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Abstract

According to the coordination control of a dynamic voltage restorer (DVR) and an inductive

fault current limiter (FCL), this paper proposes an efficient low-voltage ride-through (LVRT)

scheme for a doubly fed induction generator (DFIG) based wind turbine. The DVR is located

to the DFIG’s stator circuit for stabilizing the terminal voltage and decreasing the generator

current. The inductive FCL is connected to the DFIG’s rotor circuit for suppressing the rotor

overcurrent and protecting the converter. Theoretical discussions on structure, principle and

scale criterion of the combined DVR-FCL are conducted, and simulation analyses of the pro-

posed approach to handle symmetrical and asymmetrical faults are done in MATLAB/Simu-

link. In this study, the dynamic characteristics of the DFIG during the faults are analyzed

from multiple aspects, and a detailed comparison of the proposed approach and the single

action of DVR or FCL is carried out. From the simulation results, the effectiveness and supe-

riority of the proposed approach are well demonstrated.

1 Introduction

In recent years, the contradiction between the increase of energy demands and the shortage

of fossil fuels has been more and more serious, and to achieve sustainable socio-economic

development, promoting the penetration of renewable energy (RE) in power systems has been

regarded as a critical solution [1–3]. In a sense, to construct a smart energy city, the application

of micro-grids can contribute to accommodating more various RE sources and decreasing

their adverse effects caused by uncertainties [4]. As a representative of RE, wind energy has

obtained the fastest growth, and the cumulative installed capacity of wind power generators all

over the world may be more than 800 GW by 2021 [5,6].

Note that, energy quality is a significant feature to affect the stability and security of electric

power systems, and it is very crucial to stabilize wind power generators under short-circuit

faults. Wind turbines (WTs) should keep the grid-connected status for a certain time, and
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this condition depends on the severity of faults or level of voltage sags to meet specific code

demands, so called as low-voltage ride-through (LVRT) operation.

As the most widely WT, doubly fed induction generator (DFIG) has obtained considerable

attention, and many different measures regarding the LVRT enhancement of DFIG have been

suggested. Generally, the existing methods are classified as software and hardware approaches.

The software solution is regarding an improved or updated control strategy with less cost, but

it is just suitable for handling moderate fault conditions [7]. The hardware solution is to apply

one or more devices with cost investment, and it has a good ability to deal with serious short-

circuit faults. The literature review is presented as follows.

1.1 Literature review

In [8], an advanced current tracking controller is applied in the rotor-side converter (RSC).

Scholars discuss how to determine a proper tracking coefficient for the controller, and the

results show the transient fluctuations in the RSC can be well constrained. In [9], an available

(generator side converter) GSC voltage is utilized to conduct the voltage compensation, and

the DFIG’s transient flux is controlled to obtain a desirable fault current limitation. In [10], a

linear-quadratic regulator is implemented in the DFIG. This regulator serves as the supple-

mentary control to prevent converter saturation. In [11], an optimal hierarchical control

structure is proposed. The primary and secondary control levels are designed, and it is found

that active and reactive power oscillations in the generator can be favorably mitigated. In

[12,13], two improved controllers basing fuzzy logic are used in the RSC, and the key func-

tions of the proposed controllers are to decrease the rotor current and inhibit the DC-link

voltage. In [14], scholars investigate an analytical method to determine the control parame-

ters of the DFIG subject to the capacity limit of the RSC. On the whole, the transient stability

support from the software solutions towards the DFIG may be relatively moderate, and the

improvements of optimizing current reference and introducing over-modulation could be

appreciatively done.

In the following, the hardware solutions based on chopper circuit, voltage compensator/

restorer and FCL are reviewed. In [15], the efficacy of a DC-link chopper on diminishing the

DC overvoltage is validated, nevertheless it fails to assist the demagnetization of the electrical

machine post-fault. In [16], scholars propose a modified DC chopper that can be inserted in

a DFIG basing series or parallel connection. Although the modified structure makes certain

improvements, the rotor current is still around its safety limit (2.0 pu). In [17], a minimised

series voltage compensator is applied. Since the stator flux is well controlled, the generator is

allowed to ride-through the grid disturbances.

