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Abstract

The biological significance of regional cladoceran morphotypes in the montane regions of

the central Palearctic remains poorly understood. In the Holarctic Daphnia longispina com-

plex (Cladocera: Daphniidae), several variants, lineages and species have been proposed

as endemic for Southern Siberia. Daphnia turbinata Sars, for example, named after its

unusual head shape, is known only from Southern Siberia. Here we sequence DNA of

Daphnia from three mitochondrial genes (12S rRNA, 16S rRNA, and NADH dehydrogenase

subunit 2, ND2) from 57 localities in Russia and Mongolia (the majority being from Southern

Siberia) and place them in evolutionary context with existing data. Our aim was to examine

regional endemism of the Daphnia longispina complex in Southern Siberian; to improve the

phylogenetic understanding with improved taxonomic and regional sampling, and to better

understand the influence of Pleistocene glaciation on the biogeography of these lineages.

At least three lineages showed genetic evidence for endemism in Southern Siberia. There

was strong support for D. turbinata as a sister lineage to to D. longispina/D. dentifera.

Another endemic, Siberian D. cf. longispina, is a sister group to the longispina group in gen-

eral. Within D. longispina s. str. there was an endemic Siberian clade with a western range

boundary near the Yenisei River Basin. Gene flow estimates among populations (based on

FST values) were very low for clades of D. longispina on a regional (the original 12S dataset),

and on a pan-Eurasian (the extended 12S dataset) scale. Negative values of Fu’s FS and

Tajima’s D tests prevailed for the species examined with significant values found for two D.

longispina clades, D. dentifera, D. galeata and D. cristata. Our results support the notion

that Southern Siberia is an important biogeographic region for cladocerans as it contained

unexpected diversity of endemics (such as D. turbinata, D. cf. longispina and lineages of D.

umbra and D. longsipina s.str.) and from being the geographic meeting place of expanding

postglacial lineages from eastern and western refugia.
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Introduction

Water fleas (Crustacea: Cladocera) are model organisms for evolutionary biologists, hydrobiol-

ogists and biogeographers. In the last decade of the 20th century and first decade of the 21st

century, molecular genetic methods were intensively used for cladocerans [1, 2, 3, 4, 5, 6, 7].

This application of molecular methods led to rapid progress in taxonomy and evolutionary

biology. For cladocerans, an integrated approach has been ideal—combined morphological

and molecular methods helped to define boundaries among congeneric taxa and revealed

undescribed species [8, 9, 10, 11, 12, 13, 14]. But the identification of "problematic" (e.g.

hybrid) specimens, populations and species in the D. longispina group remained difficult [15]–

moreover cases of mito-nuclear discordance between provisionary "taxa" were proposed [16].

Still, molecular analyses alone have been important within this group when morphological

redescriptions and diagnostic characters were lacking [17, 18]. For example, molecular studies

(and in some cases paleolimnological records) supported rapid postglacial evolution of the

“defensive” morphotypes in cladocerans [6, 19, 20]. As with fish, the significance of postglacial

morphotypes for speciation and taxonomy remains actively researched. Moreover, older pre-

glacial “defensive” (i.e., “helmet” and carapace shape variants) morphotypes of cladocerans

may yet exist in the relatively unexamined fauna of central Palearctic montane regions.

Molecular studies revealed numerous cases of cryptic species within different animal groups

[21, 22, 23], including different families of water fleas [12, 24, 25, 26, 27]. For the Daphnia longis-
pina group, highly divergent mitochondrial lineages have been detected in different geographic

regions of Eurasia [7, 28; 29, 30]. Often, existing morphological keys are inadequate to recognize

divergent lineages related to D. longispina (e.g., "D. curvirostris" in Japan [31] and D. lacustris in

Europe [32]). It is obvious that the application of recent keybooks do not allow us to resolve the

exact taxonomic status of problematic populations—additional morphological investigations are

necessary to find their diagnostic characters. Moreover, molecular data suggest a hybrid status

of some divergent lineages of D. longispina [16], and this could reflect some ancient events in

the evolutionary history of the group, as well as its ancient polymorphism. It is possible that line-

ages bearing ancient mitochondrial DNA survived in refugia during the Pleistocene glacial

cycles. Phylogeographic studies based on different taxa in different geographic regions strongly

suggested the existence of such refugia [33, 34, 35, 36, 37, 38, 39]. Some refugia were located in

montane regions, which are now well-known sources of endemic cladocerans [40, 41, 42].

Still, little is known of cladoceran biogeography in the montane regions beyond Europe.

[36, 42]. Western and Eastern Siberia are among the most vast and understudied regions in

cladoceran biogeography [42]. Only a few trans-Palaearctic phylogeographic studies exist.

These studies suggested a strong longitudinal differentiation of the fauna within the Palearctic

[26, 27, 43, 44].

Our previous studies of the genetic structure of the D. longispina complex in Siberian popu-

lations revealed unexpected taxa: D. umbra, D. dentifera, a presumably new taxon from West-

ern Siberia and several divergent mitochondrial lineages of D. cf. longispina [45, 46, 47, 48, 49].

These initial studies indicated the potential for endemic species and haplotypic structure in the

D. longispina complex of mountain and pre-mountain water bodies of Southern Siberia. Even

before molecular studies, Sars [50, 51] pointed to the existence of some endemic taxa in this

region, including Daphnia longispina var. turbinata. The proposed variant with an unusual

head shape was described from the basin of Teletskoe Lake in the Altai Mountains and then

recorded from some water bodies of Mongolia and Baikal region [52, 53]. Glagolev [54] con-

cluded from morphology that Daphnia turbinata Sars is a valid taxon from the D. longispina
complex. Still, the phylogenetic position of this taxon is unclear and no available genetic data

exists for D. turbinata.

