O (0, 0, 0) is the vertex (Fig

Fig 3. Point cloud of the L. olgensis branch (A: main view; B: side view; C: top view, 121034 points).

https://doi.org/10.1371/journal.pone.0221734.g003

Fig 4. Wood-leaf separation (A: 108230 points; B: 103159 points; C: 5035 points).

https://doi.org/10.1371/journal.pone.0221734.g004
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6(B)), as shown in formula (1):

VOABC ¼
1

6

xa ya za
xb yb zb
xc yc zc

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

ð1Þ

Assuming that the TIN has n triangular patches on its surface, the total volume (Vb) of the

closed TIN is given by formula (2):

Vb ¼
1

6

Pn
i¼1
Vi ð2Þ

To verify the accuracy and precision of 3DS Max method, which was used to calculate the

volume of the branches, the 3DS Max method and the TIN are compared in this paper because

the true values of the branch volumes cannot be obtained. Formula (3) is used to calculate the

relative error for comparative analysis.

d ¼
ðV0� ViÞ

V0

� 100% ð3Þ

In the formula, δ represent the relative error, V0 represents the LVV calculated from 3DS

Max, and Vi represents the LVV calculated from the TIN.

Table 3. Statistics of the wood-leaf separation results (L. olgensis).

Sample Mean Min Max Std

Number of total points/(point) 174 78282 7699 475675 72232

Number of leaf points/(point) 174 73639 6524 461067 69960

Number of wood points/(point) 174 4890 248 53758 4837

Relative error/% 49 4.33 0.15 12.02 2.40

https://doi.org/10.1371/journal.pone.0221734.t003

Fig 5. Process of measuring the LVV by 3DS Max topology (A: length and width of the cuboid are 1.3 m, and height is 2.8

m; B: length and width of the cuboid are divided into 5 segments, and the height is divided into 10 segments; C: volume is

1.04 m3).

https://doi.org/10.1371/journal.pone.0221734.g005
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Fill method to estimate LVV. A filling method was to fill discrete point cloud data into

entities. Each point in the point cloud data is replaced by a fixed-size cube, and the final LVV

of a branch is the sum of several cube volumes, as shown in formula (4):

LVV ¼ V1N þ b ð4Þ

(V1: cube size, N: the number of leaf points, b: constant, Fig 7 is the imaginary fill figure)

In the ideal situation, the constant (b) in Eq 4 is 0 and the total volume can be calculated by

calculating V1. In this paper, we do not consider other factors that affect the LVV of the

branches, such as leaf density, branch length, width, and point density.

Fig 6. TIN model (A) and tetrahedral volume calculation (B).

https://doi.org/10.1371/journal.pone.0221734.g006

Fig 7. Imaginary fill-type map.

https://doi.org/10.1371/journal.pone.0221734.g007
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Statistical analysis

We assume that a linear relationship between the number of leaf points and the LVV of a

branch appeared using Eq (4). In addition, this relationship was verified by a scatter diagram,

drawn by number of leaf points and the LVV of a branch, based on the correlation analysis.

Finally, the size of the cube volume was determined further by a regression analysis. The spe-

cific steps are as follows.

Step 1: Samples of the 174 L. olgensis branches were randomly divided into two parts,

accounting for 30% and 70% of the total.

Step 2: In SPSS 19.0, 30% of the sample was used to calculate the value of 3DS Max as the

dependent variable and the number of leaf points was calculated according to formula (4) as

an independent variable in the linear regression that is used calculate the volume of the cube

V1.
Step 3: Using 70% of the sample, a linear equation was established between the LVV calcu-

lated by the previous step, V1, and the measured value of 3DS Max was used to correct the

cube volume to V1.
Step 4: Finally, the LVV is calculated as the estimated value using the corrected volume, V1;

the calculated value of TIN is used as the measured value; and the filling method accuracy (C)

is used to verify the feasibility of this method. The test formula is as follows.

Residual standard deviation: S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðabs� estÞ2

n� 2

q

, where abs and est represent the measured

and estimated values, respectively; n is the number of samples participating in the accuracy

test.

Standard error: dx ¼
Sffiffi
n
p

Absolute error limit: D ¼ dx � tan� 2
; where tan� 2

is the t distribution value with confidence

levels of 0.05 and 0.01.