In [18,19], scholars prove that a DVR is better than a crowbar circuit to handle the transient

fluctuations of a DFIG. When the DVR is to solve serious voltage decline with a longer dura-

tion, it is needed to consider sufficient energy support [20]. To deeply explore the potentials of

the DVR, an enhanced voltage control basing the combination of feed-forward and feedback is

proposed in [21], and an improved topological structure is discussed in [22]. Using the DVR

can offer flexible transient- and steady-state response for the DFIG. On the premise of meeting

the DFIG’s LVRT capability, it is recommended to reduce the DVR rating for making the solu-

tion be more practical. From this perspective, introducing a device with better economic per-

formance to decrease the DVR rating might be an appropriate option.

Regarding the application of a FCL in a DFIG, studies focus on bridge-type [23–26] and

superconducting-type FCLs [27–34]. In [23], a bridge-type FCL with bypass resistor is applied

in a DFIG. The research results confirm its positive effects on reducing the flux and electro-

magnetic torque oscillations. In [24], the efficacy comparison of a bridge-type FCL and a series
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dynamic braking resistor is carried out. It is illustrated that the FCL owns better suitability

than the braking resistor in stabilizing a DFIG. In [25], a nonlinear control-based modified

bridge-type FCL is presented. Owing to the structure improvement, the proposed FCL outper-

forms the conventional bridge-type FCLs to support the LVRT operation and has quicker

withdrawal action. In [26], scholars propose a capacitive bridge-type FCL to increase the grid-

side voltage, and a discharging resistor is configured to dissipate excess power for protecting

the RSC.

In [27,28], an active-type SFCL and a flux-coupling-type SFCL are installed at the stator of

a DFIG, and the two SFCLs both appear hybrid current-limiting impedance to suppress the

transient fluctuations. Although an effective reduction in the stator current is realized, there is

room for mitigating the rotor current. In [29–32], the contributions of the resistive SFCL in

the DFIG rotor are evaluated. The stability of the RSC is strengthened, and the DC-link over-

voltage is clearly alleviated. However, it is not good at enhancing the terminal voltage, and the

heat accumulation in the resistive SFCL may cause a long quench recovery time. In [33,34],

the scheme design and assessment of a modified flux-coupling-type SFCL for medium-scale

wind plants with multiple DFIGs are studied, and the results imply that reducing the operation

loss and cumulative heat of the SFCL is of significance. From this perspective, using an induc-

tive current-limiting device is an alternate solution [35].

It is worthy to state that, a few preliminary studies on the coordination control of a fault

current limiter and an energy storage device for stabilizing a DFIG have been reported [36–

40]. It is revealed that the combined utilization of two devices with different functions can

bring more contributions in enhancing the transient characteristics of a DFIG. In a sense,

developing this kind of study and exploring a novel combination scheme with preferable

potentials are of significance.

1.2 Contributions of this paper

In this paper, our research group proposes the coordination control of a DVR and an induc-

tive FCL to improve a DFIG’s LVRT capability. The DVR is located to the DFIG’s stator cir-

cuit for stabilizing the terminal voltage and decreasing the generator current. The FCL is

connected to the DFIG’s rotor circuit for suppressing the rotor overcurrent and protecting

the converter.

For the DFIG, employing the DVR is to offer a direct voltage compensation and an indirect

current limitation. As the DVR is not good at decreasing the rotor current, a considerable

DVR rating should be designed to make all LVRT criteria including the stator voltage, rotor

current and electromagnetic torque be satisfied under the severe fault. When the inductive

FCL cooperates with the DVR to handle the LVRT issue together, the direct contribution of

the FCL in lowering the rotor current can effectively remedy the performance limitation of the

DVR. Thus, the application of the FCL will bring a proper reduction in the DVR rating, and

meanwhile the DVR alleviates the current-limiting pressure of the FCL.