Daphnia longispina complex in Southern Siberia
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Here we aimed: (1) to evaluate the level of endemism for the D. longispina complex in

Southern Siberia based on the sequences of three mitochondrial genes (12S, 16S and ND2); (2)

to analyse the geographic distribution of common and rare taxa of the D. longispina complex

and their haplotypes in the water bodies within this region; (3) to study in detail the genetic

structure of D. longispina, the most common taxon in this region.

Material and methods

Ethics statement

The study did not involve any endangered or protected species. Field collection in Russia was

carried out by our team or by colleagues as part of a governmental project "Ecology and biodi-

versity of aquatic ecosystems and invasions of alien species" (№ 0109-2014-0008 for 2015–

2017) and the Federal Fundamental Scientific Research Program for 2013–2020№ VI.51.1.9.

(AAAA-A16-116121410119-4), with governmental permission to collect samples from public

property. Sampling in the natural reserves of Russia (Azas Federal Natural Reserve and former

Belozersky Zakaznik) was conducted with special permissions of their Administration. Mon-

golian samples were collected by the Joint Russian-Mongolian Complex Biological Expedition

with permission of the Ministry of Nature, Environment and Tourism of Mongolia.

Sampling

Zooplankton samples were collected by the Juday-type (125 μm mesh size) and Apstein-type

(250 μm mesh size) plankton nets during summer season of 2004–2017, fixed in 96% ethanol

immediately after collecting, and then stored at –20˚C. Prior to DNA extraction, each Daphnia
specimen was photographed in lateral view using an Altami microscope (Altami, Russia,

under 4× and 10×) for documentation of its body and head shape. As possible, each specimen

was identified to species level according to existing keys [55].

DNA extraction and sequence analysis

Original sequences were obtained here for specimens from 57 localities of Russia and Mongo-

lia (Fig 1, S1 Table). Most these water bodies were located in the Southern Siberia in basins of

large Siberian rivers: Yenisei (with its largest affluent, the Angara, starting from Lake Baikal)

and Ob (with its largest affluent, the Irtysh), but some additional samples from Yakutia (Lena

basin), Ural Mountains, Kamchatka Peninsula and European Russia are added.

Total genomic DNA was extracted using a 5% suspension of Chelex 100 resin (Bio-Rad,

USA) from single ethanol-preserved Daphnia specimen. One to ten individuals per population

were selected for mitochondrial DNA analysis. One to three mitochondrial markers were

amplified for each specimen, namely: two ribosomal RNA genes: a 528–529 bp fragment of the

12S and a 476–477 bp fragment of the 16S genes, and 718 bp protein-coding fragment of the

NADH dehydrogenase subunit 2 (ND2) gene. The PCR conditions and protocols were as speci-

fied previously [45, 48]. The PCR products were separated on 0.9–1% agarose (Low EEO Stan-

dart agarose, BIOZYM, Russia) in the presence of ethidium bromide and photographed under

UV light. The amplified products were purified using a kit from BIOSILICA (Novosibirsk, Rus-

sia) and the samples were sequenced in both the forward and reverse direction at the company

“Syntol” (Moscow, Russia, www.syntol.ru). The newly obtained nucleotide sequences were

deposited into the GenBank under the following accession numbers: MN251883-MN251898,

MK930508-MK930512, MK930467-MK930484, MK951805-MK951810 for the 12S gene;

MK930485-MK930487, MK930489; MK930490; MK930492; MK930493 for the 16S gene; and

MK930499-MK930505 for the ND2 gene (see accession numbers see S1 Table).

Daphnia longispina complex in Southern Siberia
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Fig 1. Distribution of the taxa and phylogroups of Daphnia longispina complex in Eurasia. Upper panel—a map of

Southern Siberia and Mongolia; lower panel—global map. Shapes of different colors correspond to different species,

namely: red squares, D. longispina clade B; blue squares, D. longispina clade A; green squares, D. dentifera; black circle, D.

cf. longispina; pink circles, D. turbinata; brown circle, D. umbra. The base map for lower panel was obtained from the

open domain plain map available at https://marble.kde.org/.

https://doi.org/10.1371/journal.pone.0221527.g001
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Mitochondrial datasets

The sequences for the species of the D. longispina complex were grouped into three mitochon-

drial datasets. The first dataset was composed of 477 original nucleotide sequences and

sequences obtained from the GenBank database (S2 Table). Hereafter, this dataset was desig-

nated as “extended 12S dataset”. The second dataset was named “original 12S dataset” and

comprised of 150 original sequences (of differing ages). The third analyzed dataset was named

as “concatenated 12S+16S+ND2 dataset” and was composed of 49 original nucleotide

sequences (S1 Table).

Phylogenetic analyses

The nucleotide sequences were automatically aligned using the ClustalW algorithm [56] and

then manually edited using BioEdit v.7.0 [57]. Then datasets were tested for redundancy and

saturation and were collapsed into haplotypes using METAPIGA v.3.01 [58], when necessary.

The best-fitting models of nucleotide substitution for both 12S rRNA gene datasets were

selected in jModelTest v. 2.1.7 based on the likelihood scores for 88 different models and under

the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) [59, 60].

The best models were General Time Reversible with invariant sites and gamma distribution

(GTR+I+G, α = 0.38 [61]) for the extended 12S dataset and Tamura-Nei with gamma distribu-

tion (TrN+G, α = 0.25 [62]) for the original 12S alignment. The phylogenetic trees based on

both 12S datasets were reconstructed in MEGA v. 7.0 using the maximum likelihood (ML) algo-

rithm with pairwise deletion of the gaps and missing sites [63]. One thousand bootstrap repli-

cates were run to assess the statistical support for the tree nodes [64]. Bayesian analysis was

performed with MrBayes v.3.2 [65] under the GTR+I+G (extended 12S dataset) and GTR+G

(original dataset) models. Two simultaneous runs with four Markov chains each were run for

1×106 (original dataset) and 10×106 generations (extended dataset) and sampled every 500 gen-

erations. Convergence of runs was assessed by examination of the average standard deviation of

split frequencies and the potential scale reduction factor. In addition, stationarity was confirmed

by examining posterior probability, log likelihood, and all model parameters by the effective

sample sizes (ESS> 200) and trace plots of MCMC output in the program Tracer v.1.7 [66, 67].

