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Abstract

For the evaluation of infectious-diseases interventions, the transmissible nature of such

diseases plays a central role. Agent-based models (ABM) allow for dynamic transmission

modeling but publications are limited. We aim to provide an overview of important character-

istics of ABM for decision-analytic modeling of infectious diseases. A case study of dengue

epidemics illustrates model characteristics, conceptualization, calibration and model analy-

sis. First, major characteristics of ABM are outlined and discussed based on ISPOR and

ISPOR-SMDM Good Practice guidelines. Second, in our case study, we modeled a dengue

outbreak in Cebu City (Philippines) to assess the impact interventions to control the relative

growth of the mosquito population. Model outcomes include prevalence and incidence of

infected persons. The modular ABM simulates persons and mosquitoes over an annual

time horizon considering daily time steps. The model was calibrated and validated. ABM is a

dynamic, individual-level modeling approach that is capable to reproduce direct and indirect

effects of interventions for infectious diseases. The ability to replicate emerging behavior

and to include human behavior or the behavior of other agents is a distinguishing modeling

characteristic (e.g., compared to Markov models). Modeling behavior may, however, require

extensive calibration and validation. The analyzed hypothetical effectiveness of dengue

interventions showed that a reduced human-mosquito ratio of 1:2.5 during rainy seasons

leads already to a substantial decrease of infected persons. ABM can support decision-anal-

yses for infectious diseases including disease dynamics, emerging behavior, and providing

a high level of reusability due to modularity.
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Introduction

Decision analysis is a systematic approach to decision making under uncertainty [1]. The

application of decision-analytic models (i.e. simulation models) allows the evaluation of new

technologies (e.g., treatments, vaccinations, interventions against the spread of the disease)

with respect to benefits, risks, harms and costs. Such computer simulation models are neces-

sary where randomized controlled clinical trials or observational studies are missing, or not

feasible [2]. Decision-analytic models (DAM) synthesize available information from various

sources (e.g., epidemiological studies on the natural history of the disease or the spread of the

disease, short-term clinical studies on treatment effects, quality of life studies, expert opinions)

for their short- and long-term evaluations [3].

For the evaluation of interventions in the area of infectious diseases, the transmissible

nature of infectious diseases plays a central role when developing a model. The reduction of

the prevalence of infections in the target population often leads to a decreased risk for other

individuals in the community. As a best case, the infectious disease may even be eliminated

if the number of infected individuals decreases below a critical number. It is therefore para-

mount for decision-analytic models to capture not only the direct effect of interventions on

the individuals under intervention but also indirect effects on the population level including

herd immunity [4–7]. Herd immunity refers to the effect that a partly vaccinated population

can prevent the spread of an infectious disease, and thereby protect unvaccinated persons.

In addition, the possibility of acquiring natural immunity following recovery from infection

should be considered.

The recent guidelines of the ISPOR-SMDM Modeling Good Research Practices Task

Force [4, 8, 9] note that some modeling methods for decision-analytic models in communi-

cable diseases, such as Markov state-transition cohort models, ignore the indirect effects

that arise from averted incident infections, and therefore benefits and cost-savings from the

intervention may be underestimated [2, 7]. In the review of Kim et al. [10], the authors sum-

marize that model choice for cost-effectiveness analyses for vaccination programs need to be

improved, for instance, to capture the effect of herd immunity. Jit and Brisson [5] state that

many published decision-analytic modeling studies in infectious diseases do not take into

account the specific features of infectious diseases such as the transmissibility from infected

to susceptible individuals and the uncertainties arising from complex natural history and

epidemiology.

In our article, we will illustrate methodological issues in disease transmission modeling

using dengue fever as an exemplary infectious disease. Dengue is a mosquito-borne tropical

infectious disease caused by the dengue virus. The dengue virus is transmitted by several

species of mosquitoes thriving in tropical countries, principally by Aedes aegypti [11, 12].

Local and regional dengue outbreaks are observed in many tropical countries, and increased

number of cases is observed during rainy season [13]. Dengue resurged in the 20th century

and received public awareness in the past few decades when epidemics became stronger and

more severe [14]. With now half of the world’s population being at risk, dengue epidemics are

a severe public health problem in tropical countries, causing a large and continuing morbidity

and mortality burden. The Global Burden of Disease Study 2013 estimated a total of 576,900

(330,000–701,200) years of life lost to premature mortality attributable to dengue in 2013 and

dengue was responsible for 1.14 million disability-adjusted life-years in 2013 [15, 16].

To model dengue epidemics, several modeling approaches have been applied. For example,

differential equations models are used to predict the outcome of vaccinations [17] or to analyze

epidemiologic aspects [18, 19]. However, differential equations models are inflexible because

incorporation of details would require a high (and potentially unmanageable) number of disease
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compartments. Sitepu et al [20] predicted dengue epidemics using a statistical autoregressive

model. However, such statistical methods are limited to specific scenarios and do not incorpo-

rate dynamic effects. Several compartment and stochastic simulation models have been applied

to predict the impact and cost-effectiveness of Dengvaxia, the first available dengue vaccine

[21]. Hladish et al presents two studies of agent-based models of humans and mosquitoes for

dengue transmission [22, 23]. A recent review of health economic evaluation studies of dengue

vaccines found that out of 13 studies, 8 studies used dynamic mathematical models of dengue

transmission, and 2 studies used a Markov model [24].

