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Abstract

The simultaneous utilization of electrophysiological recordings and two-photon imaging

allows the observation of neural activity in a high temporal and spatial resolution at the same

time. The three dimensional monitoring of morphological features near the microelectrode

array makes the observation more precise and complex. In vitro experiments were per-

formed on mice neocortical slices expressing the GCaMP6 genetically encoded calcium

indicator for monitoring the neural activity with two-photon microscopy around the implanted

microelectrodes. A special filtering algorithm was used for data analysis to eliminate the

artefacts caused by the imaging laser. Utilization of a special filtering algorithm allowed us to

detect and sort single unit activities from simultaneous two-photon imaging and electrophys-

iological measurement.

Introduction

Measurement methods which yield signals of neural activities with high information content,

such as electrocorticography (ECoG) and intracortically implanted high density microelec-

trode arrays (MEAs), have vastly contributed to the progress of neuroscience and brain-com-

puter interfacing [1–4]. MEAs are not only capable of recording the summed bioelectrical

activities of neuron populations (i.e. local field potentials, LFPs), but they can also detect indi-

vidual activities of neurons (i.e. single unit activities, SUAs) [5,6]. These methods had an

instrumental role in the functional mapping of the brain [7] and they are still the ultimate solu-

tion when high spatial and temporal resolution are required [4,8,9]. However, the spatial range

of the SUA detection capability of the implanted sensors is limited to the immediate surround-

ings the electrode sites, i.e. hundred micron wide volumes [10]. Furthermore, the long term

use of implanted MEAs is corrupted by the degradation of their performance over weeks or
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months, let alone years [11–13]. The underlying causes range from material failures [14,15] to

the deteriorative effects of the immune response to the implants [16–18].

In the last few decades, various optical imaging methods became widely used in neurosci-

ence, which can render wide brain regions observable with high spatial resolution [19–23].

Furthermore, the application of two-photon microscopy with fluorescent calcium indicators

makes the monitoring of neural activity (e.g. action potentials of individual cells) possible [24–

27]. The focal length of fluorescence microscope objectives can exceed 12 mm [28], which

allows the implantation of depth MEAs into the optical cranial window [29].

Simultaneous application of depth MEAs for extracellular electrophysiology and two-pho-

ton imaging could allow neuroscientists to observe activities of individual neurons with good

spatial and temporal resolution at the same time, thus the more precise and complex pieces of

information could be obtained from neural activity [30]. The extension of high density intra-

cortical recordings with simultaneous two-photon microscopy would enable three dimen-

sional optical monitoring of the structural features of the cells located close to the electrode.

Nonetheless, the co-localized and simultaneous application of two-photon imaging and

electrophysiological measurement by MEAs remains challenging, partly because of the photo-

electric artefacts on the electrophysiological recordings caused by the imaging laser [31]. The

artefacts generally appear as huge sawtooth-like waves. The main frequency of such waves cor-

respond to the imaging frame rate of the applied two-photon laser. The frame rate of the imag-

ing is indeterminate, moreover, the sharp shape of the waves and other effects introduce

various harmonics other than the main frequency, thus elimination of the photoelectric arte-

facts requires more subtle methods than applying e.g. a notch filter. Comb filters have already

been successfully used for decreasing stimulus artefacts [32] and 50 Hz low frequency noise

[33] from electrophysiological signals, while adaptive filters are utilized e.g. in brain-computer

interface development [34,35], in simultaneous measurements of real-time magnetic reso-

nance imaging and electrocardiogram recordings [36], in fetal electrocardiogram analysis [37],

etc.

In this study we present a method wherein the utilization of a custom-set comb filter based

algorithm allowed us to detect and sort SUAs from extracellular multi-channel recordings

while the measuring electrode array and the surrounding tissue was monitored with two-pho-

ton imaging. The method was validated by applying the filter on recording sections when the

imaging laser was not in use and checking whether the introduced laser artefact affects SUA

detection and clustering.

Materials and methods

Preparation of in vitro experiments

In vitro experiments were performed on mice expressing the GCaMP6 genetically encoded

calcium indicator for the monitoring of neural activity around the MEA [38,39].