For the concatenated dataset we determined the best-fit models of nucleotide substitution

and the optimal partitioning scheme using PartitionFinder v.2 [68] and IQ-TREE v.1.5.4 [69,

70] under the AIC and BIC. The partition schemes selected by IQ-TREE were subsequently

used in the ML search with the same software, using 1000 ultrafast bootstrap replicates [71].

The following partition schemes for ML were selected by the corrected AICc: for 12S rDNA,

16S rDNA and ND2 codon position 3 (HKY+F+R2); ND2 codon position 1 (HKY+F+I); ND2
codon position 2 (TN+F). The tree support was accessed with the rapid-bootstrapping algo-

rithm using 1000 non-parametric bootstrap replicates. Bayesian analysis for the concatenated

dataset was performed with MrBayes v.3.2 under the following partition schemes: 12S rDNA

(GTR+G); 16S rDNA (GTR+I+G); ND2 codon position 1 (GTR+I); ND2 codon position 2

(GTR); ND2 codon position 3 (GTR+G). Two simultaneous runs with four Markov chains

each were run for 1×106 generations and sampled every 500 generations. The first 25% of gen-

erations were discarded as burn-in. Convergence of runs was assessed by examination of the

average standard deviation of split frequencies and the potential scale reduction factor. The

stationarity was confirmed as indicated above by the effective sample sizes (ESS > 500) and

trace plots in the Tracer v.1.7. The phylogenetic trees resulting in ML and BI analyses were

visualised and edited using FigTree v.1.4.3 [72]. The sequences of D. cf. longispina and D.

umbra were used as outgroup rooting of the original and concatenated phylogenetic trees; and

D. cristata was used for the extended 12S phylogeny.

Daphnia longispina complex in Southern Siberia
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A split network as an alternative method of analysis was performed using NeighborNet

model with "equal angle" algorithm and uncorrected p-distances in the SplitsTree v.4.10 [73,

74] based on the original 12S nucleotide sequences for all studied species of the D. longispina
complex collapsed into haplotypes. A split network robustness was tested using 1000 bootstrap

replicates. The haplotype networks were constructed by the median-joining method (MJ) [75]

using Network v.5.0 (available on www.fluxus-engineering.com) based on the original 12S
sequences for the D. longispina clades.

Genetic diversity, population structure and neutrality tests

The mitochondrial DNA polymorphism for the studied species and two clades of D. longispina
was estimated separately for both 12S datasets and the concatenated alignment. The following

parameters were calculated using DnaSP v.5.10 [76]: the number of haplotypes (h), number of

segregating sites (S), haplotype diversity (Hd), and nucleotide diversity (π).

A hierarchical analysis of molecular variance (AMOVA) for the D. longispina and D. denti-
fera populations was conducted using Arlequin v.3.5.2.2 [77]. Three AMOVAs were carried

out to examine patterns of genetic differentiation into (1) the “among geographical groups”,

“among populations within groups” and “within populations” components; (2) the “among

populations” and “within populations” components; (3) the “among clades”, “among popula-

tions within clades” and “within populations” components. For this all D. longispina popula-

tions were grouped into eight geographical groups (S3 Table); and D. dentifera was grouped

into three groups (S4 Table). This analysis was performed for the D. longispina populations

and clades based on extended and concatenated datasets; and for D. dentifera populations the

analysis was based on the extended dataset only. The significance of F-statistic parameters was

assessed by permutation tests with 10000 replicates as implemented in Arlequin v. 3.5.2.2.

An average evolutionary divergence over original 12S sequence pairs within and between

clades and species of the D. longispina complex using uncorrected p-distances was estimated

in MEGA v.7.0. To assess genetic distances among populations, pairwise FST values were calcu-

lated using the extended dataset with Arlequin v.3.5.2 and associated probability values were

calculated using 10 000 permutations. Then, the pairwise FST comparisons were plotted. The

neutrality tests of Fu’s FS [78] and Tajima’s D [79] were calculated for the species and clades of

the D. longispina complex with DnaSP v.5.10 to investigate the historical population demo-

graphics and testing whether the sequences conformed to the expectations of neutrality. The

significance of these tests was proved using the coalescent simulation with 1000 permutations.

Results

Phylogeny and haplotype distribution

The extended 12S rRNA gene dataset. According to BI and ML analyses, all 12S
sequences of the D. longispina complex are subdivided into seven specific clusters; tree topolo-

gies were identical in both analyses (S1 Fig). The eighth cluster is composed of Daphnia cris-
tata sequences and was used as an outgroup. Most parts of the clusters were monophyletic

except for D. cf. longispina and Daphnia sp. from Berse, which have unclear positions in the

overall phylogeny of the group. There are multiplied lineages (subclades) within each specific

cluster with branch support up to 100%. Within the D. longispina sequences, a distinct clade A

is clearly distinguished; it is formed by the haplotypes from remote mountain water bodies of

Siberia, while a clade B is widely distributed in Eurasia and includes the type locality of D. long-
ispina, Denmark (see arrow in S1 Fig). The haplotypes of D. dentifera from the water bodies of

Yakutia and the Baikal region pooled into one subclade (91%)–the Yakutia sequences formed

a distinct group within D. dentifera (100%). D. turbinata is a sister group to the D. longispina

Daphnia longispina complex in Southern Siberia
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—D. dentifera—D. galeata—D. cucullata cluster. The D. umbra and D. lacustris haplotypes

form a distinct monophyletic clade (91%), and several divergent subclades are found within

the D. umbra cluster.

