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Abstract

Past research on the process of extinguishing a fire typically used a traditional linear water

jet falling point model and the results ignored external factors, such as environmental condi-

tions and the status of the fire engine, even though the water jet falling point location predic-

tion was often associated with these parameters and showed a nonlinear relationship. This

paper constructed a BP (Back Propagation) neural network model. The fire gun nozzle char-

acteristics were included as model inputs, and the water discharge point coordinates were

the model outputs; thus, the model could precisely predict the water discharge point with

small error and high precision to determine an accurate firing position and allow for the

timely adjustment of the spray gun. To improve the slow convergence and local optimality

problems of the BP neural network (BPNN), this paper further used a genetic algorithm to

optimize the BPNN (GA-BPNN). The BPNN can be used to optimize the weights in the net-

work to train them for global optimization. A genetic algorithm was introduced into the neural

network approach, and the water jet landing prediction model was further improved. The

simulation results showed that the prediction accuracy of the GA-BP model was better than

that of the BPNN alone. The established model can accurately predict the location of the

water jet, making the prediction results more useful for firefighters.

Introduction

An analysis of the trajectory and state of the water jet is a key step in analysing the accuracy of

fire extinguishing; the determination of the firing point location provides the basis for the

adjustment of the relevant equipment parameters [1–3]. The location of the ignition point is

the basis of water jet control, so intelligent fire-fighting equipment is the synergistic combina-

tion of ignition source location detection and jet flow control [4]. Most of the water jet control

methods are based on the relationship between the ignition point and the angle of the water

gun, but this approach cannot determine whether the water jet accurately falls at the ignition

point [5]. The ultimate goal of firefighting water gun control is to accurately hit the ignition

source point, in which case fire detection and the calculation of the ignition point space
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coordinates are adequate for a water sprinkler fire in the early stage of development [6]; the

basic water jet state and its control situation can affect fire extinguishing, so research on the

water jet is a key focus for fixed-point fire extinguishing [7].

At present, research methods on water jets in fixed-point fire extinguishing are mainly

divided into two kinds: research methods that use image processing and those based on the jet

trajectory equation. The research statuses of these two methods are described below.

(1) Water jet recognition and control based on image processing. Chen Jing of the Nanjing

University of Aeronautics and Astronautics [8] proposed an image processing method to

obtain the position of the whole water jet trajectory; her method can predict the water jet tra-

jectory of the shelter by fitting a curve in the case of an occlusion to obtain the position of the

water landing. The water cannon position can be determined by the relationship between the

water shooting point and the ignition point, and then the angle of the water cannon is adjusted

and revised to coincide with the fire source[9]. Sun Weilu and Zhao [10] divided water supply

systems into jet and non-jet classes and they collected the pixel images by using colour cluster-

ing analysis methods [10]. The colour information was used to find the minimum RGB chro-

matic aberration of the current detection point in the jet direction to set the starting point for

the next detection. After determining the jet direction, the ignition point was searched for in

this direction. Finally, the point closest to the last image endpoint was located as the current

endpoint in a suspected endpoint that satisfied the set condition. Su Hao [11] used the idea of

target tracking by taking single image frames from a continuous dynamic video sequence cap-

tured by a camera as a research object to identify the water jet trajectory in each image frame

and determine the water shooting location. The particle swarm algorithm [11] was used to

identify the water jet trajectory against a mobile background to find and detect the target loca-

tion in situations where prior information was lacking [11].