For evaluations of the effect of interventions on disease spread, the international guidelines

developed by the ISPOR-SMDM Modeling Good Research Practices Task Force recommend

modeling methods that capture interaction, such as dynamic transmission models [25].

Dynamic transmission modeling is often performed using system dynamics. System dynamics

models are deterministic and based on compartments. However, these deterministic compart-

ment models cannot capture stochastic effects such as the extinction of the disease in small

populations and complex interactions and behavior. Agent-based models (ABM) are a more

flexible alternative approach for dynamic transmission modeling because AMBs are modeling

individuals rather than compartments [4].

The aim of our study is, therefore, to discuss the concepts and important characteristics of

ABM for decision-analytic modeling of infectious diseases. In a case study of dengue epidem-

ics, we apply an ABM model to analyze the impact of potential efficacy of mosquito control

interventions on the number of new dengue infections in humans in the Philippines. The case

study serves to illustrate model characteristics, conceptualizing the model, experiences with

model calibration and model analysis.

Case example dengue

Dengue is a mosquito-borne tropical disease that can result in a fever with a mild to life-threat-

ening progression [26–28]. There are five serotypes of dengue virus [29]. After an infection, a

person is immune against the specific serotype. However, studies show that further infections

with other serotypes often result in more severe disease progressions [12, 30].

In the Philippines, dengue is prevalent for the entire year with a small number of infections

during dry season and significantly higher infection numbers during the rainy season [13].

The prevalence of dengue infections in the Philippines also differs among regions. However,

the underlying mechanisms of dengue epidemics are not yet completely understood. Why an

outbreak happened at a certain place and time is hard to explain.

Measures against the spread of dengue can be categorized into three types of interventions:

(1) prevention from being bitten by mosquitoes (e.g., by repellents), (2) vector control, such as

releasing Wolbachia infected or genetically modified mosquitoes, sterilizing techniques, and

mass-trapping leading to a reduced number of mosquitoes [31], and (3) vaccinations. The first

two measures have been the default interventions for many years. To date, vaccines have been

developed and tested in long clinical trials and are now publicly available in selected countries

since early 2016 [13, 32, 33].

Within our project, we aimed building an agent-based model which is suitable to simulate a

dengue outbreak in a Philippine city or region. The model allows analyzing the mechanisms of

dengue epidemics and evaluating the impact of mosquito (vector) control interventions on

disease burden. In this paper, we evaluated the impact of human mosquito ratios on disease

incidence to show the effectiveness that a future mosquito control should reach to stop the epi-

demics. Before we describe the model in detail, we summarize and discuss characteristics of

ABM.
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Characteristics of ABM and reasons for model selection

Agent-based modeling focuses on complex systems composed of ‘agents’ that are uniquely

identifiable, autonomously acting, and capable of interactions [34–36]. Agents are often

human individuals but can also be animals, or objects such as vehicles, buildings etc.. These

agents can capture population heterogeneity. The agents’ behaviors are often described by sim-

ple rules, for example, contacts within social networks or contacts with mosquitos. Agents’

behaviors in combination with transmission pattern and disease progression result in emerg-

ing population-wide dynamics such as the outbreak of a disease [37]. In the following, the

main characteristics of ABM are discussed with the focus on infectious diseases and the case

example of a dengue fever epidemic.

Dynamic (compared to static)

In transmission models, the incidence of infection is determined by the number of susceptibles

and the rate at which susceptible become infected (force of infection). In a static model, the

force of infection is constant over time or it can depend on age. In a dynamic model, the force

of infection is not a fixed parameter. ABM is a dynamic modeling approach since the probabil-

ity of an individual acquiring an infection can be implemented depending on contact patterns

of the agents (i.e., direct interactions), transmissibility of the infection and the distribution of

the infection among the agent population. As a consequence of these factors, the force of infec-

tion is usually not constant over time. For example, dengue epidemics mostly underlie seasonal

patterns with outbreaks during rainy season. In the dengue model, the mosquito population

grows rapidly in a rainy season and more mosquitoes transmit the disease (transmissibility

increases), which causes an outbreak. An important advantage, dynamic transmission models

are capable of reproducing the direct and indirect effects of interventions for communicable

diseases, including herd immunity [4, 10, 34]. Often, dynamic transmission models are used

to assess open target populations. However, modeling studies could also assess epidemics in

closed populations. Therefore, the terms “dynamic”and “open” are discussed separately.

Stochastic (compared to deterministic)

In a deterministic model (e.g., system dynamics models), a given initial situation (or set of

parameter values) always leads to the same results [38]. In a stochastic model, multiple runs

with different underlying random numbers provide a different result due to randomness in

model parameters. That is, some model parameters are specified by underlying parameter dis-

tributions, and in each run new parameter values are drawn from the distributions. Agent-

based modeling is a stochastic and individual-level simulation technique, and therefore, is able

to integrate first-order uncertainty. First order uncertainty means that, for example, individu-

als with the same characteristics (and therefore facing the same probabilities and outcomes)

can just by chance experience different effects of a disease [39]. Stochasticity is included

through pseudo-random numbers. Running stochastic models and applying different random

numbers leads to different model results. In communicable diseases, stochastic effects are par-

ticularly relevant, as they can help to model the extinction of a specific disease in small popula-

tions, where extinction also depends on chance [4, 5]. Deterministic dynamic transmission

modeling methods are not able to capture such small population effects.