The original 12S dataset. The reconstruction of phylogenetic relationships within the D.
longispina complex based on the original 12S sequences of the mtDNA revealed seven strongly

supported clusters, which reflect the nominative species (Fig 2). However, the analysis of the

original 12S sequences, failed to resolve the position of D. turbinata with respect to other spe-

cies of this complex. Moreover, a discordance between the ML and BI phylogenetic trees was

found (S2 Fig). The closely related species D. longispina—D. dentifera, D. galeata—D. cucul-
lata, as well as D. umbra—D. cf. longispina comprised some separated clusters with a signifi-

cant support. The cluster joined of the last two above-mentioned species can be considered as

outgroup in relation to other species of the complex. According to the BI analysis, the D.
umbra—D. cf. longispina sequences formed the pooled sister lineage to the D. turbinata
sequences (S2 Fig). All D. longispina sequences could be clearly separated into two large clades;

at the same time the haplotypes within clade B were subdivided into a number of subclades

with a strong support values (Fig 2, S2 Fig). The haplotypes from Mongolia were clearly

divided into distinct groups within the D. galeata cluster. The D. umbra haplotypes from dif-

ferent geographical regions also forming divergent subclades.

In general, the structure of the split network based on the original 12S dataset of the D. long-
ispina complex coincided with the ML-tree topology (Fig 3I). It is interesting, that the position

of D. turbinata was even more close to the D. longispina–D. dentifera cluster in this analysis,

than in the ML and BI phylogenies. The bootstrap supports were high (from 92 to 100%). The

median-joining network for the original 12S haplotype of D. longispina unambiguously con-

firmed the existence of two clades (Fig 3II). Clade A was characterized by a star-shaped struc-

ture with the central haplotype H_3 occurring in the populations from different regions of

Siberia. Nevertheless, the bulk of haplotypes of this clade was found in the mountain water

bodies of the Altai-Sayan highland and the basin of Lake Baikal (Fig 3II). Clade B was com-

posed mainly of the D. longispina haplotypes from the water bodies of the Ob-Irtysh basin.

The exception was a single haplotype from an unnamed pond situated at the Todzha Depres-

sion (the Yenisei River basin). Several haplotypes from the Urals and Eastern and Central

Europe also belonged to clade B. There are seven substitutions and three hypothetical haplo-

types between the clades A and B.

The concatenated dataset. According to the BI and ML analyses, all concatenated 12S
+16S+ND2 sequences of the D. longispina complex were subdivided into five clusters also cor-

responding to the aforementioned species (Fig 4). In general, clusters corresponded to the

clusters of our 12S-based phylogenies. The exceptions were the D. cucullata and D. umbra clus-

ters, which were not presented in the current analysis. The concatenated-tree topology

revealed strong support for the monophyly of the D. longispina–D. dentifera–D. turbinata
clade (100/96). This result was concordant with that obtained for the extended 12S tree. The

monophyly of this clade and D. galeata was also supported with this analysis.

Additionally, the analysis of the concatenated dataset also supported the existence of two

major D. longispina clades. The divergence between them was even deeper than that in the

12S-phylogenies. Each specific cluster as well as the D. longispina clades contained one or

more divergent mitochondrial haplogroups with high branch supports (Fig 4). Among such

haplogroups, clade A includes specimens from the lakes of the Altai Mountains (upstream of

the Ob River basin), and another clade includes specimens from Lake Dodot (upstream of the

Yenisei River basin). Clade B was formed by three groups of haplotypes; there was an addi-

tional inner divergent lineage in one of these groups encompassing the sequences from the

temporary water bodies of the Lake Chany basin. The second haplogroup consisted of the

Daphnia longispina complex in Southern Siberia
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Fig 2. Maximum likelihood phylogenetic tree for species of the D. longispina complex based on the original 12S
dataset. ML bootstrap values above 70% are indicated for each significant node. Scale is given in expected substitutions

per site. Colored geometric symbols are the same as in Fig 1 and S1 Fig.

https://doi.org/10.1371/journal.pone.0221527.g002
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sequences from three geographically distant D. longispina populations, namely from the Altai

Mountains, the Lake Chany basin and Lake Glubokoe (located in European Russia). And the

third group united the "D. hyalina" haplotypes from Lake Hallstättersee (Austria). As for D.

dentifera, there was a divergent lineage uniting sequences from the population from Lake Sred-

nee Kedrovoye (the Lake Baikal basin).

The concatenated 12S+16S+ND2 sequences of D. galeata were subdivided into three diver-

gent haplogroups. The first group joined the haplotypes from the Ust-Ilimsk Reservoir (the

Angara River, the Lake Baikal basin) and Lake Bolshoye (the Ob River basin). The second hap-

logroup united the haplotypes from Lake Karakul. The third group unitesd the haplotypes

from the geographically distant D. galeata populations, namely from Lake Kadysh (the Todzha

Fig 3. Network phylogenies based on the original 12S dataset: (I) Split tree for species of the D. longispina complex with uncorrected p-distances.

Bootstrap support is shown for each split; scale is expected substitutions per site. (II) Median-joining network for haplotypes of the D. longispina clades.

Each circle of MJ network is proportional to relative haplotype frequencies (scale is shown in the upper right corner). The numbers of mutations are labeled for

each branch (if not 1). Colors are the same as in Fig 1 and S1 Fig; ID for haplotypes see S1.

https://doi.org/10.1371/journal.pone.0221527.g003
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Depression, the Yenisei River basin) and from an unnamed pond near Vladivostok city (the

Far East of Russia). The concatenated sequences of D. cf. longispina were also divided into two

groups (Fig 4).

Genetic polymorphism and population structure

In toto, the level of genetic polymorphism of the concatenated fragment of the mtDNA is

higher than that of 12S gene in all studied species of the D. longispina complex (Table 1, S5

Table). This is especially obvious when analyzing the level of haplotype diversity (Hd) in D.