Relative error: E ¼ D

X�100%; x ¼
P

est

n

Precision: C = 100%-E
Meanwhile, we tested the applicability of the filling method with the branches of Q.

mongolica.

Results

Wood-leaf separation results

The results of the wood-leaf separation of 174 samples are shown in Table 3. A total of 125

samples are used to calculate the proportions of the leaf points and wood points in branches,

and the leaf points and wood points accounted for 91% and 9% of the total points, respectively.

In 49 samples, the absolute value of the maximum relative error was 12.02%, the absolute value

of the minimum relative error was 0.15%, and the absolute value of the mean relative error was

4.33% (Table 3). The relative error of only one sample was greater than 10%, indicating that

we calculated the wood-leaf proportions with a high degree of accuracy. The above wood-leaf

proportions was used to calculate the branch point cloud of Q.mongolica, and the relative

error was less than 7% (S2 Table).

Comparison of LVV measurements by 3DS Max and TIN

Fig 8 shows the correlation between the values measured by 3DS Max and the values mea-

sured by the TIN. It can be seen from the graph that the results of the two methods are con-

sistent to a certain extent (R2 = 0.93, P<0.001, RMSE = 0.07 m3). The relative errors of the

results from the two methods were further calculated, revealing that the absolute value of
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the maximum relative error was 37.12%, the absolute value of the minimum relative error

was 0.03%, and the absolute value of the average relative error was 17.70% (Table 4). Fig 9

shows the distribution of the relative errors of 174 samples; the relative errors of 72 samples

were greater than 30%, those of 56 samples were between 10% and 20%, and those of 46

samples were less than 10%, indicating that in some samples, the results of the two measure-

ment methods exhibit large deviations. The results of the branches of Q. mongolica were

shown in S2 Fig, and the average relative error was 23.15% (S3 Table). When using 3DS

Max to measure the volume of branches, the shape of the branches can be manually approx-

imated, but there are inevitably errors. The TIN must use the entity to calculate the volume,

and the current technology used to transform the multifaceted grid to the entity is not yet

mature. When the closed TIN is constructed in RiSCAN PRO, the system exhibits some

deviation from the recognition of the surface point. By contrast, the 3DS Max visually repre-

sents better the shape of the branch. Therefore, the difference of the TIN is greater than that

Fig 8. Correlation between the measured value(L.olgensis).

https://doi.org/10.1371/journal.pone.0221734.g008

Table 4. Statistics of the LVV measurement results (L.olgensis).

Method Sample Mean Min Max Std

3DS Max/(m3) 174 0.34 0.04 1.97 0.27

Triangulated irregular network /(m3) 174 0.31 0.03 1.90 0.24

Relative error/% 174 17.70 0.03 37.12 10.04

https://doi.org/10.1371/journal.pone.0221734.t004
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of the 3DS Max. As the current real values of the branch volumes cannot be obtained, we

can only conduct a relative analysis.

Analysis of correlation between LVV and number of leaf points

Fig 10(A) shows that there is a linear relationship between the LVV value measured by

3DS Max and the number of leaf points, preliminarily proving that our hypothesis is true.

However, the correlation between the LVV value measured by the TIN and the number

of leaf points was significantly reduced (Fig 10(B)). The correlation coefficient (r) decrea-

sed from 0.91 to 0.73 (P<0.01). The same trend was seen in the branches of Q. mongolica
(S3 Fig).

Fig 9. Relative error distribution range of 3DS Max and TIN (L. olgensis).

https://doi.org/10.1371/journal.pone.0221734.g009
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Filling method to measure LVV

First, a linear regression of 30% of the samples was used to obtain Eq 1 (LVV = 6.03N+1430.79,

R2 = 0.81, P<0.001, RMSE = 0.10 m3). The coefficient of determination (R2) of the regression

equation was high and passed the F test (P<0.001). This result shows that there is a significant

linear relationship between the number of leaf points and the LVV of the branches. However,

the constant of Eq 1 is not significant, and the intercept of the linear equation is 0 and was

Fig 10. Correlation between LVV and leaf point number in branch (L.olgensis).

https://doi.org/10.1371/journal.pone.0221734.g010

Fig 11. Cube volume calculation (A) and volume correction (B).

https://doi.org/10.1371/journal.pone.0221734.g011
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refitted to obtain Eq 2 (LVV = 6.05N, R2 = 0.94, P<0.001, RMSE = 0.10 m3; Fig 11(A)). Then,

70% of the sample was used to estimate the LVV of the branches by Eq 2, and regression Eq 3

(y = 1.004x-1970.66, R2 = 0.82, P<0.001, RMSE = 0.09 m3; Fig 11(B)) was established between

the measured values. Finally, Eq 3 was used to correct the cube volume V1 = 6.11 cm3.