The main contributions and novelty of this paper are summarized as follows:

1. Applying a DVR and an inductive FCL into different locations of a DFIG for its LVRT

capability improvement.

2. Clarifying the theoretical effects of the combined DVR-FCL on the DFIG’s transient

behaviors.

3. Evaluating the effectiveness of the proposed approach in a typical DFIG under symmetrical

and asymmetrical faults.
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4. Performing a detailed comparative study of the proposed approach and the single action of

DVR or FCL, in terms of the DFIG’s voltage-current fluctuations, power delivery stability

and electromagnetic torque oscillations.

1.3 Organization of this paper

The arrangement of this paper is as follows. Section 2 conducts the theoretical presentation

of a DFIG. In Sections 3–4, the structural principle and coordinated method of a DVR and

an inductive FCL for a DFIG are elaborated. In Section 5, simulation evaluation and perfor-

mance comparison are implemented. Section 6 summarizes the main findings and explores

the improvements in the future.

2 Theoretical Presentation of a typical DFIG based WT

Fig 1 shows the schematic of a typical DFIG based WT, which is accessed to the main network

through a power transformer. By referring to [41], the modeling equations are formulated as:

Vs

� !

¼ Rs is
!

þdcs

� !

=dt þ jos cs

� !

ð1Þ

Vr

� !

¼ Rr ir
!

þdcr

� !

=dt þ jðos � orÞcr

� !

ð2Þ

cs

� !

¼ Ls is
!

þLm ir
!

ð3Þ

cr

� !

¼ Lm is
!

þLr ir
!

ð4Þ

where i
!

;V
� !

;c
� !

, R, L are the current, voltage, flux, resistance as well as inductance, respectively.

Subscripts s, r are the stator and rotor, respectively. It is obtained that Ls = Lsσ + Lm and Lr =

Lrσ + Lm, and Lsσ/Lrσ is the leakage inductance.

In light of the Eqs (3) and (4), the stator and rotor currents are signified as:

is
!

¼ cs

� !

=L0 s � kr cr

� !

=L0 s ð5Þ

ir
!

¼ � ks cs

� !

=L0 r þ cr

� !

=L0 r ð6Þ

where L0s ¼ Ls � L2
m=Lr and L0r ¼ Lr � L2

m=Ls are deduced; ks and kr are expressed as ks = Lm
/ Ls and kr = Lm / Lr, respectively.

Fig 2 shows the control block diagram of the DFIG converters. For the DFIG, the RSC is

to adjust the rotor current and reactive power, and the GSC is to regulate the DC-link voltage

and grid-side current [42,43]. A brief description of the adopted control strategy is as follows:

(1) The rotor angular frequency ωr is measured from the wind conditions, and the reference

ωref is concerning maximum power point tracking. In light of the deviation Δω, the rotor cur-

rent reference iqr-ref can be gained, and then a classical proportional-integral controller is used

for the rotor current regulation. (2) The reference Vdc,ref is regarding the DC-link nominal

voltage, and a comparing control loop is constructed for the DC-link voltage maintenance. (3)

The reactive power adjustments are implemented by both the RSC with the reference Qsref and

the GSC with the reference Qgc,ref [44]. Since this study focuses on exploring a hardware solu-

tion based on the combined DVR-FCL for the DFIG, our research group does not conduct

additional modifications on the theory and control strategy of the DFIG controllers.
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3 Configuration of the DVR and its effects on the DFIG

Fig 3a denotes the schematic of a DVR, and Fig 3b gives the control block diagram [45,46].

From the suggested control, the DVR may inject a highly flexible and adjustable voltage in

series with the generator terminal.

In this study, a voltage-drop coefficient A1 (0�A1�1) is introduced for the DFIG, and the

terminal voltage is expressed as:

Vs

� !