A total of three GCaMP mice had been anesthetized with a ketamine-xylazine solution and

prepared for operation as described elsewhere [40]. Animals for acute tests were kept and han-

dled in accordance with the European Council Directive of 24 November 1986 (86/609/EEC),

the Hungarian Animal Act, 1998 and the Animal Care Regulations of the Research Centre for

Natural Sciences of the Hungarian Academy of Sciences (RCNS-HAS). The study was

approved by the Institutional Animal Care and Use Committee of the Research Centre for

Natural Sciences of the Hungarian Academy of Sciences (members: Dr. István Ulbert, Dr. Józ-

sef Topál and Péter Kottra) and the National Food Chain Safety Office of Hungary (PEI/001/

695-9/2015). Animals had unlimited access to food and water, when they were awake. Each

mouse was kept in a 39 cm long, 22 cm wide, 18 cm high cage. They were under deep
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anesthesia during surgery as well as at the time of sacrifice. Efforts were made to minimize ani-

mal suffering and to reduce the number of animals used.

Cortical and hippocampal slices were prepared from the mice brains. The brains were

immediately removed and dipped into cold (2–3˚C), oxygenated (95% O2, 5% CO2) cutting

solution. The cutting solution contained the following composition (in mM): 250 Sucrose, 26

NaHCO3, 10 D-Glucose, 1 KCl, 1 CaCl2 and 10 MgCl2. 500 μm-thick horizontal slices were

cut by a vibratome (VT1200s; Leica, Nussloch, Germany) from both hemispheres. Slices were

kept in a standard artificial cerebrospinal fluid (aCSF) solution at room temperature (20–

22˚C) for at least 1 hour before use. The recordings were performed at 32–34˚C with a stan-

dard recording aCSF containing (in mM): 124 NaCl, 26 NaHCO3, 10 D-Glucose, 4 KCl, 2

CaCl2 and 2 MgCl2. In the recording chamber, a dual-perfusion system was used by perfusing

both the top and the bottom surfaces of the slices with relatively high perfusion speed (>10

ml/min) to provide better oxygenation, similar to in vivo conditions [41].

Two-photon imaging

The three dimensional observation of morphology was performed with two-photon micro-

scope (Femtonics Ltd., Budapest, Hungary). The two-photon imaging not only let us monitor

the neural activity near the applied MEA because of the genetically encoded calcium indicator

expressing GCaMP6 cells, but it also made the observation of imaging laser generated artefacts

possible. For the optical imaging the prepared slices were placed into an in vitro measuring

chamber. The chamber ensured the aCSF supplement and circulation for keeping the neural

tissue alive until the end of the measurement and it stabilized the slice mechanically with a

holder mesh. The top part of the chamber is concave-shaped to hold the aCSF for the liquid

immersion objective of the two-photon microscope which was used during the experiments.

The applied laser had a wavelength of 940 nm and worked in resonant mode.

The setup was not only able to function in two-photon imaging mode but it also did work

in camera mode which allowed us to follow the track of the inserted MEA before and during

the insertion because of the built-in CCD camera. With the brain slice in place, the bioelectri-

cal activity was monitored in two-photon mode and the electrophysiological measurement

setup was assembled.

Electrophysiological measurement

The electrophysiological observation of the bioelectrical activity of the examined brain slices

were carried out using an Intan RHD—2000 amplifier system (Intan Technologies LLC., Los

Angeles, CA, USA) connected to a computer via USB 2.0 with a sampling frequency of 20 kHz.

The reference electrode was an Ag/AgCl needle located beneath the tested brain slice. A MEA

with 16 shanks (1 electrode/shank) (A16x1-2mm-50-177-A16, NeuroNexus, Ann Arbor, MI.

USA) was employed as a working electrode. The MEA was attached to one of the automated

electrode holder of the two-photon setup in such a manner that the longitudinal axes of the

shanks included an angle of 30 degrees relative to the surface of the brain slice. The implanta-

tion was performed under CCD camera control. After the MEA had reached its final place in

the tissue, the two-photon setup was switched from camera mode to two-photon mode and

the electrode sites were located. The schematic of the assembled experiments is shown in Fig 1.