Accuracy of the filling method

By calculating the accuracy of the LVV, the results show that the accuracies of the LVV of the

L. olgensis branches were 94.20% and 91.78% at the 95% and 99% confidence levels, respec-

tively (Table 5). In addition, the proportions of the leaf points (91%) was then used to calculate

the number of leaf points of the samples involved in the test, and the LVV measurement accu-

racy was recalculated. The measuring precision of LVV was 94.35% and 91.99% at the 95%

and 99% confidence levels, respectively (Table 5). In addition, the measuring accuracy of the

branches in Q.mongolica was 90.01% and 85.63% (S4 Table).

Finally, it may be concluded that the equation for calculating the LVV based on the leaf

point cloud distribution is “LVV = 6.11N”. After using T-LiDAR to acquire point cloud data in

the field, the number of point clouds is the easiest parameter to obtain. Therefore, use of this

equation would enable researchers and investigators to quickly estimate the LVV of the

branches. The character of this work is explorative, as there is no predefined set of hypotheses

or theoretical framework to test. Rather, we would like to contribute to the formation of

hypotheses as a background for further studies.

Discussion

Wood-leaf separation

In this study, we used RiSCAN PRO 1.64 to manually separate the leaf points and wood points

from the first-order branches and calculate the ratio of the leaf points and the wood points to

the number of point clouds. Careful visual inspection indicated that manual cutting results

were detected with high accuracy. Existing approaches have used intensity information [41,

42], a multiwavelength approach [43], or waveform information [44] for wood-leaf separation.

Table 5. Testing results of the LVV measurements by the filling method (L. olgensis).

Item Calculated as the number of manually separated leaf

points

Calculated as the proportion to the number of leaf

points

α = 0.05 α = 0.01 α = 0.05 α = 0.01

Sample size 174 174

Measured value/cm3

Total 50340507.00 50340507.00

Mean 299072.29 299072.29

Estimated value /cm3

Total 51424277.51 50448927.94

Mean 307911.80 302089.39

Residual Standard deviation (S) 139107.32 132954.45

Standard error (δx) 10764.45 10288.32

tan� 2
1.658 2.351 1.658 2.351

Absolute error limit (Δ) 17847.45 25307.22 17058.04 24187.85

Relative error (E/%) 5.80 8.22 5.65 8.01

Precision (C/%) 94.20 91.78 94.35 91.99

https://doi.org/10.1371/journal.pone.0221734.t005
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Successful intensity-based wood-leaf separation using one LiDAR system does not guarantee

successful separation using other LiDAR systems [40]. The development of multiwavelength

LiDAR is still in the early stages [45]. Recently, a geometric approach for wood-leaf separation

was reported [46, 47], although this method applies to broad-leaved trees. To the best of our

knowledge, the wood-leaf separation algorithms based on terrestrial point cloud data are tech-

nologically challenging, and there is no widely adopted method. With current technology, the

use of the manual method for wood-leaf separation is still reliable under careful visual inspec-

tion. In this paper, L. olgensis branches were used to calculate the wood-leaf ratio of a point

cloud was also applicable to Q.mongolica. It is preliminarily proved that coniferous species

and broad-leaf species have the same wood-leaf ratio of a point cloud under the same scanning

setting. This ratio can be used as the basis for verifying the algorithm of wood-leaf segmenta-

tion and has great practical significance. In future studies, it is still necessary to explore the

wood-leaf ratio of different scanning instruments.

Measurement of LVV

The measurement of the LVV of a tree is essentially the measurement of the volume of the tree

crown (or the volume of the branches). However, obtaining the precise volume of a crown is a

challenging task because of the complexity of the tree structure. In this paper, we divide point

cloud data from branches into leaf points and wood points and propose a method to measure

the LVV based on the leaf point cloud distribution. The filling method is used to calculate the

volume of the whole by filling a geometric body of a fixed size from the inside of a three-

dimensional model. Accuracy analyses carried out on all branches confirmed a good perfor-

mance of filling method that can quickly provide estimates for a large number of samples. This

paper only proves that the filling method is feasible, and our aim is to provide a new feasible

idea for the calculation of three-dimensional green space.