¼
Vsejost t < t0
ð1 � A1ÞVsejost t � t0

(

ð7Þ

where t0 is the fault occurrence time.

Considering the voltage compensation by the DVR, its function is represented by a voltage-

increase coefficient ADVR (0�ADVR�A1). Thereupon, the DFIG’s terminal voltage will be

rewritten as:

Vs

� !

¼
Vsejost t < t0
ð1 � A1 þ ADVRÞVsejost t � t0

(

ð8Þ

By referring to the constant-linkage theory [47], the stator flux is:

cs

� !

¼

LsVs

Rs þ josLs
ejost þ

RsLsIr
Rs þ josLs

ejost t < t0

Lsð1 � A1 þ ADVRÞVs

Rs þ josLs
ejost þ

RsLsIr
Rs þ josLs

ejost þ cs0

!

e� Rst=Ls t � t0

8
>>><

>>>:

ð9Þ

where cs0

!

is to describe the natural component of the stator flux, and its expression is:

cs0

� !

¼
LsðA1 � ADVRÞVsejost0

Rs þ josLs
ð10Þ

Fig 1. Schematic of a DFIG based WT with a DVR and an inductive FCL.

https://doi.org/10.1371/journal.pone.0221410.g001

LVRT capability enhancement of DFIG with coordination control of DVR and inductive FCL

PLOS ONE | https://doi.org/10.1371/journal.pone.0221410 August 27, 2019 5 / 24

https://doi.org/10.1371/journal.pone.0221410.g001
https://doi.org/10.1371/journal.pone.0221410


By ignoring Rs in the Eq (9), the stator flux can be rewritten as:

cs

� !

¼

Vs

jos
ejost t < t0

ð1 � A1 þ ADVRÞVs

jos
ejost þ

ðA1 � ADVRÞVsejost0

jos
e�

Rs
Ls
t t � t0

8
>>><

>>>:

ð11Þ

Thus, in combination with the Eq (3), the stator current will be deduced as:

is
!

¼
ðA1 � ADVRÞVsejost0

josLs
e�

Rs
Ls
t
þ
ð1 � A1 þ ADVRÞVs

josLs
ejost �

Lm ir
!

Ls
ð12Þ

From the above theoretical derivations, introducing the DVR is able to offer a direct effect

on alleviating the stator-voltage drop, and meanwhile, the fault current in the stator side can

be potentially suppressed.

Fig 2. Control block diagram of the DFIG converters. (a) RSC, (b) GSC.

https://doi.org/10.1371/journal.pone.0221410.g002
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4 Structure, control and influence of the inductive FCL for the DFIG

After the expected effects of the DVR are exploited, the inductive FCL should be quickly trig-

gered. Fig 4 shows the topological structure of the inductive FCL, and by controlling the status

of the switch Scs, the current-limiting inductance of ZFCL� jωLct2 can be activated in time

[48,49].

Fig 5 shows the equivalent circuit of the RSC with the inductive FCL. Herein, R3r and C3r

represent the filtering resistance and capacitance, respectively. This resistance-capacitance

branch can join the leakage inductance of the FCL and the rotor to form a LCL filter with

the low-pass feature. Then, the rotor voltage mainly appears the frequency component, and

according to the rotor back-electromagnetic force (EMF) [50], the voltage equation is derived

as:

Vr

� !

¼ Rr ir
!

þðsLr þ LFCLÞ
d
dt

ir
!

þ er
!

ð13Þ

where σLr is denoted as the rotor transient inductance; er! is the EMF induced at the rotor

Fig 3. Description of the DVR. (a) Schematic, (b) control block diagram.

https://doi.org/10.1371/journal.pone.0221410.g003
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side, and its expression is:

er
� !
¼

ksVsejost t < t0

kssð1 � A1 þ ADVRÞVsejost � ð1 � sÞksðA1 � ADVRÞVse� jð1� sÞoste�
Rs
Ls
t t � t0

(

ð14Þ

where s is used to denote the slip with the range of [-0.3, 0.3].