Fig 4. Bayesian phylogenetic consensus tree for D. longispina based on the concatenated (12S + 16S + ND2) dataset. Bayesian posterior probabilities BI and

bootstrap values from ML analysis above 75% expressed as a percentage are indicated for each significant node. The scale is given in expected substitutions per

site. Colored geometric symbols are the same as in Fig 1.

https://doi.org/10.1371/journal.pone.0221527.g004
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dentifera. Clade B of D. longispina, D. dentifera and D. galeata are characterized by higher

nucleotide diversity (π) as compared to other species. D. longispina, D. galeata and D. umbra
have a large number of haplotypes (h) and polymorphic sites (S) (Table 1, S5 Table). The high-

est Hd and π values are found in D. umbra.

A hierarchical AMOVA supported a high level of the genetic subdivision of D. longispina
and D. dentifera as with the phylogenetic reconstruction. In general, there was a strong within-

population structuring. Considering the hierarchical level “geographical areas” and the

unstructured dataset, AMOVA analysis showed a significantly high molecular variance for the

“within populations” component, 55.22% for D. longispina (Table 2) and 77.93% for D. denti-
fera (Table 3). When we considered the “D. longispina clades” level, the AMOVA assigned the

main portion of molecular variance to the “among clades” level (71.77–73.39%) whereas popu-

lations within clades showed low variation (5.68%). All F-statistics were highly significant

(P< 0.001 or P< 0.05), except for the“within populations” component at the hierarchical “D.

longispina clades” level and the unstructured dataset of D. dentifera (Tables 2 and 3).

Evolutionary divergence (uncorrected p-distances) over the original 12S sequences pair

within and between studied species and clades of the D. longispina complex was high (7.3–

Table 1. Polymorphism of the mtDNA based on the original 12S and concatenated 12S+16S+ND2 datasets for the studied Daphnia species and D. longispina clades.

Abbreviations: con, concatenated fragment (12S+16S+ND2); n, number of sequenced Daphnia individuals; S, number of polymorphic sites; h, number of haplotypes; Hd,

haplotype diversity; π, nucleotide diversity; st.d., standard deviation.

Species n h S Hd ± st.d. π ± st.d.

12S con 12S con 12S con 12S con 12S con

D. longispina clade A 46 11 17 9 22 32 0.768±0.059 0.945±0.066 0.0024±0.0005 0.0045±0.0011

D. longispina clade B 24 8 19 8 28 73 0.971±0.024 1.000±0.063 0.0088±0.0011 0.0149±0.063

D. dentifera 21 4 5 4 6 4 0.352±0.131 1.000±0.177 0.0015±0.0006 0.0013±0.0004

D. turbinata 7 3 3 1 2 0 0.667±0.160 0 0.0014±0.0004 0

D. cucullata 9 – 5 – 7 – 0.861±0.087 – 0.0049±0.0008 –

D. galeata 28 19 12 14 22 64 0.831±0.063 0.936±0.047 0.0046±0.0012 0.0060±0.0011

D. umbra 7 – 4 – 17 – 0.810±0.130 – 0.0150±0.0033 –

D. cf. longispina 5 4 1 2 0 1 0 0.667±0.204 0 0.0004±0.0001

https://doi.org/10.1371/journal.pone.0221527.t001

Table 2. Analysis of molecular variance AMOVA for the extended 12S and concatenated 12S+16S+ND2 datasets of the mtDNA for D. longispina and two clades.

The significances ofF-statistics values were tested by a permutation test with 10 000 replicates.

Grouping criterion Source of variation df % of variance F-statistics

12S con 12S con 12S con

Geographic areas Among areas 7 – 24.81 – FSC = 0.282�� –

Among populations within area 18 – 21.21 – FST = 0.460�� –

Within populations 187 – 53.97 – FCT = 0.248�� –

Unstructured set Among populations 25 – 44.78 – FST = 0.448�� –

Within populations 187 – 55.22 –

D. longispina clades Among clades 1 1 73.39 71.77 FSC = 0.213�� FSC = 0.389��

Among populations within clades 9 4 5.68 10.98 FST = 0.791�� FST = 0.827�

Within populations 46 10 20.93 17.26 FCT = 0.734�� FCT = 0.718

� P < 0.05

�� P < 0.001

bold type—insignificant value, P> 0.05.

https://doi.org/10.1371/journal.pone.0221527.t002
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12.5%, Table 4). Within certain species, the highest values for p-distances were found in D.

umbra– 1.5%. As for genetic divergence between the geographical D. longispina populations,

the uncorrected p-distances were found between populations belonging to divergent clades

(S6 Table). The genetic distances obtained for D. dentifera haplogroups exhibited a significant

divergence under pairwise comparison of the populations from the Baikal basin with the popu-

lations from Mongolia, China (Nepal) Canada and USA (S7 Table).

Pairwise FST–values calculated between geographical populations of D. longispina indicated

the occurrence of a high degree of genetic divergence between several of them. The highest

value is detected, as expected, between population from Lake Dodot and all others, up to 1.0

(Fig 5I, S6 Table). For the D. dentifera populations, the highest FST–values were found under

pairwise comparison of the populations from the Baikal basin with the population from Mon-

golia, USA and Canada (Fig 5II, S6 Table).

Neutrality tests

Most of the studied Daphnia species are characterized by negative values of Fu’s FS and Taji-

ma’s D tests (Table 5). Positive (but insignificant) value of Fu’s FS for D. umbra was registered

in the original 12S dataset analysis, and for D. cf. longispina in the concatenated analysis.

The positive (but insignificant) Tajima’s D values are found for D. umbra in the 12S original

dataset and for D. cf. longispina in the concatenated dataset analysis (Table 5). These neutrality

tests estimated for the extended dataset are characterized by negative values for all Daphnia
species and are significant for two D. longispina clades, D. dentifera, D. galeata and D. cristata
species.

Table 3. Analysis of molecular variance AMOVA for the extended 12S dataset of the mtDNA for D. dentifera. The significances ofF-statistics values were tested by a

permutation test with 10000 replicates.