(2) Water jet research based on the trajectory equation. The fixed-point fire water flow tra-

jectory equation is based on a classical physics equation that uses the fire water cannon param-

eters, for example, the working pressure of the water gun injection, work flow, sprinkler

installation height and muzzle pitching angle, and external environmental factors (such as the

wind speed and wind direction) to formulate the trajectory equation of the water jet. The tra-

jectory equation is then used to predict the water flow point to achieve fixed-point fire extin-

guishing. Because the external factors are complex in actual situations, establishing a practical

water jet trajectory equation is a critical and difficult problem. Wan Feng and other people at

the Shanghai University [12–13], according to the theory of particle kinematics and external

ballistics, deduced the jet motion differential equations of a water jet in air, assuming that the

jet micro-element is a particle, and obtained the fitting equation by modifying the exponent

on the basis of the actual jet trajectory. Liao Xiaodong and others [14] used the jet velocity as a

micro-element and used it as a research object for stress analysis, water jet velocity is ejected

from nozzles or orifices and diffused through the air. Through the analysis of forces in the air,

the water jet trajectory equation, under the action of many influential factors, was established,

and a simulation analysis of the jet trajectory of a fire gun was carried out by using MATLAB

software, this method [14] overcame the problem proposed by Wan feng [12] by not con-

straining the working pressure and the flow parameter. Hu Guoliang and others [15] pointed

out that due to a series of external factors, even if the water is injected into the space at the cen-

tre of the fire, the final flow point may exceed the scope of the margin of error for effective

extinguishing. Therefore, considering gravity and the air resistance of a water flow, a force

analysis was carried out. According to particle kinematics, ballistics and hydrodynamic theo-

ries, the equation of the water jet trajectory was established to model the relationships among

the coordinates of each point, the height of the water cannon, muzzle pitching angle, outlet jet

velocity and drag coefficient of air.

Water jet prediction based on GA-BP neural network
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Existing methods used in water jet research have attained some achievements, but these

methods have particular issues; the image processing methods require special cameras, and the

environmental lighting conditions affect the results; for methods based on the jet trajectory

equation, some equations need to be established under ideal conditions, and the influence of

external factors (such as wind) was considered less [16–17].

With the further development and extensive application of artificial intelligence technology,

the field of artificial intelligence has provided new ideas and research methods for many fields.

Some studies have used artificial intelligence to study fire-fighting equipment, such as Liu Xue-

fei [18], who used a fire detector signal as an input to a fuzzy neural network to analyse a fire.

Wang Fei [19] used the adaptive weighting algorithm to complete the data fusion of informa-

tion acquired by a sensor and ignition source information.

It is very important to predict the water shooting point for effective fire extinguishing. The

traditional water jet point model is a linear model, and the results ignore external factors, such

as the environmental conditions and the fire engine status, which must be included consider-

ing that the prediction of the water shooting location has a complicated non-linear relationship

with the firefighting equipment parameters, environmental factors and water shooting dynam-

ics [20–21]. The BPNN has a unique advantage in dealing with nonlinear relationships and has

been a widely used prediction model [22]. Therefore, this study used a BPNN to establish a

model. The fire gun nozzle characteristics were included as model inputs, and the water dis-

charge point coordinates were the model outputs [23]. The model accurately located the fire

source, and allowed for the timely adjustment of the spray gun.

Data preprocessing

According to reference [24], we selected the input variables of the water jet prediction model:

the height (h) of the gun, the horizontal angle (α), the pitch angle (β), the pressure (p), the flow

rate (q), the wind influence index (windx) and (windy). The output variable was the water jet

landing point (x,y). Then, the parameters were trained, and some preprocessing was per-

formed; these parameters needed to be normalized before training.

(1) Data preprocessing

Because of the index system, the measurement units of each data index were different, and

the range difference was large. To have comparability among all indexes, the data were prepro-

cessed for normalization before the weight calculation so that the data range of each index was

between [0,1]. The calculation formula was as follows:

Gij ¼

yij � minyij

maxyij � minyij
; yij was positive

maxyij � yij

maxyij � minyij
; yij was negative

ð1Þ

8
>>><

>>>:

(2) Determine the weights

① The weighted mean variance method

In this paper, the mean-variance weighting method was used to assign weights to each

index, and the detailed calculation steps were as follows:

The mean value of each index:

EðGjÞ ¼
1

n
Pn

i¼1
yij ð2Þ

Water jet prediction based on GA-BP neural network
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The average variance of each index:

sðGjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

½yij � EðGjÞ�
2

s

ð3Þ

The weight coefficient of the index set:

WðGjÞ ¼
sðGjÞ

Pm
i¼1
sðGjÞ

ð4Þ

The result of the composite indicators was calculated as follows:

FðGjÞ ¼
Xm

j¼1

WðGjÞ � Gj ð5Þ

In addition, according to the performance description of neural network, the determinant

coefficient R2 is calculated for the linear fitness index of the prediction system.