Fig 4. Topological structure of the inductive FCL. (a) Main connection, (b) equivalent circuit.

https://doi.org/10.1371/journal.pone.0221410.g004

Fig 5. Equivalent circuit analysis of the RSC with the FCL.

https://doi.org/10.1371/journal.pone.0221410.g005
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During the transient process, the rotor current could be contributed by three components

[51]. The first component is feed by the voltage applied to the rotor circuit; the second compo-

nent is feed by the forced component of the rotor open voltage; the third component is a dc

component damping in an exponential way. Thus, considering the impacts of the combined

DVR-FCL, the rotor current is expressed as:

ir
!

¼
Vrc � kssð1 � A1 þ ADVRÞVs

Rr þ jsosðsLr þ LFCLÞ
ejsostþ

ksð1 � sÞðA1 � ADVRÞVs

Rr � jð1 � sÞosðsLr þ LFCLÞ
e� jð1� sÞoste�

Rs
Ls
t

þ
Vr � Vrc � kssðA1 � ADVRÞVs

Rr þ jsosðsLr þ LFCLÞ
�

ksð1 � sÞðA1 � ADVRÞVs

Rr � jð1 � sÞosðsLr þ LFCLÞ

� �

e�
Rr

LrþLFCL
t

ð15Þ

where Vrc denotes the rotor open voltage.

From the Eq (15), adjusting the parameters of the DVR (ADVR) and the FCL (LFCL) will

both affect the rotor current limitation. Herein, a simplified calculation of the rotor current is

done, and it is assumed that A1 = 1, ks� 1, ADVR = 0 and Rr� 0. Thereupon, the maximum

rotor current is approximatively written as:

j ir
!

jmax �
Vr þ sVs

sosðsLr þ LFCLÞ
ð16Þ

According to the Eq (16), the relation between the maximum rotor current and the induc-

tance LFCL can be roughly determined, and after the DVR is applied, the parameter setting of

LFCL will be properly decreased.

5 Simulation analysis

To validate the effectiveness and feasibility of the proposed approach, simulation analyses are

done in MATLAB, and Table 1 summarizes the parameters. Regarding the design criteria for

DVR and FCL, an explanation is given. For only using a DVR in a DFIG, the DVR capacity

can be equal to the rated power of the DFIG, and this original design criterion is adopted in

[21]. Since the application of the FCL can alleviate the DVR rating, this study doesn’t use the

original design criteria. Correspondingly, it is designed that the DVR capacity is half of the

DFIG power rating, and the FCL rating is based on a reasonable reduction in the flux-cou-

pling-type FCL rating [27]. As the inductive FCL has a relatively simple structure, the

Table 1. Main parameters of the DFIG with the combined DVR-FCL.

FCL Primary/Secondary/Mutual inductance 6 mH/6 mH/5.99 mH

Coupling Coefficient k 0.999

DVR Rated capacity 0.75 MW

Filtering capacitance 0.1 mH

Filtering inductance 1 μF

Switching frequency 10 kHz

Series transformer ratio 1

DFIG based WT Rated capacity 1.5 MW

Rated wind speed 11 m/s

Stator voltage / frequency 690 V / 50 Hz

Rotor voltage / frequency 2370 V / 12 Hz

Stator resistance / leakage inductance 0.023 pu / 0.18 pu

Rotor resistance / leakage inductance 0.016 pu / 0.16 pu

DC-link voltage 1150 V

https://doi.org/10.1371/journal.pone.0221410.t001
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economic performance of the inductive FCL is generally superior to that of the DVR [52], and

it means that the proposed scheme (a half compensation DVR and an inductive FCL) may

offer better economic performance than a full compensation DVR. Note that, the parameters

of the FCL and DVR have not been fully optimized. Aiming at their different costs and contri-

butions to the DFIG’s LVRT operation, a detailed capacity optimization study will be pre-

sented in another report.