Individual based (compared to aggregated cohorts)

ABM are individual-based models that allow researchers to model explicitly the agents’ hetero-

geneity regarding specific characteristics including risk factors or behavioral attributes. Risks
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depending on past events can be incorporated using individual characteristics of agents instead

of modeling many compartments as in dynamic transmission cohort models. Modeling indi-

vidual attributes that affect their behavior explicitly has a great advantage: model adaptation

becomes easier. Altering or adding attributes generally does not affect the model structure, as

it would be the case if information aboutattributes were captured in compartments in system

dynamics models.

In ABM, agents can act independently in their environment, interact with each other, influ-

ence each other and learn from their experiences and adapt [4, 37]. ABM can capture non-lin-

ear behavior and interactions (i.e., change in outcome that is not proportional to a change in

input). The evaluated individual-level (health) outcomes are finally aggregated for health-care

decision making.

In our individual-level ABM, dengue epidemics are rapidly evolving and the mosquito popu-

lation is changing fast due to a short lifespan, requiring detailed states of humans and mosquitoes

for age, infection, incubation, viraemia, and recovery. Implementing multiple characteristics and

disease history can easily be achieved for simulated individuals through combination of attri-

butes. Such a complexity would require hundreds of compartments (i.e., for all combinations of

attributes) and thousands of equations when using different aggregated compartments.

Open (compared to closed)

ABM makes it possible to model open cohorts, that is individuals can enter into and exit from

the model population. Therefore, demographic processes such as birth, death, emigration and

immigration can be incorporated. This characteristic is important, for example, to capture sea-

sonal effects of the mosquito population or vertical transmissions of diseases [38].

Mosquitoes have a short lifespan of several days. Old mosquitoes are often infected while

newborn mosquitoes are susceptible. This dynamically changing fractions of susceptible and

infected mosquitoes cannot be achieved with a closed cohort of mosquitoes.

Emerging behavior

Emergent behavior “also known as emergence, refers to the novel and coherent structures, pat-

terns, and properties that arise from the interaction of the parts of a complex system and take

place at the system scale rather than at the component’s” [40, 41]. ABM is most suited to prob-

lems focused on how individual interactions (e.g., contact pattern) generate emergent system

behaviors and structures (e.g., potential intended and unintended consequences of an epi-

demic such as herd immunity, serotype shift, and extinction). In the model, the dengue epi-

demic is not modeled directly, but is a result of mosquitoes biting humans and the ability to

transmit the virus in both directions.

Network structure, regionality (locality)

An agent’s neighborhood is a general concept. The concept is applicable to various agent

spaces such as geographical space or social space specified by the agent’s social network.

Agents interact with their environment including other agents [37]. How detailed the environ-

ment is modeled (e.g., spatial location of an agent relative to other agents or using rich set of

geographic information) depends on the research question.

Applied ABM for dengue

In this section, we describe the framework, structure, parameters, calibration, validation of the

ABM we developed for the evaluation of dengue interventions to control dengue, and the
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analytic techniques of the evaluation. A detailed model description is provided in the supple-

mentary material S5 File. The model has been implemented in Java SE 8.The program code

will be provided upon request.

Model framework

In this case study, we aimed to examine the 2010 dengue outbreak in Cebu City in the Philip-

pines. We assessed the impact of potential effectiveness of interventions to control the relative

growth of the mosquito population on the number of new dengue infections in humans over

time. We simulated dengue for a one-year time horizon throughout the whole year 2010 in

Cebu City with a population of 860,942 people. The model is based on a recently published

theoretical framework using a modular structure [42]. Our ABM consists of two types of

agents: persons and mosquitoes that are simulated over an annual time horizon considering

daily time steps. Hypothetical efficacy of interventions was modeled in scenarios that reduce

the human mosquito ratio to 1:3.0, 1:2.5, 1:2, 1:1.5 and 1:1 during rainy season. Reported

model outcomes are prevalence and incidence of infected humans over time. All results for

humans can be further stratified by age, gender, and status of the person (susceptible, infec-

tious, and resistant).

Modular model structure

Our dengue model consist of three modules: (1) population module, (2) contact module, (3)

disease modules [42]. This modular structure has been developed to build a complex agent-

base model that provides the flexibility of model adaptions, validation and transparency,

meaning easier to review. The modules are loosely coupled; that is, modules are designed in

the same way, so that strong dependencies are within one module. This reduces dependencies

between modules, so that modules can be extended independently and can even be reused in

other models. Modules also fully cover a specific area. This strategy allows for developing,

implementing, testing and validating the modules separately. This strategy also supports

model extensions and adaptations as they usually address a single module rather the entire

model. Validated modules can be reused in several projects to increase credibility and decrease

development time. This modular structure consists of a population module, a contact module

and a disease module.