SST ¼
Xn

i¼1

ðyi � �yÞ2 ð6Þ

SSR ¼
Xn

i¼1

bðyi �
�yÞ2 ð7Þ

SSE ¼
Xn

i¼1

ðyi � ŷiÞ
2

ð8Þ

Where, SST is the sum of total squares, SSR is the sum of regression squares and SSE is the

sum of residual squares. According to the relationship between these formulas, there is

SST = SSR + SSE. Therefore, the determinant coefficient is defined as:

R2 ¼
SSR
SST
¼

Xn

i¼1

bðyi �
�yÞ2

Xn

i¼1

ðyi � �yÞ2
¼ 1 �

SSE
SST

ð9Þ

In the simulation, the "Mapminmax" function in MATLAB can realize the above calculation

process to perform the normalization operation. The function maps the original data to the

range of the sample set, [0,1]. The result was a structured and normalized matrix that con-

tained the mapping relationship. In this way, when new data were obtained, it could be nor-

malized directly without the normalization of all of the original data, and the training output

results could be calculated according to the mapping information. In MATLAB, The functions

of error and determinant coefficients of neural networks are defined as follows:

error = abs(T_sim—T_test)./T_test;

R2 = (N � sum(T_sim .� T_test)—sum(T_sim) � sum(T_test))^2 / ((N � sum((T_sim).^2)—

(sum(T_sim))^2) � (N � sum((T_test).^2)—(sum(T_test))^2));

Water jet prediction based on GA-BP neural network
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Materials and methods

Prediction model of the water jet falling point based on the BPNN

Construction of the prediction model based on a BPNN. The fire water jet model

designed in this paper was based on the BPNN. First, according to the requirements of the

BPNN, the hierarchical structure of the network was determined by specifying the number of

nodes in the input, hidden, and output layers and selecting the transfer functions. In terms of

the number of network layers, the traditional three-layer BPNN structure, which includes an

implied layer, was chosen, which is shown in (Fig 1).

In the input layer, the number of nodes was set to 7 to represent the 7 input variables of the

model. The output layer had two outputs: the data type and the data value. The results of the

BPNN algorithm were expressed in binary form and were used for classification and identifica-

tion; the number of categories determined the number of output nodes. In this paper, the out-

put was the coordinate value of the drop point, that is, the coordinate value of (x, y), so the

number of output nodes was set to 2.

Transfer functions and training processes. In the past, there have been many studies on the

transmission function of the BPNN and their deformation [25–26]. According to the previous

literature and the characteristics of the water droplet drop point, the implicit layer used the

hyperbolic tangent S function, which is shown in Eq (10). A linear function was selected as the

transfer function of the output layer, which is shown in Eq (11). These two equations had cor-

responding functions in the MATLAB Toolbox library.

f ðxÞ ¼
2

1þ e� ax
� 1 ð� 1 < f ðxÞ < 1Þ ð10Þ

f ðxÞ ¼ kxþ c ð11Þ

Fig 1. Structure of the BPNN. It is a traditional three-layer BPNN structure. By specifying the number of nodes in the

input layer, hidden layer and output layer and selecting the transfer function, the hierarchical structure of the network

is determined.

https://doi.org/10.1371/journal.pone.0221729.g001

Water jet prediction based on GA-BP neural network
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Many reference algorithms have been studied for the training of a BPNN, and different

training methods have some influence on the accuracy of the prediction. From the point view

of the flow impact prediction model, the LM algorithm was used to train the network, and the

method for BPNN weight correction already appeared in many studies.