Grouping criterion Source of variation df % of variance F-statistics

Geographic areas Among areas 2 10.57 FSC = 0.153�

Among populations within areas 5 13.68 FST = 0.242�

Within populations 79 75.75 FCT = 0.106

Unstructured set Among populations 7 22.07 FST = 0.221�

Within populations 79 77.93

� P < 0.001

bold type—insignificant value, P> 0.05.

https://doi.org/10.1371/journal.pone.0221527.t003

Table 4. Estimate of the evolutionary divergence (uncorrected p-distances, %) over the original 12S sequences pair within and between studied species and clades of

the D. longispina complex. Standard error estimates are shown above the diagonal.

Species Within clade D. longispina
clade A

D. longispina
clade B

D. dentifera D. turbinata D. cucullata D. galeata D. umbra D. cf. longispina

D. longispina clade A 0.2±0.1 – 0.5 0.7 1.0 1.2 1.1 1.3 1.2

D. longispina clade B 0.9±0.2 2.2 – 0.7 1.0 1.2 1.1 1.2 1.3

D. dentifera 0.1±0.1 3.6 3.6 – 0.9 1.2 1.1 1.2 1.3

D. turbinata 0.1±0.1 7.0 7.2 6.8 – 1.3 1.2 1.2 1.3

D. cucullata 0.5±0.2 10.3 10.2 10.0 11.2 – 1.0 1.5 1.4

D. galeata 0.4±0.1 7.7 8.5 8.5 9.5 7.9 – 1.3 1.3

D. umbra 1.4±0.4 11.7 11.9 11.4 11.5 14.9 13.1 – 1.2

D. cf. longispina 0 9.4 10.3 10.7 10.9 12.6 11.3 11.1 –

https://doi.org/10.1371/journal.pone.0221527.t004

Daphnia longispina complex in Southern Siberia

PLOS ONE | https://doi.org/10.1371/journal.pone.0221527 September 3, 2019 12 / 24

https://doi.org/10.1371/journal.pone.0221527.t003
https://doi.org/10.1371/journal.pone.0221527.t004
https://doi.org/10.1371/journal.pone.0221527


Discussion

Phylogeny of the D. longispina complex and originality of South Siberian

taxa and clades

Some previous studies found that Southern Siberia, including Altai-Sayan region, was an

important refugium for the terrestrial fauna [80, 81]. Moreover, it was critical for the human

population survival in Asia duing the late Pleistocene cold phases, for example, there is evi-

dence that this area was the sole refugium of humans in the region during Marine Isotopic

Stage 4 [82, 83]. We found that it was also an important refugium for the Cladocera (and all

freshwater fauna?) during the Pleistocene.

Fig 5. Graph of pairwise FST distance matrices between geographical populations of D. longispina (I) and D. dentifera (II). Codes are the same as in S3 and S4.

https://doi.org/10.1371/journal.pone.0221527.g005

Table 5. The neutrality tests based on extended and original 12S datasets and the concatenated 12S + 16S + ND2 dataset of the mitochondrial DNA for species of

the D. longispina complex.

Species/Clades Fu’s FS Tajima’s D
extended 12S original 12S concatenated extended 12S original 12S concatenated

D. longispina clade A -9.982�� -14.983�� -1.492 -2.309�� -2.398�� -1.322

D. longispina clade B -257.959�� -11.596�� -0.537 -2.199�� -1.321 -0.608

D. dentifera -71.153� -1.539 -1.741 -2.225�� -1.580 -0.065

D. turbinata -0.438 -0.438 – -0.275 -0.275 –

D. cucullata -8.457 -0.167 – -1.748 0.254 –

D. galeata -50.778� -5.473�� -2.024� -1.988� -1.973� -1.771

D. umbra -1.579 2.815 – -0.271 0.775 –

D. lacustris -1.256 – – -0.829 – –

D. cristata -0.027�� – – -2.276�� – –

D. cf. longispina 0 0 0.540 0 0 1.633

�P < 0.05;

��P < 0.01.

https://doi.org/10.1371/journal.pone.0221527.t005
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Our study of the genetic variability of the Asian D. longispina complex revealed unexpected

diversity in the region. Specifically, we established the genetic uniqueness of D. turbinata, D.

cf. longispina from Western Siberia and a Siberian clade A of D. longispina s. str. Southern

Siberia was already found to be a source of locally distributed ancient phylogroups in D.

magna [27]. D. turbinata is presently found only in the water bodies of Altai-Sayan Mountain

System (including Mongolian Altai) (Fig 1, S1 Table). However, as with many montane spe-

cies, the current range may represent but a small portion of a previously larger range.

D. turbinata is a sister group to the D. longispina – D. dentifera clade. The genetic unique-

ness of D. turbinata indicates that this species may be the oldest known “round helmeted” spe-

cies of the longispina complex. Some discordances among topologies are related to the

unresolved positions of Siberian D. turbinata and D. cf. longispina (as well as to the European

Daphnia sp. from Berse). The phylogeny based on the larger concatenated mitochondrial data-

set should be more reliable than the smaller datasets (provided that systematic biases are

weak). The concatenated data tree has higher support values for its main branches, separate

clades and internal divergent lineages. BI and ML analyses based on the concatenated mito-

chondrial dataset suggest the monophyly of a D. longispina–D. dentifera–D. turbinata–D.

galeata clade.

D. cf. longispina from Western Siberia is not closely related to any other taxon of the D.

longispina complex—no analysis supported its grouping with derived species in the clade.

Moreover, a basal position of D. cf. longispina in the general phylogeny of the D. longispina
complex is corroborated by the nuclear ITS2 phylogenetic analysis [49]. To date, no morpho-

logical differences have been found between D. cf. longispina from Western Siberia and D.

longispina s.str. This is unsurprising as parthenogenetic female cladocerans are often proposed

to be subject to morphological stasis [84, 85, 86]. But, morphological differences may be found

by comparing the adult males (presently unknown in D. cf. longispina), which are usually a

more valuable source of diagnostic characters for cladocerans [12, 18], including the D. longis-
pina complex [47]. D. turbinata and D. cf. longispina, basal taxa, may be regarded as phyloge-

netic relicts [87]. At the same time, populations of D. umbra and D. turbinata in the Siberian

mountains and D. cf. longispina in Western Siberian lowlands are, most probably, the remains

of pre-Pleistocene fauna that survived in Pleistocene refugia. In a sense these are "biogeo-

graphic relicts".