The population module of the model initializes a population of persons with age and gender

representing the demographics of the simulated region or city. In our model, the size of the

human population does not change within the simulated one-year time horizon. The popula-

tion module also initializes mosquitoes including age and gender attributes. The number of

mosquitoes is given as a multiplier of the human population. This multiplier can change at spe-

cific points in time and is constant otherwise. A mosquito dies every day with a constant prob-

ability, or at the maximum age of 33 days, which results in an exponentially distributed age

distribution. The number of mosquitoes born each day depends on the number of mosquitoes

that died and the defined multiplier. When the multiplier is changed, a minimum or maxi-

mum number of newborn mosquitoes can be applied to prevent an abrupt decline or increase

of the mosquito population.

The contact module handles the spread of dengue virus due to mosquito bites. Other con-

tacts, for example, person-to-person interactions are not relevant for dengue. Only female

mosquitoes bite, following a sophisticated process based on their gonotrophic cycle and the

need to suck a certain amount of blood. In short, mosquitoes need to bite several persons each

day to get a predefined amount of blood for a certain amount of time defined as biting time.

When they reach a certain amount of blood, they can lay eggs again. The time between laying
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eggs, comprising the time of biting and collecting blood, is called gonotrophic cycle. The mos-

quitos choose their victims randomly among all persons.

The disease module describes the relevant health states and the disease progressions. It

has been observed that a dengue outbreak is usually caused by a single serotype [43]. There

is no information about serotype-specific prior infections in the Philippines [11]. Therefore,

we model only a single serotype and neglect prior infections. A transmission is possible in

both directions with a given probability whenever a mosquito bites a human. However, the

host must be in a viraemic state that allows spreading of the virus, and the recipient must be

susceptible to the virus. The infection process in mosquitoes is well documented: mosquitoes

are usually born healthy and susceptible, although transmissions from infected mothers to

the offspring, so-called vertical transmissions, could be observed in rare cases [44, 45]. Upon

transmission, a mosquito becomes infectious after an incubation period [30]. Dengue is not

harmful to mosquitoes; they simply remain infectious until they die. Humans are also sus-

ceptible at simulation start. Upon a transmission, two independent processes start. The first

process makes them infectious after an incubation period, until they recover and become

resistant to the virus [12, 30]. The second process models the type and length of symptoms

after another incubation period. The symptoms range from an asymptomatic disease to den-

gue fever (DF), severe hemorrhagic fever (DHF), and to life-threatening septic shock (DSS)

[26–28].

Once implemented, the model can be simulated; humans and mosquitoes behave as

defined, resulting in an epidemic behavior of transmissions, infections and recoveries. Herd

immunity is automatically considered as a result of agent’s interactions and transmissions.

Model parameter and data

To simulate the dengue epidemic in Cebu City, hospital data containing all hospitalized den-

gue cases in 2010 were applied. The datasets were provided by the City Health office in Cebu

City for use in this project (S1 File). The human population was defined according to the Cebu

City population of 2010, based on data of the Philippine Census [46]. All model parameters are

listed in Table 1, the computations are presented in S2 File. Parameters derived by calibration

are marked accordingly. The calibration process is described thereafter.

The provided datasets about dengue cases were anonymized and did not include any identi-

fiable information. The population data from the Philippine Census is aggregated and does

not allow to identify persons. The agents in the model are objects representing aggregated data

and do not relate to existing persons.

Calibration

The human population and the reported dengue cases are well known. However, in addition

to the reported cases, there are mild unreported cases and asymptomatic cases. These persons

are unknown but they are infectious and can transmit the disease. The number of asymptom-

atic and unreported dengue cases were estimated based on Chastel et.al. [27].

There is no reliable information about the mosquito population. This includes the popula-

tion size, lifespan, reproduction numbers, and biting habits. There is some information about

incubation period of mosquitoes and that they remain infectious for the rest of their lives.

The infection probabilities for humans and mosquitoes are also unknown and are subject for

calibration.

The model has been calibrated to the 2010 dengue epidemic in Cebu City for eight

unknown model parameters (probability of transmission for persons and mosquitoes, mosqui-

toes per person during rainy and dry season, mosquito death probability per day, initially
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infected mosquitoes, and start and end of the rainy season). The epidemic is defined as newly

infected persons per week over time based on the hospital case data and assumptions about

asymptomatic and unreported cases (Table 1). The calibration goal is to reproduce the inci-

dence numbers.

Table 1. Model parameters of the dengue model and sources.