In this paper, the data were randomly divided into 3 sample datasets: training, confirmation

and testing. The confirmation dataset was dynamically changing, and the error of each training

observation decreased continuously. The error value from each training iteration was continu-

ously monitored, and when the value was less than the threshold, the training was considered

complete. After several iterations of training, the BPNN confirmation error value tended to

remain steady, and the network performance was stable; if the training continued, the net-

work’s prediction results would not be much improved, so to make the error not decline fur-

ther, the maximum number of BPNN training iterations was limited to avoid the "overfitting"

phenomenon. The main parameters of the BPNN were set, as shown in Table 1:

In practical applications, the number of hidden layer nodes needs to be set. If the number

of nodes is too little, the network learning ability is weakened, and increasing the number of

hidden layer nodes can effectively improve the learning performance. However, if the number

of nodes is very large, the time complexity of network training increases, and the network

training time becomes longer. Because there was no fixed method for determining the number

of nodes in the hidden layer, the test method was generally used, that is, an empirical formula

was used to calculate a range for the number of hidden layer nodes, and the number of hidden

layer nodes was set based on the results of different experiments. In this paper, the number of

hidden layer nodes was obtained using the empirical formula shown in Eq (12).

n ¼
ffiffiffiffiffiffiffiffiffiffiffi
pþ q

p
þ a ð12Þ

where n is the number of hidden layer nodes, p is the number of input layer nodes, q is the

number of output layer nodes, and a is an integer between 1 and 10. In this paper, the number

of input layer neurons was set to 7 according to the inputs water gun height (h), horizontal

angle (α), pitching angle (β), pressure (p), flow (q), wind influence index (windx) and (windy).

The number of output layer neurons was 2, that is, the coordinate value of (x,y). According to

Eq (12), the range for the number of nodes in the hidden layer was calculated as 4~13. The

exact number was determined by an experimental method.

The parameters of the BPNN were set, as shown in Table 2. The number of hidden layer

nodes was used to construct the network, and it is determined by the validation data, training

and test datasets were used to train and test, the sample error was calculated. The mean square

error of the validation data was obtained to predict the neural network performance according

to the number of hidden layers nodes. The hidden layer configuration with the lowest network

error was observed, and 10 neurons were selected for the hidden layer.

Experimental results

In order to verify the accuracy of the method in this paper, we build a water jet experiment

platform, which includes a set of automatic control water gun system, and can freely control

the position of the water gun, as shown in Fig 2.

In order to change the height of water gun, the platform was fixed and placed on the eleva-

tor. The elevator can move upward and downward by controlling the positive and reverse

Table 1. Neural network training parameters.

Maximum training epochs Target error μ Reduction factor Increment factor Maximum failure limit steps

500 0.006 1 0.5 1 20

https://doi.org/10.1371/journal.pone.0221729.t001

Water jet prediction based on GA-BP neural network
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rotation with DC motor. When it works, it can rise or fall at a uniform speed. The maximum

load is about 200 kg, which satisfy the experiment requirements.

To verify the model accuracy, it was necessary to explain the evaluation index. This paper

compared the absolute and relative error results, and the experimental results of the test set are

shown in Fig 3 (Note: All scientific data in this paper were obtained from the author's experi-
ments. They are the data of the relationship between the water jet landing point coordinates and
the spray gun, which are primary data and have been uploaded to the server.)

Table 2. Mean square error of the validation data with different numbers of neurons in the hidden layer.

Hidden layers 3 4 5 6 7 8 9 10 11 12

Mean square error 0.0223 0.0178 0.0127 0.0147 0.0150 0.0180 0.0127 0.0171 0.0185 0.0147

Determination Coefficient 0.18 0.14 0.16 0.15 0.13 0.16 0.14 0.15 0.13 0.16

https://doi.org/10.1371/journal.pone.0221729.t002

Fig 2. Physical chart of water jet gun experiment platform. A water jet experimental platform including automatic

control water gun system was established.

https://doi.org/10.1371/journal.pone.0221729.g002

Water jet prediction based on GA-BP neural network
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(1) Average distance error