5.1 Study of the symmetrical fault

It is simulated that a three-phase fault occurs at t = 1 s, and the fault duration is 200 ms. Fig 6

shows the DFIG terminal voltage in the event of without auxiliary. Herein, the range of time-

axis is set as [0.94 s, 1.06 s], and it is expected to more clearly show the voltage change before

and after the fault. Both the instantaneous value and Root-Mean-Square (RMS) value are

given, and when the steady peak value of the terminal voltage (standard sinusoidal wave) is

1.0 pu, the RMS value is calculated as 1ffiffi
2
p ¼ 0:707pu. Under the fault, the generator voltage

declines sharply, and the caused transient phenomena are very strong. During the simulations,

we consider four different cases, which are expressed as without auxiliary, only with the DVR,

only with the FCL, and with the DVR-FCL. The criteria regarding the LVRT behaviors are

described as that: (1) The generator voltage satisfies the Denmark code. The DFIG needs to

hold its connection state at least for 150 ms when the terminal voltage drops to 20% of the

nominal level. Meanwhile, the generator voltage should recovery to 75% of nominal level

within about 0.7 s. (2) The limit of the rotor current is set as 2.0 pu [53,54]. (3) The DC-link

voltage is lower than 1.35 kV. (4) The electromagnetic torque is not exceeding 2 ~ 2.5 pu

[55–57].

Figs 7 and 8 show the DFIG stator and rotor current characteristics. Obviously, the com-

bined DVR-FCL performs the best functions in suppressing the fault currents, and an ade-

quate safety margin will be caused for supporting the LVRT operation. It should be pointed

out that, only with the DVR is insufficient to make the DFIG ride through the fault, as the

rotor current is still larger than the allowable limit.

Fig 9 denotes the RMS feature of the DFIG terminal voltage, where the phase-A is selected.

The symmetrical fault causes a very serious voltage decline, and using the DVR can compen-

sate the voltage to 50% of the nominal level. Whereas, the FCL has almost no influence on the

terminal voltage. The simulation results show that the terminal voltage will start recovery at

1.2 s, where the short-circuit fault is exactly removed. According to the Denmark code, it

implies that, if the wind generator expects to ride through a short-circuit fault with a little lon-

ger duration (200 ms), a higher terminal voltage level during the fault should be reached (25%

of the nominal level). From this perspective, considering the favorable voltage compensation

by the DVR-FCL, the DFIG can be soundly connected to the main network for 0.46 s, which is

greatly more than the fault duration. Therefore, an adequate time margin is obtained for keep-

ing the connection state of the DFIG.

In practice, when the DFIG fails to meet the LVRT criteria, it will be disconnected, and the

terminal voltage cannot be recovered timely until the reconnection is done. To observe the

possible dynamic fluctuations, we do not simulate the action of shutting down the wind gener-

ator even if it has an insufficient LVRT capability. Thus, for without auxiliary, the DFIG termi-

nal voltage can favorably recover to the normal condition after the fault is removed. Also, the

combined DVR-FCL has a moderate ability to accelerate the voltage recovery.

Figs 10–12 show the DFIG active power, electromagnetic torque and DC-link voltage dur-

ing the fault, and the performance data of the selected four cases are indicated in Table 2.

From the results, the combined DVR-FCL provides the best contributions in stabilizing the
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DFIG. The generator power is controlled at ~1 MW, and the electromagnetic torque is inhib-

ited at 0.97 pu.

Based on the simulations of the DC-link overvoltage, a technical discussion is as follows.

The DC-link voltage is mainly determined by its excess power and the GSC’s adjusting ability.