Uniqueness of the D. longispina s. str. populations in Southern Siberia

A high level of the intra-population genetic variability has been detected for the D. longispina
complex in different geographic regions [6, 8, 20, 37, 39, 88]. We detected many mitochondrial

lineages within D. longispina s. str., and these lineages form two major geographic clades, pre-

sumably having different evolutionary history. A similar geographic clade association was

detected for European and Siberian ND2 haplotypes of "D. rosea s. lat." [30], which was the

term that Ishida & Taylor [30] used for the D. longispina s. str./D. dentifera clade of the present

study. In present study, the divergences among lineages of longispina are reduced compared to

[30] because we included mitochondrial genes that are relatively slowly evolving (i.e., 12S

rRNA). Haplotypes of clade B have a wide geographic distribution—from Western Europe to

the Yenisei River basin. This clade is strongly genetically structured, i.e. includes several sub-

clades. On the one hand, a high degree of genetic polymorphism could be a consequence of

secondary contact of heterogeneous populations and genetically divergent lineages (i.e. contact

from separate glacial refugia). Such an explanation of the high genetic heterogeneity was previ-

ously accepted for several cladoceran taxa including D. longispina [13, 20, 30, 33, 36]. On the

other hand, such a high genetic divergence could be the result of ongoing cryptic speciation

Daphnia longispina complex in Southern Siberia

PLOS ONE | https://doi.org/10.1371/journal.pone.0221527 September 3, 2019 14 / 24

https://doi.org/10.1371/journal.pone.0221527


[26]. It was demonstrated recently that divergent mitochondrial lineages of D. longispina may

sometimes have a hybrid origin [16]. New detailed studies are necessary for a final understand-

ing of the cases of such high genetic polymorphism in the clade B which is associated with

weak morphological differentiation. But note that the only a single haplotype from the clade B

found in mountains of Southern Siberia.

In contrast to the pattern found in clade B, haplotypes from the South Siberian mountains

form the bulk of clade A. Divergent haplotypes of D. longispina from Lake Dodot and the lakes

of the Altai Mountains, which compose the majority of clade A, could be relicts of an ancient

fauna. Long-term geographic isolation may have led to their strong genetic divergence—as a

result a unique haplotypic complex is now present. According to the FST values, gene flow

between populations forming different clades of D. longispina is very limited both on a

regional (the original 12S dataset), and a pan-Eurasian (the extended 12S dataset) scale. Lim-

ited gene flow between populations makes their differentiation stronger because the frequency

of unique haplotypes is increasing with time. In general, a high level of intra-population vari-

ability in combination with a strong inter-population genetic differentiation agrees well with

the logic of the "monopolization hypothesis" [20, 89].

The geology and climate of Siberia during the Late Pleistocene could be one reason for

small genetic distances between populations of D. longispina from water bodies of the Ural

Mountains, the Lake Chany basin and Western Europe. In the Late Pleistocene, large North

Siberian rivers were dammed by an ice sheet, huge periglacial lakes were formed in northern

portion of Eurasia, merging with each other and uniting the whole Western and Eastern

hydrological systems (including the Volga, Ob; and Yenisei basins) from the Alps to territory

of recent Yakutia [90]. Mansiysoe Lake existed at that time in Western Siberia (i.e. covering

the region of recent Lake Chany).

At the same time, glaciation was only partial and patchy in the Altai Mountains, Sayan

Mountains and Eastern Siberian lowlands [90, 91]. Mixing of the lineages within the clade B of

D. longispina may have occurred during this time, while lineages of clade A were isolated in

refugia of the Altai and Sayan mountains. During warmer phases of the Pleistocene, the north-

ern drainage to the Polar Ocean was restored [90, 92], and resting stages of the daphniids

would have had the opportunity to disperse from the refugia in the Altai and Sayans towards

the lower reaches of Siberian rivers. This geological scenario may explain the appearance of

clade A in the Lake Chany basin and the Yamalo-Nenets Area (lower reaches of the Ob River).

Alternatively, clade A may have come from another area where they subsequently disappeared.

Changes of climate and, as a result, hydrology of Siberian rivers took place many times dur-

ing the Pleistocene. Recent populations of D. longispina, forming clade B, have appeared as a

result of multiple secondary contacts between partially and temporarily isolated mitochondrial

lineages on a large geographic scale. In contrast, populations of clade A were isolated for a long

period adding to genetic differentiation.

Previously, we proposed that the sister taxa, D. dentifera and D. longispina, were vicariant

species with a transition zone in the Yenisei River basin. At the time, D. longispina was unde-

tected in Eastern Eurasia, while D. dentifera populations were dominant in Eastern Eurasia

[48] and the western Nearctic [30]. The present study agrees with this hypothesis: but now D.

dentifera is also found Yakutia (the Lena River basin). It is remarkable that in China, D. denti-
fera is a dominant species, while D. longispina is very rare [35, 37, 38, 93, 94]. Unfortunately,

the existence of a transitional zone between the two taxa was not discussed based on the rec-

ords from China. East-west longitudinal differentiation, with a transition zone between west-

ern and eastern taxa or phylogroups in the Yenisey River basin, has been demonstrated for

other cladoceran genera [26, 43, 95, 96]. A role for interspecific interactions with D. longispina
limiting the western expansion of D. dentifera is supported by the same postglacial expansion
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of D. dentifera eastward (in the absence of D. longispina) across Beringia to much of the Nearc-

tic [30].