Following this, the focal plane was stabilized and the imaging laser was turned off. The

electrophysiological measurement was started without the laser in order to provide reference

recordings. After 8 minutes of such laser-free recordings, the two-photon imaging was initi-

ated and the imaging laser introduced artefacts. Another 8 minutes of laser-noised recordings

were hence obtained. The third part of each measurement was performed without the two-
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photon imaging again, in order to obtain further control data sessions, this time after the laser

effect. During the second part of the measurements, the laser generated artefacts which

exceeded the amplitude of SUAs by at least an order of magnitude (Fig 2).

Data analysis

MATLAB 2017a (MathWorks Inc., Natick, MA, USA) was used for off-line signal visualiza-

tion, filtering and analysis. Fig 3 summarizes the steps that had been performed in order to

accomplish our ultimate goal, i.e. the identification of spike clusters in the data containing

two-photon laser noise.

All of the applied band-stop IIR filters were created with passband ripples of 0.4. Since the

IIR filters delay some frequency components more the others, they distort the input signals

with frequency dependent phase shift. Thus they were applied with the ‘filtfilt’ Matlab function

that compensated the delays introduced by such filters, and thus corrected for filter distortion.

The recorded signals were initially filtered with a second order band-pass filter between 300

Hz and 3000 Hz, which is a commonly used method for highlighting and detecting SUAs [42],

but not adequate for eliminating the photoelectric artefacts. Following this, Fast Fourier trans-

form (FFT) was applied on the electrophysiological recordings. Comparing the frequency

spectra of the first (laser off) part of each measurement to their second part (laser on), it was

evident that the imaging laser gave rise to a population of high peaks in the frequency domain.

Fig 1. Schematic of the assembled measuring system. In the middle of the in vitro two-photon measuring chamber the brain slice is placed on a holder mesh.

The chamber provides the aCSF circulation near the neural tissue to keep it bioelectrically active. Under the fluid immersed two-photon objective the applied

MEA was inserted into the tissue.

https://doi.org/10.1371/journal.pone.0221510.g001
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These peaks were located periodically, with a distance of 15.5 Hz between the neighboring ones.

This frequency value corresponds to the imaging frame rate of the applied two-photon laser

(Fig 4). Considering this nature of the artefacts, it is a straightforward idea to utilize of a comb

filter algorithm to eliminate the noise of the imaging laser. Fig 3 shows the whole data evalua-

tion process for spike sorting (Fig 3A), including the construction of the laser noise reduction

filters (Fig 3B). Such a comb filter had to be constructed individually for every recording chan-

nel because of the different laser noise characteristics on the channels. Each custom-set comb

filter was built from filter modules, a representative filter module is shown in Fig 3C. The mod-

ules contain band-stop filters fitted to a certain amount of peaks in the frequency domain.

The parameter setting algorithm of the comb filter is shown in Fig 3B. These parameters

were the number of filter modules (NM), a vector containing the center frequencies of the filter

modules (fpeak), the numbers of the applied band-stop filters within each module (NF) and the

distances between the center frequencies of the applied band-stop filters within each module

(DF). The parameter setting algorithm utilized the 300–3000 Hz filtered laser noisy data in a

Fig 2. Representative sample of the imaging laser impact on the electrophysiological recordings. Between the first and the last parts of the

measurement, which were recorded without two-photon imaging, photoelectric artefacts of the two-photon imaging laser are observable (A). The

recorded data at the moment when the imaging laser was switched on (B, C).

https://doi.org/10.1371/journal.pone.0221510.g002
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cyclic manner, during each cycle, a new filter module is added to the comb filter. The first step

in the cycle was the generation of a temporary laser noise filtered data by the application of the

temporary comb filter, i.e. the comb filter generated in the previous cycle on the 300–3000 Hz

filtered laser noisy data (in the first cycle the number of filter modules is 0, so this step left the

data unchanged). The second step was deciding whether the temporary filter was sufficient.