Parameter Value Source

Simulation time 357 days 2010 has 51 full calendar weeks (= 357 days)

Rainy season Day 131 –day 220 Found through calibration

Population and age

distribution (humans)

According to demography in

Cebu City 2010 with a population

of 860,942

Philippine Census of 2010 [46]

Maximum age (humans) 99 years Requirement due do missing data above age 99

Mosquitoes per human Dry season: 1.0, rainy season: 3.5 Found through calibration

Maximum age (mosquitoes) 33 days Based on Southwood et al. [49] (a maximum age

of 33 allows a mosquito to live for 34 full days,

this is the mean of 30–38 days)

Gonotrophic cycle length

(mosquitoes)

4 days Wong et al. [47]

Mosquito death probability

per day (mosquitoes)

0.2 Calibration

Biting time per gonotrophic

cycle (mosquitoes)

200–1400 seconds (uniformly

distributed)

Platt et. al. [48]

Time per bite (mosquitoes) 5–90 seconds (uniformly

distributed)

Expert opinion

Initially viraemic (humans) 0.000533 Based on dengue case data in the first week of

2010 for all patients that are residents of Cebu

City

Initially resistant (humans) 0 Assumption

Initially infected

(mosquitoes)

0.001 Calibration

Probability of transmission

(from mosquitoes to

humans)

0.14 Calibration

Probability of reported

transmissions (humans)

0.0976 Based on the assumption of 80% asymptomatic

cases (arbitrarily chosen from diverging data in

Chastel [27]) and that 25% of DF cases and all

DHF and DSS cases are reported in the hospital

data

Length of incubation period

(humans)

5–7 days (random) McBride et al. [30]

Length of viraemic phase

(humans)

4–5 days (random) Gubler [50]

Length of intrinsic

incubation period (humans)

3–10 days (random) Chan and Johansson [26]

Length of a fever (humans) 2–7 days (random) Gubler [50]

Probability for type of fever

(humans)

DF: 0.3564

DHF: 0.6335

DSS: 0.0102

Based on dengue case data of 2010 for all patients

that are residents of Cebu City

Probability of transmission

(from humans to

mosquitoes)

0.3 Calibration

Length of incubation period

(mosquitoes)

8–12 days (random) McBride et al. [30]

DF: dengue fever, DHF: hemorrhagic fever, DSS: septic shock

https://doi.org/10.1371/journal.pone.0221564.t001
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A manual calibration has been performed because an automated calibration was not possi-

ble due to the large number of parameter combinations and time intervals and relatively long

simulation times. Calibration results were plotted in order to identify the parameter set that

provides the best fit.

The calibration has been performed considering three phases: (1) the situation before the

outbreak, (2) the start of the rainy season, and (3) the end of the epidemic. The first calibration

phase showed that there is a strong relation between mosquito numbers, biting rates and trans-

mission probabilities. For example, more mosquitoes with less biting rates result in the same

human infections. We found some information about biting times of female mosquitoes

[47, 48], assumed a uniformly distributed biting time of 5 to 90 seconds and a mosquito popu-

lation as large as the human population (referred to as “mosquitoes per human” and as a ratio

“humans:mosquitoes”), and we assumed that all mosquitoes die at the age of 33 days. The cali-

bration of the first 25 weeks of the year is straight-forward and leads to transmission probabili-

ties for humans and mosquitoes.

In the second calibration phase, first only the number of mosquitoes at week 25 was

increased to create an outbreak. Consequently, the epidemic starts as required. The earlier

assumed predefined fixed life span of mosquitos of 33 days, however, leads after 33 days to

a large number of infectious mosquitoes dying, which are replaced by susceptible newborn

mosquitoes. This causes a significant decline in the human epidemic until a significant por-

tion of newborn mosquitoes get infected and pass their incubation period. Therefore, daily

dying probabilities and population growth rates were introduced to gain better mosquito

demographics. Parameters were adapted until the epidemics between week 25 and 37 were

satisfying.

Calibrating the third phase after week 37 was challenging because the developed system is

inert and takes weeks to react to changes. Infected mosquitoes live for weeks, and humans are

viraemic for several days after almost one week of incubation period. To stop the epidemics

after week 37, two attempts were made (Fig 1, S3 File). Attempt 1 tries to reduce the mosquito

population as soon as possible at the end of rainy season. Then, there are no newborn mosqui-

toes for 12 days. After that, the mosquito population has reached its defined number and a reg-

ular amount of mosquitoes per day are born. However, there are still a significant number of

infected persons due to incubation period and viraemic period. The newborn mosquitoes bit-

ing these persons results in an unusually high prevalence among young mosquitoes. Conse-

quently, the epidemic emerges again in week 39 (delayed by the mosquitoes’ incubation

period), and a repeated smaller epidemic in week 43 appeared. In Attempt 2 a higher mosquito

death rate was assumed, while still new mosquitoes are born. However, this results only in a

slow decline because new mosquitoes always become infected quickly by humans.

Finally, the model was calibrated following the second attempt of mosquito population

adaptation. The best fit can be achieved when the mosquito population during rainy season

rises to three times the human population, and declines to the same size as the human popula-

tion after the rainy season. The resulting epidemic is presented in Table 1, Fig 2 and the sup-

plementary material S4 File.

We validated the model according to the ISPOR-SMDM Good Modeling Practice Guide-

lines on several levels: (1) face validity (i.e., by public health experts, modeling experts), and (2)

internal validation (debugging, consistency and plausibility checks) [51]. For internal valida-

tion, we also applied a simplified version of immersive face validation [52]. Immersive face val-

idation involves observing a simulation from the perspective of a single agent. This provides

different information than from aggregated model results, which typically represent the whole

system. With immersive face validation, the behaviors of single agents are tested, ideally using

a graphical 3D-representation of the system. Sophisticated forms of this validation even enable
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the programmer to perform actions with the agent during simulation time. In our dengue

model, we used a simplified version of immersive face validation to observe, how often

humans are bitten by mosquitoes, how many of them were infected and how often a mosquito

bites viraemic and non-viraemic humans.