The mean error was the average distance error between the predicted and actual water jet

falling point, which was used (σd) to express Eqs (13) and (14) as follows:

sdi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxpi � xiÞ
2
þ ðypi � yiÞ

2

q

ð13Þ

sd ¼
1

m

Xm

i¼1

sdi ¼
1

m

Xm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxpi � xiÞ
2
þ ðypi � yiÞ

2

q

ð14Þ

where σdi is group i ‘s average linear distance error between the predicted and actual water jet

falling point; xpi and ypi are the coordinates of the position of the water flow point (p’) output-

ted from the BPNN for group i; xi and yi are the coordinates of the position of the correspond-

ing actual water flow point (p) for group i; m is the test set sample size, which was set as 500;

and σd is the average linear distance error obtained for the test dataset.

(2) Average distance relative error

The relative error = (absolute value of the measurement error)� (the actual measured

value). This value represented the magnitude of the error value relative to the actual measure-

ment. The coordinates used in this paper for the water flow point are in the form (x,y). When

the horizontal direction of the water flow was 0, the transverse coordinate of the position was

close to 0, then the transverse relative error was large, and the prediction result was inaccurate.

Fig 3. Schematic diagram of the error between the predicted and actual placements. The error schematic diagram

of the experimental results and the predicted position. X is the abscissa of the water falling point, Y is the longitudinal

coordinate of the water falling point. P is the landing point of water jet and P’is the deviation position.

https://doi.org/10.1371/journal.pone.0221729.g003

Water jet prediction based on GA-BP neural network
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Here, the ratio of the water flow point distance error to the actual distance between the water

shooting location and the origin was calculated as the relative error; the relative error of the

water ejection point of the sample set was evaluated as the criterion, and the calculation was as

follows:

dd ¼
1

m

Xm

i¼1

sdi

di
� 100% ð15Þ

where di is the distance between the actual water jet point and the origin point for group i and

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi2 þ yi

2
p

.

MATLAB was used to simulate the experiments for the prediction model for the water jet

displacement points of a sprinkler gun. The simulation parameters were set as follows

(Table 3):

From the data acquisition and preprocessing of the above sections, 500 data samples were

obtained, and a group of 450 samples was randomly selected from the 500 samples for the neu-

ral network training sample dataset. These 450 samples are selected according to the time of

water jet. Since the experiment of testing water drop point is a continuous test, the selected

training and test set are based on the time of water jet gun. When we select the data of drop

point, according to the continuous injection of water flow, randomly select the data in a certain

period of time. 90% is the training set, that is, 90% of the time period is selected as the training

sample, so that the data in the remaining 10% of the time period is used as the test set, which is

more accurate. The BPNN was trained, and the remaining 30 data samples were grouped for

the test sample dataset to verify the output accuracy.

Based on the abovementioned characteristics, a prediction model of the water jet falling

point based on the BPNN was established. First, the results were tested 5 times with the same

training set and test set, as shown in Table 4.

From Table 4, it can be seen that the BPNN had large prediction deviations for the same

training and test datasets. In the prediction results, the difference between the maximum and

minimum errors was 0.055, and the difference between the maximum relative error and the

minimum relative error was 1.9%. This was because for each training session, the initial values

of the network parameters were not the same, resulting in a different starting point of the

BPNN. At the same time, the convergence of the network was not the same at the end of the

training session, so the network output had a large deviation.

To illustrate the prediction effect of the BPNN on the same sample datasets, the experimen-

tal results of groups 1 and 4 were compared with respect to the predicted and measured values,

as shown in Fig 4. Groups 1 and 4 were picked out from the test dataset.

a. Comparison of coordinate values in the X direction

b. Comparison of coordinate values in the Y direction

It can be seen from Fig 4 that most of the predicted and actual landings were relatively

close, but there were still a few instances where the water jet landings had large deviations.

This also reflected the previous setting of the BPNN model weights and the initial data value

settings, which influence the forecast results. It can also be seen from Fig 4 that each time the

Table 3. Parameters of the BPNN prediction model.