This was performed by time domain analysis on the temporary laser noisy filtered data. If the

amplitude of the periodic laser noise had been reduced below 40 μV, then the temporary filter

parameters became the finalized comb filter parameters. Otherwise, the last step in the cycle

followed, which was the generation of a new filter module. This was performed based on the

frequency domain analysis of the temporary laser noisy comb filtered data (which is equivalent

to the 300–3000 Hz filtered laser noisy data in the first step). After applying the FFT on this

data, the algorithm found the highest peak in the frequency domain. This frequency became

Fig 3. Filtering and analyzing steps. The performed filtering and analyzing steps in order to identify the spike clusters and check the spike consistency between the

two-photon imaging laser noise free and the laser noisy data (A), the parameter setting algorithm of the applied custom-set comb filter (B) and the result of the

parameter setting of a representative filter module (C).

https://doi.org/10.1371/journal.pone.0221510.g003
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the center frequency (fpeak) of the new filter module. The neighboring peaks were located at

the frequencies of fpeak ± n�DF (DF was found to be 15.5 Hz). The values at the neighboring

peaks were compared to the highest detected peak to define the number of the applied filters

(NF) within the new module. NF of the filter module was defined so that the band-stop filters

of the comb filter would cover all the neighboring peaks which exceeded in height the 15% of

the highest peak (i.e. the one at the center frequency). Every band-stop filter element of the

new comb filter module was defined with cutoff frequencies at below 3 Hz and above 3 Hz

from the frequency value of each peak. Thus the central rejected frequencies of the comb filter

were adjusted to the frequencies of the laser noise peaks and each section of the comb filter

had a 6 Hz wide rejected band, as shown in Fig 3C and in Fig 4D. The temporary comb filter

was extended with the thus obtained new module and the cycle restarted. This process was

repeated until the time domain analysis gave positive result, i.e. the amplitude of the laser

noise peaks in the time domain became lower than 40 μV, in which case the summarized

comb filter parameters were accepted.

Fig 4. The absolute value of the frequency spectrum of the electrophysiological recordings. The fast Fourier transform analysis of the imaging laser

generated noise in the electrophysiological recorded data (A). Harmonics below 1200 Hz (C) and at higher frequencies (B) of the laser generated

periodical artefacts appeared with high magnitudes. The overlap of the harmonics is observable (B). A part of the rejected frequencies by the custom-set

comb filter is shown in yellow (D).

https://doi.org/10.1371/journal.pone.0221510.g004
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As shown in Fig 3A, the thus constructed comb filters were applied on both the laser noise

free and the laser noisy 300–3000 Hz filtered data in order to equally distort the SUA (“spike”)

waveforms in both cases. Later on, this allowed us to match the features of different spike clus-

ters in the laser free and laser noisy measurements. Since the imaging laser generated artefacts

were nonuniform along the electrodes, recordings from different electrodes required filters

with custom-set parameters.

We investigated whether the comb filter prevents us from SUA (“spike”) detection and sorting.

Spike detection was performed by simple thresholding. Three features of each potential spikes

were defined for spike sorting, which were the location of the minimum amplitude value of the

spike, and the values at 250 microseconds (i.e. five datapoints) before and after the peaks (Fig 5).

The clusters were manually accepted or discarded based on spike waveforms and autocorrelo-

grams. This feature extraction method was preferred rather than principal component analysis

(PCA), because the thus defined features could provide more robust information about spike

waveform consistency (spike stability). In terms of the laser noise free part of the experiments, we

performed a comparison of the feature-based and the PCA methods on the band-pass filtered

data to verify the results of the feature extraction based method which was used for testing the

spike stability too. The spike stability was verified as follows. First, the averages and the standard

errors of the means of each feature were calculated in every minute of the recordings. These values

were compared to each other during the whole measurement to verify the impact of the imaging

laser and the applied filters to the shape of the thus sorted spikes. Furthermore, the number of

spikes were counted in every minute of the recordings for each clusters. This method showed

whether the artefacts caused by the imaging laser gave rise to false positive SUA detections.