Results

Fig 2 displays the incidence of infected people estimated by the calibrated model and the real-

world data of Cebu City 2010. Predominantly we see a good fit of the curves. The simulated

decline of the epidemics is slightly delayed.

The impact of potential mosquito control strategies on the number of new infections per

week is displayed in Fig 2, it shows that a reduced human-mosquito ratio of 1:2.5 and 1:3

leads already to a substantial decrease of infected humans and smaller epidemics. Assuming a

human mosquito ratio of 1:2 or smaller, the negative trend (i.e., decrease of new infections)

during week 1 to 25 continues also during rainy season until the infection numbers reach

zero. If a future intervention can reduce the ratio to 1:1 (i.e., number of mosquitoes does not

increase during rainy season), the dengue epidemic eventually dies out. (see also S4 File.)

Discussion

ABM is a dynamic modeling approach that is able to reproduce direct and indirect effects of

interventions for communicable diseases and to replicate emerging behavior. We summarized

Fig 1. Calibration attempts. Fig 1 displays the results of the calibration attempts in comparison to the real-world data. Phase 1 and 2 are similar,

using the two mosquito population adaptation techniques, while phase 3 results in different behavior.

https://doi.org/10.1371/journal.pone.0221564.g001
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major characteristics of ABM and illustrated in a case example how ABM can be applied to

model a dengue outbreak and to evaluate the effect of potential mosquito control interventions

differing in effectiveness.

Classical approaches for epidemic modeling often use ordinary differential equations or

system dynamics, where aggregated variables represent the population of interest that is

grouped by health and other attributes [18, 53–55]. Because of this aggregation level, model

development, validation and sensitivity analyses tend to be faster as compared to individual-

based models. However, the high abstraction level leads to less flexibility for subgroup analyses

if this was not specified upfront (e.g., vaccination of all persons of a certain age that are fre-

quently bitten by mosquitoes). In contrast, agent-based modeling simulates individuals. An

individual-based simulation allows one to include and track patient characteristics and medi-

cal history, evaluation of subgroup specific interventions, calculating specific outcomes and

distributions of these outcomes as well as modeling an open cohort. A specific distinguishing

feature of ABM compared to other individual-based modeling approaches is that the behavior

of agents and respective emerging behavior of the epidemics [56–58] can be captured. Chang-

ing the behavior of specific groups of agents is possible with less programming effort. In a

compartmental model (e.g., system dynamics) this would require a restructuring of the com-

partments and respective underlying equations.

Fig 2. Timeline of the dengue incidence in humans in the year 2010. It compares the reported dengue cases to simulation results. 1:1.0, 1:1.5, 1:2.0,

1:2.5, and 1:3.0 refer to simulations with different human:mosquitoes ratios during raining season. The human:mosquito ratio describes the number

of mosquitoes depending on the number of humans. This allows us to change the number of humans in the model without the need to change the

number of mosquitoes, e.g., for scaling the model. The calibration result refers to the simulation with the calibrated parameters.

https://doi.org/10.1371/journal.pone.0221564.g002
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The flexibility of agent-based models supports the style of iterative modeling. Starting with

a reduced and simplified model structure, more features (e.g. agent characteristics, potential

disease pathways) can be added iteratively until the model complexity meets the needs of the

respective (future) model applications. Reusability is an important issue because it can signifi-

cantly reduce the effort for model development, and working with validated model parts

increase both validity and credibility in the scientific community and for health policy decision

makers. A disadvantage of individual-level ABM are longer conceptualization and model

implementation times.

ABMs are constructed to reproduces an epidemic in a similar way as it happens in reality.

The spreading process occurs based on agents’ behavior. Hence, the model gives insights into

the mechanics of the underlying process, how the epidemic spreads among the population,

and how system changes affect this spreading process, which eventually results in different

outcomes. In particular, this allows to examine herd immunity and serotype shifts. Stochastic

state transition models cannot produce an emerging behavior. They can only incorporate

them if they are known for each situation, which is usually not possible for scenarios. In con-

trast to that, the agent-based model, where the epidemic emerges upon basic rules, automati-

cally simulates these effects without incorporating them explicitly. Yet it is a matter of current

research to find a commonly accepted definition and a standardized way for measurement of

herd immunity and serotype shift, which makes it even harder to use them in models where

they are explicitly required [59].

In ABM, it is technically even possible to trace back the mosquito that infected a person,

when and where it was born, got infected, how many persons it infected before, and what it

did afterwards until it died. Such information could support model validation and in particular

the novel immersive face validation.