Fig 6. DFIG terminal voltage subject to the symmetrical fault. (a) Instantaneous value, (b) RMS value.

https://doi.org/10.1371/journal.pone.0221410.g006
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Fig 7. Stator current of the DFIG subject to the symmetrical fault.

https://doi.org/10.1371/journal.pone.0221410.g007

Fig 8. Rotor current of the DFIG subject to the symmetrical fault.

https://doi.org/10.1371/journal.pone.0221410.g008
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For without auxiliary, the larger stator current makes the GSC leave the linear control region,

and the higher rotor current causes a considerable oscillation power. It is inevitable that the

DC-link voltage fluctuates and increases sharply. For with the FCL, the constrained rotor cur-

rent makes the oscillation power be lowered, and due to the coupling between the rotor and

stator, the GSC’s adjusting ability can be appropriately improved. As affected by these two con-

tributions, the FCL reduces the overvoltage level, but keeps the voltage pattern as the case with-

out auxiliary.

For that the DVR is adopted, the above two benefits can be mildly remained, and also an

enhanced terminal voltage increases the power stability of the DFIG. The excess power at the

DC-link is accordingly mitigated, and it is a significant difference from the case with the FCL.

In consequence, the DVR well outperforms the FCL to stabilize the DC-link overvoltage. That

is why the cases with the DVR and the combined DVR-FCL do not follow the same pattern as

the case with the FCL.

5.2 Study of the asymmetrical fault

It is simulated that a double-phase (phase-A and phase-B) fault happens at t = 1 s, and the fault

duration is 200 ms. For the reasons why the most common single-phase fault is not chosen,

Fig 9. RMS value of the DFIG terminal voltage subject to the symmetrical fault.

https://doi.org/10.1371/journal.pone.0221410.g009
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Fig 10. Active power of the DFIG subject to the symmetrical fault.

https://doi.org/10.1371/journal.pone.0221410.g010

Fig 11. Electromagnetic torque of the DFIG subject to the symmetrical fault.

https://doi.org/10.1371/journal.pone.0221410.g011
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our research group is to assess the effectiveness of the proposed approach to handle an asym-

metrical fault with higher severity. If the combined DVR-FCL is capable of solving the double-

phase fault problem, it is believed that the approach is also competent for handling the single-

phase fault.

Fig 13 shows the DFIG terminal voltage during the asymmetrical fault. For without auxil-

iary, the RMS voltages of the two faulty phases (phase-A and phase-B) are decreased to 0.39 pu

(55.2% of the nominal level) and 0.28 pu (39.6% of the nominal level), respectively. There is

an ignorable voltage decline on the unfaulty phase, and the RMS voltage is kept at 94% of

the nominal level. Fig 14 indicates the voltage compensation effects by various methods. It is

clearly seen that the combined DVR-FCL brings the best voltage improvement. The DVR will

firstly inject the voltage compensation on the two faulty phases, whose voltages are adjusted to

be approximately equal with each other. Later, the inductive FCL will be activated to insert the

desirable current-limiting inductance to the rotor circuit. From the results, the RMS voltages

of the two faulty phases are enhanced to 0.56 pu (79.2% of the nominal level) and 0.61 pu

Fig 12. DC-link voltage of the DFIG subject to the symmetrical fault.

https://doi.org/10.1371/journal.pone.0221410.g012

Table 2. Comparison of various methods on the DFIG subject to the symmetrical fault.

Items Without auxiliary With the DVR With the FCL With the DVR-FCL

Stator current 4.1 pu 2.1 pu 2.25 pu 1.49 pu

Rotor current 3.49 pu 2.31 pu 1.74 pu 1.4 pu

Terminal voltage (RMS) 0.05 pu 0.36 pu 0.06 pu 0.37 pu

Electromagnetic torque 2.25 pu 1.71 pu 1.13 pu 0.97 pu

DC-link voltage 1.94 kV 1.23 kV 1.59 kV 1.19 kV

https://doi.org/10.1371/journal.pone.0221410.t002
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(86.3% of the nominal level) by using the combined DVR-FCL, and the voltage drop rates are

about 20.8% and 13.7%, respectively.