Results and discussion

As shown previously, simultaneous two-photon imaging and electrophysiological measure-

ments with MEMS microelectrode arrays at the same location is compromised by the

Fig 5. The applied principal component selection. Each potential spike was defined with their three principal

component before spike sorting: the location of the minimum amplitude value of the spike, and the fifth datapoints

before and after the peaks.

https://doi.org/10.1371/journal.pone.0221510.g005
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formation of photoelectric artefacts in the electrophysiological signals. Regarding our experi-

ments when electrodes were located within the two-photon imaging window, the imaging

laser was able to create such artefacts with amplitudes of typically 50 times greater than the

amplitude of the largest single unit activities. Moreover, the complicated spectrum of the pho-

toelectric noise prevents the filtering of the artefact via simple filters.

Our following results suggest that the utilization of a comb filter-based algorithm can

enable researchers to detect and sort single unit activities even if the tissue surrounding the

microelectrode array is observed with two-photon microscopy. Fig 6 illustrates the observed

area and suggests that the above described two-photon microscope setup and settings were

suitable for detecting activities of neuron somas and dendrites via calcium imaging.

The filters influenced frequency spectrum of the electrophysiological recordings is shown

in S1 Fig, where subfigure A shows the absolute value of the frequency spectrum of the unfil-

tered signal, subfigure B shows the absolute value of the frequency spectrum of the band-pass

filtered signal while subfigure C shows the absolute value of the frequency spectrum of the

band-pass and noise filtered signal. Comparing the subfigures, it can be observed that after

both of the filtering processes the frequency component of the noise became two orders of

magnitude lower. Fig 7 shows neural signal samples obtained from an electrode illuminated

with direct laser light before (green) and after (red) the application of the filter. It is evident

that small amplitude spike-like artefacts are still present on the filtered signal and these spike-

like artefacts are synchronized with the period of the laser noise. Fortunately, however, we can

also observe that major single unit activity amplitudes exceed the amplitude of these artefacts.

The filter was also applied on the signal sections which were recorded when the imaging laser

was off so those sections can serve as proper references for single unit activity detection. More-

over, with further developments, the artefact spikes can probably be eliminated with an algo-

rithm which takes into account the synchrony of the artefacts and the laser noise. A limitation

of this proposed method is that when a single unit activity coincides with a spike artefact, it is

probably also eliminated. However, comparing the width and the density of the laser generated

artefacts in time range, this limitation should only affect approximately 8.5% of the signal.

Fig 6. Two-photon calcium imaging. The imaging reveals activities of neuron somas (subfigures 1, 3, 4, 5) and dendrites (subfigure 2) in the vicinity of the

microelectrode array.

https://doi.org/10.1371/journal.pone.0221510.g006
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Fig 8A shows the tissue region observed with two-photon microscopy, containing the

recording electrode sites. The result of the feature extraction for this representative case is

shown in Fig 8B, where the potential spikes are shown in black (detected during the laser off

condition) and red (detected during the laser on condition). The obtained spike waveforms,

their averages and autocorrelograms in Fig 8C. The differences between the laser on and off

conditions are shown in S3 Fig (spike waveforms and their averages) and S4 Fig (autocorrelo-

grams). The results of the comparison of the feature extraction and the PCA based methods

for spike sorting is shown in S5 Fig. To verify the applied filtering algorithm, the consistency

of the sorted spike waveforms (spike stability) was visualized. Results of the average of spike

features within each minute of the recordings suggest that the laser noise does not corrupt the

thus obtained spike waveforms (Fig 8D, top). Furthermore, the number of the spikes in each

minute of the measurement suggest that the laser noise does not introduce artefact spikes into

the clusters (Fig 8D, bottom). A further result is presented in supplementary S2 Fig, which

shows a histogram of the occurrence of each spike within the laser noise period. This result

Fig 7. Representative sample of the results of the applied filtering algorithm. The subfigures show the same data as Fig 2 does, prior to filtering

(green) and after applying the filtering algorithm (red).

https://doi.org/10.1371/journal.pone.0221510.g007
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may be caused by modulations of the cells firing rates due to the laser light, as suggested by

Kozai et al [43].