Compared to other modeling approaches, ABM also has limitations. ABM usually requires

longer development time due to complexity. Because ABM are individual based, one faces lon-

ger simulation time, lack of analytical tractability, and challenges in parameterization [60]. For

example, often there is a lack of studies on contact pattern or frequencies. Therefore, models

require extensive calibration efforts for unknown parameters. However, these unknown

parameter are made explicit and therefore they become accessible for discussions. Emergent

behavior is both an advantage and a weakness of agent-based models. It allows simulating

complex and even counterintuitive dynamics. However, the cause of wrong dynamics as a

result of erroneous or incomplete agent’s behavior are hard to detect. Therefore, Klügl [61]

presents a validation approach specifically for agent-based models that should help to detect

such problems. Marshall et al. discuss a new dimension of sensitivity analyses, that is added

and may be challenging in ABM: testing the assumptions about human behavior (e.g., “how

people learn, how they disseminate information to their peers or families, and how they change

their behavior in response to new information, incentives, or penalties”) in ABM [40]. Chatt-

wahl and He [38] discuss challenges of probabilistic sensitivity analyses due to transmission

and network-related parameters that are correlated. In addition, probabilistic sensitivity analy-

sis can require long simulation time because of the combination of first- and second-order

uncertainty. Value of information analysis to discover parameters of future research would

also be computational very intense. Modeling an open cohort leads to the question of how out-

comes are summarized. For example, within a cost-effectiveness analysis of vaccinations of

newborns one could consider the outcome (e.g., health-related quality of life) for the entire

population over a fixed time horizon or the outcome summarized for people that have at least

a follow up time of ten years. Finally, as with all complex models, visualization of ABM with

respect to the several modules or layers (development of population, disease, contacts) could

be challenging.
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Literature on ABM comprises technical tutorial papers with general applications [4, 37],

simulating human systems [62], tutorial on economic evaluation using ABM [38], teaching

ABM [37] and comparison of modeling approaches and guidance on model selection [4, 40,

41, 63]. In contrast to this existing literature, we provided a tutorial example on why and how

to apply ABM for decision analysis in infectious diseases, and on limitations.

In principle, the concept of ABM is independent of any particular software. However,

there are specific software packages that have been designed to be applied or to integrate ABM.

Here, we name an exemplary selection of available software. Beyond several commercial prod-

ucts such as ANYLOGIC (The AnyLogic Company), there are open-source agent-based simu-

lators such as MASON, which has also been used to simulate epidemics [64] and EpiSimS, an

agent-based simulation engine for modeling the spread of disease in regions developed by Los

Alamos National Laboratory in the United States [65]. Repast, an open-source toolkit devel-

oped at the University of Chicago, is a rather general framework for agent-based modeling

that provides some basic functionality while the users have to implement the model themselves

in JAVA, .net, or Python [66].

Technical model implementations do usually not follow strict guidelines or instructions.

Instead, they require an algorithmic approach that heavily depends on the actual problem.

Hence, existing ABM simulators often have shortcomings for specific models because they

cannot consider all possible requirements. In these cases, the simulator must be extended by

the user or one decides to implement the model from scratch in a general programming lan-

guage. Thus, technical programming experience with the specific software is crucial for ABM

modeling and advanced general computer programming skills are often necessary.

The case example of dengue epidemics is challenging because the disease is not directly

transmitted from human to human but from humans to mosquitoes and mosquitoes to

humans. This requires modeling of two different populations leading to complex dynamics.

The agent-based dengue model illustrates how these complex dynamics can be reproduced

to a great extent, but producing the exact emerging behavior would require increased model

complexity.

In our modeling example, each day 20% of the mosquitoes die and are replaced by new

mosquitoes. This requires deletion and creation of a large number of agents, which affects the

computation performance. Thus, the runtime heavily depends on the actual implementation,

on used data structures and RAM management. The model has been implemented using

JAVA based on a framework developed in earlier projects [42]. A sample simulation of 365

days with the full population on an Intel1 Xeon1 3.3 GHz processor runs in 9 minutes and 54

seconds and needs a maximum of 600 MB RAM during dry season and 1.3 GM during rainy

season.

Our case example has the following major limitations. In the population model, aging,

deaths, births, emigration and immigration of the human population are not considered. This

assumption can be reasonable for short-term analyses. For future long-term analyses however,

open cohort dynamics should be implemented. We did not consider medical history including

prior dengue infections with a different serotype that impacts the severity of the disease. Avail-

able data to model past dengue infections are limited. With respect to the mosquito incidence,

we did not model in detail regionality of breeding places and the growth of the mosquito popu-

lation during rainy season. The mosquito population size and age distribution, and population

dynamics such as growth and decline at the beginning and end of the rainy season have been

widely calibrated due to a lack of specific data. The decline of the mosquito population at the

end of the rainy season in the calibrated model was slightly slower than the decline displayed

by the real world data. This gap is assumed to be caused by unknown biological processes in

the mosquito population. For example, the cause of the declining population could be an
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increase in death rate or a decrease in birth rate. Therefore, the emergent behavior at the end

of the rainy season could not be exactly estimated. A common challenge for epidemics also

strikes our dengue example: epidemics often occur in yearly, seasonal outbreaks. However,

these outbreaks are usually completely different from year to year. Epidemiologists often can

only provide limited explanations; therefore the goodness of a model prediction of any upcom-

ing seasonal epidemic is limited. The only sensible approach is to use as an example a single,

well-known epidemic from the past to test the effects of interventions. Applying an epidemic

model to another season usually requires a fresh calibration.