Network

structure

Training

function

Implicit layer

transfer function

Output-layer

transfer function

Maximum

training epochs

Target

Error

μ Reduction

factor

Increment

factor

Maximum failure

limit steps

7-10-2 trainlm tansig purelin 500 0.006 1 0.5 1 20

https://doi.org/10.1371/journal.pone.0221729.t003

Water jet prediction based on GA-BP neural network
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Table 4. Prediction results of the BPNN with the same test dataset.

Group Average error distance/m Average relative distance error Average determinant coefficient

1 0.457 7.36% 0.23

2 0.474 6.71% 0.23

3 0.419 6.27% 0.21

4 0.438 6.82% 0.21

5 0.474 8.17% 0.23

https://doi.org/10.1371/journal.pone.0221729.t004

Fig 4. Comparison of two prediction results of the BPNN with the same data samples. The experimental results of group 1

and group 4 were compared with the predicted and measured values. (a) A comparison of coordinate values in the X direction.

(b) Comparisons of coordinate values in Y direction.

https://doi.org/10.1371/journal.pone.0221729.g004

Water jet prediction based on GA-BP neural network
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prediction result had a certain volatility, that is, the prediction model was unstable, an inherent

problem was caused by the convergence of the BPNN.

Water jet prediction model based on a GA-BPNN

Genetic algorithm optimization of the BPNN. Literature on the optimization of BPNNs

based on genetic algorithms [27–28] is extensive. The GA algorithm can improve the BPNN’s

slow convergence, which easily falls into the local optima and other issues [25][29]. The opti-

mization goals were the optimization of network weights, the network structure, and learning

rules [26][30]. In this paper, the weights and thresholds were optimized by a genetic algorithm.

The genetic algorithm mainly included several coding design steps for the individual fitness

evaluation, genetic operators, and main operating parameters. If these parameters were deter-

mined, the BPNN can use the algorithm to match and optimize the weights in the network so

that it can be trained to obtain the global optimization state [27–28][31–32].

Construction of the GA-BP neural network prediction model. In the previous section,

the principle of the genetic algorithm optimization of a BPNN was briefly introduced. Next,

the construction of the BPNN water jet prediction model based on genetic algorithm optimiza-

tion (hereafter referred to as the GA-BPNN prediction model) will be specifically described.

There have been many previous studies on using genetic algorithms for BPNNs. We used

this model to predict the water jet landing point model. The workflow is shown in (Fig 5):

The algorithm for optimizing the weights of a BPNN using a genetic algorithm is as follows:

The first step was the individual coding and population initialization. In the BPNN, the

weights of each neuron were arranged according to certain rules, and the individuals were gen-

erated. An encoding process was used to obtain the individuals in a random manner. This pro-

cess was actually the process used to generate the initial population of a genetic algorithm.

This article adopted a real number coding method to encode the individuals, assuming that

the chromosome length was S, that is, the encoding length, as seen in Eq (16).

S ¼ p� nþ n� qþ nþ q ð16Þ

where p, n and q were introduced earlier and the initial values were given. After the calculation,

S = 116. When solving for the global optimal solution of the neural network, the larger the

population, the easier it was to find an optimal solution, but the computational complexity

would also increase. Therefore, the number of populations was set to 80 in this paper.

The second step consists of the adaptive degree calculation. The fitness function is shown in

Eq (17).

F ¼
1

E
ð17Þ

where E is the mean square error of the output prediction result and the actual expectation.

The value reflects the probability of individual survival. The higher the value, the more accu-

rate the output prediction result is.

The third step consists of the selection of individuals. In the genetic algorithm, the principle

of individual selection is to select the best individuals for producing the next generation from

the existing population and address the convergence problem of an optimal individual, i.e., a

local optimal solution was found. In this paper, the individuals were selected by using the rou-

lette selection method. The probability of selection is shown in Eq (18):

Pi ¼
fiPs
k¼1

fk
ði ¼ 1; 2; . . . ; sÞ ð18Þ
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where fi is the individual i ‘s fitness value in the population and S is the number of individuals

in the population. To achieve the best fitness for individuals in the subsequent crossover and

mutation operations, the best-preserved individual strategy was used, i.e., the individuals with

the best fitness were replaced by the individuals with the worst fitness in this iteration.