We agree with neuroscientists claiming that simultaneous application of two-photon imag-

ing and implanted MEAs would be beneficial for obtaining more complex information about

the activity, connectivity and function of brain cells [31,44,45]. One of the major challenges of

the simultaneous utilization of these state of the art methods is caused by the photoelectric arti-

facts on the electrophysiological signals caused by the imaging laser. This challenge was partly

overcome previously with various data filtering algorithms [46]. The herein presented filtering

method alleviates this hindrance further by offering means for researchers to detect and sort

SUAs from recordings infected by the laser noise of a two-photon microscope. However, the

methods have still limitations. A “clean”, laser noise free recording is suggested to be recorded

before and after the actual simultaneous recording in order to verify the validity of the

obtained spike features. Furthermore, the applied comb filter distorts spike waveforms more

than the more commonly utilized band-stop filters (with cutoff frequencies at e.g. 300 Hz and

3000 Hz). The presented method can be further developed by the application of an automated

algorithm which determines the range of the comb filter in the frequency band, and by a more

complex software which takes into account the periodicity of the laser noise for spike detec-

tion. Some efforts were made for automating the process, i.e. to solve the parameter setting

step automatically, but for a sufficiently robust algorithm more work needs to be done on this

matter.

Conclusion

In this paper we presented a method for recording extracellular signals with depth microelec-

trode arrays and two-photon images within the same tissue region, simultaneously, in a such

manner that even single unit activities can be obtained from the electrophysiological record-

ings. To our knowledge, this is the first time that the possibility of obtaining such data has

been presented. The applied filtering algorithm was capable of eliminating the majority of the

periodic photoelectric artefacts generated by the imaging laser in order to allow us to perform

single unit activity detection and sorting. The method might allow researchers to employ two-

photon microscopy in order to reveal crucial properties of high density extracellular neuro-

physiology and vice versa. The application of simultaneous, multimodal measurements might

give rise to novel findings in neuroscience and effective brain-computer interfaces.

Supporting information

S1 Fig. The effect of the filters on the frequency spectrum of the electrophysiological

recordings. Subfigure A shows the absolute value of the frequency spectrum of the unfiltered

signal, subfigure B shows the absolute value of the frequency spectrum of the band-pass filtered

signal. Subfigure C shows the absolute value of the frequency spectrum of the band-pass and

noise filtered signal.

(TIF)

Fig 8. Representative results of the simultaneous measurement of electrophysiological recordings and two-photon imaging.

The examined electrodes of the applied MEA were in the two-photon imaging window (A). Two examples of sorted spikes

recorded by the electrodes shown in part A (B-D). Potential spikes were sorted using three features obtained from the comb-filtered

signals (B). The obtained spike waveforms, their averages (C, top) and the autocorrelograms of the thus sorted spikes (C, bottom).

The verification of spike stability during laser noise free and the simultaneous two-photon measurements (containing laser noise) is

presented in part D. Changes in the shapes of the detected spikes were observed by comparing the averages and standard errors of

spike features during the measurements (D, top). The number of the sorted spikes per minute (D, bottom).

https://doi.org/10.1371/journal.pone.0221510.g008
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S2 Fig. The number of the detected neuronal spikes compared to the start of the laser

imaging frame acquisition cycle. Subfigures A and B show the occurrence of two sorted

spikes presented in Fig 8. It revealed that the firing of the detected cells is modulated with the

laser light, as also shown by Kozai et al. [43].

(TIF)

S3 Fig. The detected spike traces and their averages during the laser on and off conditions

for two clustered units. The related A-B and C-D subfigures present the first laser off (A and

C) and the laser on (B and D) conditions.

(TIF)

S4 Fig. The difference between the autocorrelograms during the laser on and off condi-

tions for two clustered units. The related A-B and C-D subfigures present the first laser off (A

and C) and the laser on (B and D) conditions.

(TIF)

S5 Fig. The result of the comparison of two spike sorting methods. The Principal Compo-

nent Analysis of the laser noise free, band-pass filtered data (A) in the two cases of the pre-

sented single unit activities of Fig 8. The detected and sorted SUA waveforms with their

averages based on the PCA (B, top) and based on the feature extraction methods (C, top). The

interspike interval (ISI) violators based on the PCA (B, bottom) and based on the feature

extraction methods (C, bottom).

(TIF)
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