Finally, we did not include adverse effects (e.g., of repellents, resistance) on health-related

quality of life or the system itself and costs for our demonstration purposes but cost-effective-

ness analysis could be performed as previously shown [38].

Further interventions that may be considered are: preventing from being bitten by mosqui-

toes (e.g., by repellents) and vaccinations. Due to the flexibility of our modular ABM, vaccina-

tions can be implemented with manageable effort. Only one additional attribute needs to be

added that characterizes an immune person, and a structure that incorporates vaccination

strategies. This is an excellent example for flexibility since it does not affect the rest of the

model structure.

In our case example, calibration—in particular of the declining epidemics—can be

improved. Reasons of the sudden and very steep decline in our case example are not fully

understood by epidemiologists. Hence, implementation of the underlying processes is difficult

and may require adding additional complexity to the model. In comparison to other studies,

for example the Yucatán model published by Hladish, we see a wide range of similarities [22,

23]. In the Yucatán model, the mosquito population starts to grow in May and reaches its max-

imum in July, before it declines in September. The number of dengue cases starts increasing

in July, reaches its maximum in October, and then slowly decreases until January. Our model

could reproduce such a slow decrease of dengue cases. However, the dengue epidemic in the

Philippines stops abruptly within three weeks. Due to the long delay between size of mosquito

population and dengue epidemic, we could not fully reproduce the rapid decline.

Our model could be further improved with regard to regionality, seasonality, serotypes,

patient history and adaptive behavior. Incorporating households and the detailed location

where persons and mosquitoes live can, for example, support the evaluation of targeted

(regional) vaccination strategies and regional measures to contain the mosquito population.

Incorporating seasonality (i.e., the impact of rain seasons on mosquito growth) could improve

estimated monthly health care demand and subsequently support planning of health care pro-

vision. To differentiate between the four dengue serotypes in the model could also improve the

evaluation of vaccination strategies. Studies have shown that persons can only become resis-

tant against their serotype of infection, and that they are more likely to develop severe symp-

toms during secondary infections [12, 30]. Therefore, vaccination against specific serotypes

could also prevent severe symptoms of secondary infections which may be considered as an

additional benefit in a cost-effectiveness analysis. The model could be refined to incorporate

patient histories including previous infections or comorbidities to allow, for example, for pre-

dictions on the severity of the disease. Further advanced topics such as adaptive behavior (e.g.,

humans taking prevention against mosquito bites, mosquitos getting resistant against certain

measures) could also be considered in decision analyses.

In general, for the application of ABM for infectious diseases, there are several open ques-

tions for further research with respect to model validation and uncertainty analysis. For model

validation a novel face validation technique where a human expert checks systematically what

an agent perceives and how it reacts (immersive face validation) deserve closer attention [52].

For sensitivity analysis, testing the assumptions about human behavior [41] and doing a
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probabilistic sensitivity analysis within a reasonable time and taking into account correlation

between parameters remain challenging [38].

Conclusions

ABM is a powerful tool to support decision-analyses for infectious diseases including the

dynamics of infectious diseases and emerging behavior, and with a high level of reusability due

to modularity. Conceptualizing an ABM, the level of required detail should carefully be con-

sidered based on research questions to define a reasonable complexity. The ability to include

human behavior or the behavior of other agents makes assumptions explicit, accessible for

discussion but may also lead to extensive calibrations due to a lack of data. The complexity of

ABM and the underlying structure often requires longer modeling, validation and simulation

time. Models can become very data intense. Probabilistic sensitivity analysis can be challenging

because of required information on parameter correlation and long simulation time because

of the combination of first- and second-order uncertainty. Our case example illustrates that

intense calibration efforts may lead only to reasonable reproducibility of reality. The focus of

future research should be on model calibration and validation.
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lected in Puerto Iguazú, Misiones, Argentina. Revista do Instituto de Medicina Tropical de São Paulo.

2014; 56:165–7. https://doi.org/10.1590/S0036-46652014000200013

45. Martins VEP, Alencar CH, Kamimura MT, Kamimura MT, de Carvalho Araújo FM, De Simone SG, et al.
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52. Louloudi A, Klügl F, editors. Immersive Face Validation: A new Validation Technique for Agent-based

Simulation. Federated Conference on Computer Science and Information Systems (FedCSIS 2012);

2012 September 9–12; Wroclaw, Poland.

53. Dietz K. Epidemiologic interference of virus populations. Journal of Mathematical Biology. 1979; 8:291–

300. https://doi.org/10.1007/BF00276314 PMID: 501225

54. Kermack WO, McKendrick AG. A Contribution to the Mathematical Theory of Epidemics. Proceedings

of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1927; 115:700–21. https://

doi.org/10.1098/rspa.1927.0118

55. Lipsitch M. Vaccination and Serotype Replacement. In: Dieckmann U, editor. Adaptive dynamics of

infectious diseases: in pursuit of virulence management. Cambridge; New York: IIASA: Cambridge

University Press; 2002. p. 362–74.
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