Figs 15–19 show the DFIG stator and rotor currents, active power, electromagnetic torque

and DC-link voltage subject to the asymmetrical fault. The detailed comparison of various

Fig 13. DFIG terminal voltage subject to the asymmetrical fault. (a) Instantaneous value, (b) RMS value.

https://doi.org/10.1371/journal.pone.0221410.g013
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Fig 14. RMS value of the DFIG terminal voltage subject to the asymmetrical fault. (a) phase-A voltage, (b) phase-B

voltage.

https://doi.org/10.1371/journal.pone.0221410.g014
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Fig 15. DFIG stator current subject to the asymmetrical fault.

https://doi.org/10.1371/journal.pone.0221410.g015

Fig 16. DFIG rotor current subject to the asymmetrical fault.

https://doi.org/10.1371/journal.pone.0221410.g016
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Fig 17. Active power of the DFIG subject to the asymmetrical fault.

https://doi.org/10.1371/journal.pone.0221410.g017

Fig 18. Electromagnetic torque of the DFIG subject to the asymmetrical fault.

https://doi.org/10.1371/journal.pone.0221410.g018
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methods is listed in Table 3. Herein, the single action of the DVR or the FCL may not avoid

disconnection of the DFIG, since the rotor current is exactly around its safety limit. After the

combined DVR-FCL is utilized, the rotor current is suppressed to 1.35 pu, and the current-

limiting ratio is up to 63%.

The maximum power fluctuation is ~1 MW when without auxiliary. For that the combined

DVR-FCL is used, the GSC and RSC both operate in the linear regions, and multiple benefits

are obtained for power stabilization of the DFIG. One is to limit the maximum fluctuation

within the level of 0.4 MW, and the other is to keep the generator power at the level of 1.08

MW.

As compared to the symmetrical fault, it is clearly seen that the asymmetrical fault causes

more obvious oscillations in the electromagnetic torque and the DC-link voltage. With regard

to the contributions of the combined DVR-FCL, the maximum electromagnetic torque is

reduced from 3.12 pu to 1.17 pu, and it is helpful to alleviate mechanical stress on the turbine.

Furthermore, the DC-link voltage is limited to 1.19 kV, and the oscillation range is controlled

within 60 V.

Table 3. Comparison of various methods on the DFIG subject to the asymmetrical fault.

Items Without auxiliary With the DVR With the FCL With the DVR-FCL

Stator current 3.28 pu 1.54 pu 1.81 pu 1.39 pu

Rotor current 3.64 pu 2.03 pu 1.92 pu 1.35 pu

Terminal voltage (RMS) 0.38 pu 0.54 pu 0.39 pu 0.56 pu

Electromagnetic torque 3.12 pu 1.88 pu 1.55 pu 1.17 pu

DC-link voltage 1.31 kV 1.21 kV 1.22 kV 1.19 kV

https://doi.org/10.1371/journal.pone.0221410.t003

Fig 19. DC-link voltage of the DFIG subject to the asymmetrical fault.

https://doi.org/10.1371/journal.pone.0221410.g019
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6 Conclusions

This paper proposes an efficient LVRT scheme based on the coordination control of a DVR

and an inductive FCL for a DFIG. Theoretical investigation and simulation analysis are done

to validate the effectiveness of the proposed scheme. The combined DVR-FCL can powerfully

decrease the fault currents in the DFIG stator and rotor, and perform visible voltage stabiliza-

tion on the generator terminal and the DC-link. Additionally, the combined DVR-FCL enables

to well strengthen the DFIG power stability and suppress the electromagnetic torque within

the safety limit. In consequence, the risks to cause damage of the converters are avoided, and

an adequate LVRT operation is realized for the DFIG under symmetrical and asymmetrical

faults.

In the near future, the follow-on tasks for the proposed approach will be carried out, and

they include parameter optimization, economic evaluation and prototyping test of the com-

bined DVR-FCL in the DFIG. The specific research schemes and results will be addressed in

other reports.
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