The fourth step consists of the crossover operation. The crossover operation in the genetic

algorithm is related to the coding method. It is a step of acquiring a new individual through

the exchange of the parental genomic chromosomes, which is determined by the crossover

probability. This article used the real-coded methods, as shown by Eqs (19) and (20):

Xi
A
0

¼ aXi
B þ ð1 � aÞX

i
A ð19Þ

Xi
B
0

¼ aXi
A þ ð1 � aÞX

i
B ð20Þ

where α is a random number between [0–1]; XA and XB are a pair of chromosomes chosen at

random for the crossover operation; Xi
A and Xi

B are the corresponding gene positions for XA

and XB, respectively; i2[1,S] (S is the length of the chromosome), and Xi
A and Xi

B are the new

genes that produced by the crossover operation [33].

The fifth step involves the mutation operation. In a GA, individual variation is the cause of

population diversity. By using the mutation operation, the GA can avoid the premature con-

vergence of the neural network. This article used Eq (21) for the mutation operation. Through

the non-uniform mutation operator, the iteration step size can be adjusted according to differ-

ent generations so that the convergence range was further reduced compared with that of the

BPNN.

Xi
A
0

¼ Xi
A þ ðUmax � XiÞ � g b � 0:5

Xi
A
0

¼ Xi
A � ðX

i � UminÞ � g b < 0:5
ð21Þ

(

where g ¼ ½r � 1 � t
tmax

� �
�
2
, r is a random number from 0 to 1, t is the evolutionary algebra,

tmax is the set maximum number of generations, β<1, Xi is the gene at the mutation position

of the mutation chromosome, Xi2[Umin, Umax], and Xi’ is the new gene produced by the muta-

tion operation.

The sixth step is to cycle and terminate. Determining the termination of the genetic algo-

rithm mainly depends on whether an iteration has reached the requirements. If none of the

termination conditions are satisfied, the cycle is continued for steps 2~5.

Finally, after terminating the genetic algorithm, the optimal individual results obtained

were used in the BPNN; that is, the weights on each layer were re-evaluated, and the subse-

quent steps were performed, such as training. In this way, the predictions were made, and the

model outputs were closer to the actual water jet drop point locations.

Results and discussion

This section covers the verification of the simulation and the analysis of the abovementioned

algorithm. The water jet prediction model based on a GA-BPNN is constructed and is com-

pared to the water jet prediction model using the traditional BPNN. The parameter setting

part of the GA-BPNN was consistent with that of the BP network in the previous section. In

addition, the GA-BPNN genetic algorithm parameter settings are shown in Table 5.

Fig 5. Flow chart of the GA-BP neutral network prediction algorithm. The work chart of BPNN water jet prediction

model based on genetic algorithm optimization was constructed.

https://doi.org/10.1371/journal.pone.0221729.g005
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The same data were used as with the BPNN simulation experiments in the previous section,

this article used the same experiment to predict the falling point of water flow. Here, the

GA-BPNN algorithm was first used to preprocess the data, and the same training and sample

datasets were processed and operated upon. The experiment was performed 4 times, as shown

in Table 6.

From Table 6, we can see that for the same dataset, using the GA-BPNN prediction results,

the differences were very small for the prediction accuracies, the average relative error of the

maximum and minimum difference was 0.34%, and the error range was 0.14 m. The results

indicate the performance relative to that using the BPNNs alone, especially in terms of the abil-

ity of local convergence in GA, so that each iteration will choose the best individuals to pass on

from one generation to the next. Through the optimization of the weights and thresholds

between the neural network layers, the prediction results were achieved more accurately, and

the prediction differences were further reduced.

To further compare the results of the GA-BPNN and BPNN for the prediction of the water

jet falling point, the following four sets of training and test datasets were selected for experi-

mentation. Ten predictions were performed separately, and the average of the 10 errors was

taken as the prediction result. The data results were recorded, as shown in Table 7.