The filling method is a simple and direct method. According to our equation, the LVV is

only related to the number of point clouds. The results show that although the method has

good performance, other factors that affect the three-dimensional green space of branches are

not considered, such as leaf density, branch length (L), width and point density. For example,

two similar branches should have similar LVVs in real situations even if the internal points are

largely different. We originally envisioned using the same size cube to fill the branch space in

Fig 12. Random distribution of possible internal points in branches.

https://doi.org/10.1371/journal.pone.0221734.g012
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an ideal situation because we obtained a good correlation. In fact, due to the reflection of the

laser beam between branches and leaves, the obtained internal points were discrete. After the

cube was used to replace the points, some points overlapped, while some were far away (Fig

12). In addition, the points on the surface should fall at the boundary of the 3D convex hull,

and they should not be filled with the cube similar to the points in the interior. Because we can-

not separate out the points on the surface, our equation includes the surface points. This phe-

nomenon is also one of the uncertainties. At the same time, branches with different canopy

heights have different leaf densities, and the sizes of the filled cubes may be different. There-

fore, no absolute conclusion can be drawn about the effectiveness of the filling method itself.

Zeide [48] defined branch volume as the smallest convex hull that envelops all of the space

with foliage growing on a given branch. Aa shown in Fig 13, the volume occupied by the

foliage of a given branch was estimated as the product of the area of the convex polygon that

circumscribes the foliage and the foliage depth in the direction perpendicular to the polygon.

This method is equivalent to using a simple polyhedron instead of the branch volume. In fact,

this definition leads to the inclusion of the space that is not occupied by foliage. In terms of the

crown volume measurement, its core idea is to convert the crown into an entity and then cal-

culate the volume of the entity. For example, Kato et al. [49] proposed a “wrapped surface

reconstruction” method. In addition, the key principles of the 3D and triangulated irregular

network used in this paper are similar, and the point cloud data form the surface points are

used to create the convex hull. Using the point cloud data to build the spatial triangulated

Fig 13. Conventional measurement methods of the branch volume (A: needle closest to the tree stem, B: tip of the

needle farthest from the stem. The dashed line depicts the horizontal axis.) (Image from [48]).

https://doi.org/10.1371/journal.pone.0221734.g013

Fig 14. Error diagram of triangulated irregular network measurement and calculation.

https://doi.org/10.1371/journal.pone.0221734.g014
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irregular network and calculate the volume of the model according to the spatial geometry,

this method is difficult because the volume must be estimated by an approximate polyhedron.

The higher the number of polyhedrons, the higher the accuracy. Software can accurately

approach the surface of the object with polyhedral mesh when simulating the object, although

the computational volume must be solid, and there is no mature module for the transforma-

tion between a polyhedral mesh and an entity. When we used RiSCAN PRO 1.64 to construct

a closed triangulated irregular network, we found that the system could not accurately identify

the surface points, and the surface points identified by the system formed a spatial tetrahedron

with any of the surrounding points (Fig 14). We used 3DS Max to manually establish the con-

vex hull of the branch point cloud data, and the results of the volume measurements were

closer to the actual situation of the branch than the results from the conventional method. The

method of manually establishing the convex hull can approximate the contour of the branch to

the maximum extent, avoiding the error of the triangulated irregular network to the surface

point recognition. However, the artificial manual topology will inevitably result in errors, and

the disadvantage of this method is that it cannot be automatically processed, and the accuracy

of its measurement depends on the multifaceted grid settings. Moreover, the accuracy is higher

when there are more grids, although the corresponding operation is more cumbersome.

Approximately 20 to 30 minutes is required to manually build a branch topology; therefore,

the method is not suitable for calculating the LVV at large scales (canopy or stand). In contrast,

the filling method is a simple and straightforward approach. However, even if our approach

could be applied without distinguishing tree species and tree shape, the size of the cube is also

affected by some uncertain factors. Any changes in scanning instrument and/or scanning

setup (e.g., number of scans, distance away from tree, etc.) could potentially affect the point

cloud density and complexity and consequently the selection of geometric size.