Previous authors pointed out several times that D. longispina/D. dentifera and D. galeata
have differing preferences for trophic status and hydrological traits with D. galeata being asso-

ciated with more nutrient rich waters [36, 39, 97, 98]. Our observations partially corroborate

this view. Indeed, in the pelagic zone of the Todzha Depression D. galeata dominated, while D.

longispina occurred only in shallow bays or small ponds [99]. But, at the same time, D. longis-
pina and D. galeata appear to co-occur in small temporary lakes in the Lake Chany basin

(keeping in mind that our methods may fail to detect hybrid products). Differing ecological

conditions may lead to adaptations that increase divergences between geographically distant

populations [100, 101, 102].

Demographic history

Most mitochondrial clades of D. longispina and other species demonstrate statistically signifi-

cant negative values of neutrality tests (Fu’s FS and Tajima’s D). Such values are usually inter-

preted as consequences of three processes: (1) recent (probably, post-glacial) spatial expansion,

(2) negative selection and/or (3) genetic hitchhiking (when an allele changes frequency not

because it itself is under natural selection, but because it is near another gene that is undergo-

ing a selective sweep and that is on the same DNA chain) [78, 79]. At the same time, some neu-

trality tests for D. umbra and D. cf. longispina gave positive (although non-significant) values.

Such differences are likely consequences of different sampling efforts.

Keeping in mind the aforementioned wide geographic distribution of the clade B haplo-

types, high haplotype number, high vales of haplotypic (Hd) and nucleotide (π) diversity and

high genetic divergence (p-distances) between individuals, we can propose that the results of

neutrality tests (i.e. an unusually high Fu’s FS value) confirm a recent spatial expansion of these

haplotypes. High values of Hd and π, most probably, are consequences of a mixing of histori-

cally heterogenous and geographically differentiated populations of the clade B, instead of exis-

tence of a stable population with large effective size [103]. The bimodal structure of the

mismatch distribution diagram for the clade B [48] could also be explained by an additional

internal structure instead of an equilibrium state.

Negative and significant values of Fu’s FS and Tajima’s D, as well as a star-like shape of the

network, are consistent with a recent expansion of the clade A. But a low number of haplo-

types, high values of Hd and lower vales of π and p-distances for the clade A (as compared with

clade B) most probably reflect a colonization of this region by one or few genetically depauper-

ate populations of D. longispina. The studied populations may have originated recently from

an ancestral population with lower effective population size. This time was sufficient for the

population to restore a haplotypic diversity, but not nucleotide diversity [103]. As haplotypes

of clade A dominate in the Altai and Sayan water bodies, we can assume that the ancestral pop-

ulation survived during Pleistocene in a mountain refugium. Its effective size was relatively

large, as the unique haplotypic structure of D. longispina was retained. Founder effect in the

mountain water bodies of Altai and Sayan appeared strong, as a result a rate of the clade B hap-

lotypes in this region is minute.

The time of expansion was probably different for clades A and B [48], even keeping errors

in divergence estimations in mind [104]. An earlier differentiation of clade B is supported by

the extremely high negative values of Fu’s FS test and a wider geographic distribution of haplo-

types, although recent expansion of this clade has waned or stopped. Strong genetic differenti-

ation and structure of clade B support recent or ongoing divergence of its internal groups due

to their local adaptations after reaching an equilibrium state (see the multimodal mismatch
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distribution [48]). The subsequent divergence of clade B has been discussed concerning Euro-

pean populations of D. longispina [39].

There are several factors preventing a further geographic expansion of clade B. Its distribu-

tion towards the east may be difficult due to occupation of the available water bodies by a

potentially competing taxon, D. dentifera. The latter is characteristic of a high polymorphism

level (high haplotype number, high values of Hd and π) and negative values of Fu’s FS and Taji-

ma’s D tests. Penetration of clade B to the water bodies of the Altai and Sayan mountains is dif-

ficult as they are occupied by the clade A populations. Most probably, some difficulties to

occupy new water bodies may involve D. galeata, a widely distributed taxon in lacustrine sys-

tems [35, 38, 105]. Interestingly some the haplotypes of D. galeata also form divergent regional

clades in Siberia.

There is little evidence for spatial expansion in D. turbinata. Fu’s FS and Tajima’s D tests,

had a negative sign that lacked statistical significance. These values together with low intra-spe-

cies genetic divergence and a relatively low level of genetic polymorphism may be due to

recovery from a bottleneck event (possibly the last Pleistocene glaciation) [103]. The low values

of Hd and π in the Asian mountain endemic (D. turbinata) and Western Siberian endemic (D.

cf. longispina) are similar to those of the European relict, D. lacustris. Most probably, these

taxa are relicts of a pre-glacial fauna. Cladocerans are an ancient group [106, 107]. However,

some lineages differentiated before the Pleistocene [28, 95], while others differentiated in a

rapid post-glacial manner [19].

Conclusions

Our phylogeny of the D. longispina complex supports the monophyly of D. longispina–D. denti-
fera–D. turbinata–D. cucullata–D. galeata clade, while D. cf. longispina represents an earlier

derived taxon of the D. longispina complex. Our analysis of the genetic polymorphism of the

mitochondrial DNA revealed a high level of population genetic structure within each taxon.

The highest divergence is characteristic of D. longispina having two major geographic clades.

The geographic range of several haplotypes is limited to the Altai-Sayan region. Clade B did not

penetrate mountain water bodies that clade A colonized. Further expansion of the clade B east

appears limited by the counter expansion of D. dentifera. The zone of their secondary contact is

located in the Yenisei-Baikal region. Southern Siberian endemics, mountain D. turbinata, D. cf.

longispina (which is present now only in the Lake Chany basin), and D. umbra (for which popu-

lations in Southern Siberia are disjunct from Arctic populations) appear to have passed through

a prolonged "bottleneck". These populations are relicts of pre-glacial times. A complicated geo-

logical and climatic history of the Altai-Sayan mountain system promotes forming an original

species and haplotypic composition of the D. longispina complex in this region.
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S1 Fig. Bayesian phylogenetic consensus tree for D. longispina based on the extended 12S
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substitutions per site. Color of geometric symbol for original sequences corresponds to geo-
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(TIF)
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