An output result error always exists. This was because the prediction process of the neural

network itself had errors, and the inaccuracies in the actual measurement and the settings of

the experimental simulation environment will also bring about certain errors. To further elim-

inate the influence of these accidental errors, this experiment focused on different data and

performed multiple sets of measurements and simulations on the two predictive models. From

Table 7, we can see that the predictions from the model based on the GA-BPNN were better

than those of the BPNN model in terms of distance error and relative error.

The above experimental schematic diagram of the graphical results is given below, as

shown in Fig 6. For the different groups, the same sample set and training set used by the

GA-BP and BPNNs were used for predictive modelling. A total of 20 experiments were per-

formed. The best experiment was used as a comparison to observe the two networks’ predicted

and measured values.

Table 5. Parameters of the genetic algorithm.

Parameters Value Instructions

Population size 80 Total number of individuals per generation

Crossover probability 0.25 The probability of the two paired chromosome gene exchanges in the

parent

Variation probability 0.01 The probability of a chromosomal gene mutation in the father

The largest evolutionary

generation

10 The maximum number of iterations of the genetic algorithm; one of the

evolutionary stop conditions

Maximum continuous

evolutionary algebra

5 One of the evolutionary stop conditions

https://doi.org/10.1371/journal.pone.0221729.t005

Table 6. Prediction results of the GA-BPNN with the test dataset.

Group Average error distance Average relative error Average determinant coefficient

1 0.301 4.34% 0.15

2 0.310 4.68% 0.15

3 0.396 4.51% 0.18

4 0.304 4.47% 0.15

https://doi.org/10.1371/journal.pone.0221729.t006
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Table 7. Comparison of prediction results for the BP and GA-BP models.

Group BPNN prediction model GA-BPNN prediction model

Average error distance Average relative error Average error distance Average relative error

1 0.471 7.59% 0.317 4.59%

2 0.485 7.25% 0.337 4.96%

3 0.507 7.62% 0.343 4.74%

4 0.491 7.36% 0.345 4.66%

https://doi.org/10.1371/journal.pone.0221729.t007

Fig 6. Comparison of the predicted values and measured values of the two predictions. The best experimental data are used as

comparison, and the same sample set and training set used by the GA-BP and BPNNS were used for prediction modeling. (a) A

comparison of coordinate values in the X direction. (b) A comparison of coordinate values in the Y direction.

https://doi.org/10.1371/journal.pone.0221729.g006
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a. Comparison of the coordinate values in the X direction

b. Comparison of the coordinate values in the Y direction

It can be seen from Fig 6 that due to multiple sets of experiments and taking the data from

the experiment with the best results as the comparison, the actual error in these two algorithms

was not large. However, it still can be seen that for the predictions based on the GA-BP, the

predicted water jet landing point was basically consistent with the actual landing point. Com-

pared with the BPNN prediction, the error appeared to be relatively large, and the difference

between these two algorithms is reflected in Table 7.

From the comparison between Tables 6 and 7, it can be seen that the BPNN was inferior to

the GA-BPNN in terms of local convergence, and there was some deviation in the final predic-

tion. This deviation will be judged by firefighters in an actual fire extinguishing process.

Conclusion

This paper used the classical BPNN to model and predict the water jet falling point of a fire

gun and designed a network structure suitable for the fire water jet landing point model,

including the data collection, data preprocessing, network weight setting, transfer function

selection and other parameter settings. Then, experiments and predictions were carried out.

As a result, it was found that the prediction error of the water jet landing point based on the

BPNN was relatively large. Then, a water jet prediction model based on the GA-BPNN was

proposed. The article adopted the optimization structure of the genetic algorithm to analyse

and optimize the neural network weights and thresholds, and, to a large extent, address the

problems of the BPNN training process in terms of local minima and other issues. The simula-

tion results showed that the accuracy of the GA-BP model prediction was better than that of

the BPNN. The established model can accurately predict the location of the water jet, making

the prediction result more useful for firefighters.
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