The crown is not a three-dimensional solid. The real canopy and each branch contain

many spaces inside, and the collection is a multilevel structure. From the concept of the LVV,

there is no biomass (leaf and stem) in the gap between branches and leaves. To be exact, the

true value of three-dimensional green space can only be obtained by removing the empty parts

from the volume of the crown or branch. Unfortunately, these gaps cannot be removed due to

technical limitations. All we can do for volume measurements is minimize the differences in

the gap estimates from the actual situation. The study of LVV is based on the ecological func-

tion and the physiological metabolism characteristics of plant stems and leaves, which reflect

the material flow, energy conversion and utilization of plants. As the most important organ

used to capture solar radiation, absorb carbon dioxide and release oxygen in terrestrial ecosys-

tems [50], the sizes of plant leaves are significant. We refer to the size of the space occupied by

the blade as the “effective LVV”. The LVV is a new research topic, and different plants have

different spatial structures. The specific manifestation is that the total amount of leaves and the

size of the space occupied by the leaves are different, so the scientific study of three-dimen-

sional green space can better reveal the ecological role of plants.

Problem of terrestrial point cloud data

The description quality of within-stand scanned trees is highly dependent on the occlusion

level caused by surrounding trees and wind. Occlusion causes discontinuity in the description

of the tree axes, whereas wind induces wave-shaped axes and increases noise in terrestrial

point cloud data [51]. We used five scanning positions to enhance the integrity of the point

cloud data, but multiple scans can result in a large amount of point cloud data and redun-

dancy, making it difficult for the computer to operate. Although the point cloud data are

denoised before they are used, there is still noise in the data. Fig 15 presents a local
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magnification diagram of the branch point cloud data, and some points at the edge obviously

do not belong to the branch, and these points need to be artificially determined and removed.

However, some points are uncertain, which is subjective.

The research of parameter extraction based on T-LiDAR includes crown volume, wood vol-

ume, H, and DBH; i.e., accuracy is the focus of attention and depends on the accuracy of the

data source and the accuracy of the reference measurements themselves [52]. For the calcula-

tion of LVV, the lack of fine-sampling manual measurements is often an important constraint

[26]. Given the complexity of plant structures and forest environments, the use of T-LiDAR in

forest environments remains a challenge, especially for forestry applications. It is necessary to

develop a point cloud data processing platform for forestry applications, which would help

promote the application of LiDAR in forestry.

Conclusions

The objective of the present research was to introduce a filling method for LVV measurements

and verify the feasibility of the method by using terrestrial point cloud data from L. olgensis
and Q.mongolica branches. In the proposed method, the branch point clouds are divided into

leaf points and wood points, and then the equation (LVV = V1N, where N is the number of leaf

points, and V1 is cube size) is used to calculate LVV. In this study, we used RiSCAN PRO 1.64

to manually separate the leaf points and wood points under careful visual inspection and calcu-

lated that leaf points and wood points accounted for 91% and 9% of the number of the point

clouds of branches. This wood-leaf ratio of a point cloud applies to both L. olgensis and Q.

mongolica branches. We found that when the laser transmitting frequency was 300,000 points/

second and the point cloud dilution utilized the octree method, the cube (V1) size was 6.11

cm3. Our method performed well for coniferous species and broad-leaf species. A comparison

of the results obtained using our method and those obtained using the TIN approach suggested

that our method is superior. As tested, the measuring accuracy of L. olgensis and Q.mongolica
at the levels of α = 0.05 and α = 0.01 are (94.35%, 90.01%) and (91.99%, 85.63%) respectively.

However, even if our approach could be applied without distinguishing tree species and tree

shape, the size of the cube is also affected by uncertain factors (e.g., scan setup, distance from

tree, level of details acquired by TLS, etc.). Finally, the results achieved in this study represent a

good starting point for measuring LVV from terrestrial point cloud data, although the pro-

posed approach was only tested in a branch point cloud under the same scanning setting. Fur-

ther studies are consequently still needed to evaluate the applicability of the method in

different forest stands and/or different scan setups.

Fig 15. Local magnification of branch point clouds.

https://doi.org/10.1371/journal.pone.0221734.g015
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