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Abstract

This study investigated the influence of age and visual occlusion on fast reach-to-grasp

movements. The effect of visual occlusion on reach-to-grasp movement was examined

using a task that heavily relies on feed-forward control. Three groups of healthy adults aged

22, 49 and 65 on average performed fast reach-to-grasp movements with full visual and par-

tial visual occlusion conditions of the hand during the initial part of movement. Regarding the

effect of age, the all parameters of reach-to-grasp movement were deteriorated with age,

except relative time to maximum velocity and spatial coordination. Regarding the effect of

visual condition, participants reached with prolonged movement time, lower peak velocity,

and later occurrences of peak velocity and peak aperture, as well as decrease in spatial

coordination. Regarding the effect of age on visual condition, visual occlusion resulted in a

longer movement time and delayed time to maximum velocity in middle-aged and older

groups compared to full vision, but the difference was not observed in the younger groups.

Conclusion: Reach-to-grasp performance deteriorated with age and the performance was

affected when vision of the hand at initial movement was occluded. Overall, movement per-

formance in middle-aged and older adults was affected by visual occlusion, whereas it was

unaffected in younger adults. The results indicate that visual feedback of the hand at initial

movement is important to control reach-to-grasp movement of middle-aged and older adults

during real tasks.

Introduction

Activities of daily living are primarily upper extremity tasks, and many of them involve reach-

to-grasp movements [1]. Reach-to-grasp (RTG) is a complex motor skill that requires integra-

tion of planning and execution of reaching (transport) and grasping movements, which are

termed higher-order control systems [2]. Performance of RTG movement changes signifi-

cantly with age. Older adults demonstrated longer movement duration and change in relative

time to peak velocity and peak aperture [3–5]. Moreover, coordination of transport and grasp

components showed a subtle decrease, but was more evident in high-precision tasks [3, 6].
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Older adults also demonstrated appropriate kinematic modifications showing that they can

adopt strategies to compensate for deterioration [3]. As previously known, physiological

change leads to sensory, motor, and neural capability change gradually occurring in middle

age, which subsequently declines until quality of life of elderly individuals is affected [7]. Cur-

rently, evidence shows a decline of manual dexterity and a decrease of grip force control start-

ing to occur in middle-aged adults [4, 8]. However, research studies focusing on RTG control

in middle-aged adults is relatively limited.

With regards to the effect of visual information, recent evidence showed that vision of hand

and object in early phase of RTG movement is crucial for grasp control [9]. Viewing the object

early during grasping has more influence on program and control grasping than the viewing

of the hand. A previous study reported that occlusion of both hand and object led to a larger

maximum aperture, whereas early occlusion of the hand did not influence the maximum aper-

ture [9]. In line with the previous study, Connolly and Goodale (1999) also found that occlu-

sion of the moving hand had no effect on maximum aperture but had clear effects on the

kinematics of reach [10]. Moreover, vision occlusion of the moving hand at the initial part of

movement affected RTG coordination and grasp pre-shaping, which implied the role of feed-

forward control in this movement [11]. Although, these studies revealed the role of different

visual cues influencing RTG control, most of these studies have been conducted in younger

adults [9, 10]. Knowledge on the role of visual cues of hand movement on the motor strategy

in advanced age, particularly at the beginning of the physiological change in middle age, is lim-

ited. To the best of our knowledge, the effect of visual occlusion of hand movement in aging

has been reported in one previous study [12]. The result of the study showed that vision occlu-

sion of the hand affected the kinematics of RTG movement, but the magnitude of the effect

was larger in older adults compared with younger adults. The study suggested that older adults

were more reliant on visual feedback than younger adults when visualization of the reaching

hand was removed.

In addition to the visual feedback, the change and slowing of feed-forward in older adults

has also been well reported in several goal-directed tasks. For object-lifting tasks, evidence

showed that older adults tended to rely more on the internal model or feed-forward control

compared with younger adults to compensate for the less afferent feedback [13]. With regard

to RTG task, investigating the RTG kinematics and coordination in high degree of difficulty

using obstacle avoidance in older adults including participants with stroke or Parkinson’s dis-

ease, RTG coordination deficits have been detected [14–16]. Using fast RTG movement under

visual occlusion results in minimizing the use of visual feedback from the arm and hand and

maximize the use of feed-forward control [11]. During perform the fast movement, visuomo-

tor system was limited time to use vision and online control to improve the RTG performance.

This experimental paradigm was used to investigate differences of anticipatory planning

between two hands. Superior in anticipatory planning between hands was found when per-

formed the RTG movement under visual occlusion, but not under full vision [11]. Therefore,

visual occlusion or full vision would have influence on anticipatory planning in RTG move-

ment. The previous findings supported that the central nervous system heavily relies on the

use of feed-forward control when using vision occlusion of the arm and hand at the initial part

of movement [11]. However, whether the ability to respond to the task, which heavily relies on

the use of feed-forward control, i.e. when there is early visual occlusion of hand movement, is

different between the age groups is still unknown. With increasing age, the change in move-

ment strategy allows older adults to perform the task without error. Older adults showed more

rigid movement pattern to unanticipated RTG movement [6] and more conservative strategy

in natural RTG tasks compared with younger adults [17]. These strategies may be adopted to

optimize movement time and energy expenditure in daily tasks with high precision. Several
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studies have reported RTG strategy changes in older adults [6, 17]; however, studies investigat-

ing whether middle-aged adults might adopt strategies in RTG control to compensate for age-

related passive degenerative processes are scarce. Only a few studies have assessed reach-to-

grasp performance across a life span and investigated the effect of visual occlusion in virtual

environments. Different movement strategies among younger, middle-aged and older groups

were reported when performing precision grasp [18, 19]. Younger adults have the ability to uti-

lize visual information differently compared to middle-aged and older adults [18]. However,

performing the task in a virtual environment might utilize the movement kinematics differ-

ently from the real workplace similar to our study [5, 18]. In addition, there is evidence that

brain activity is altered between experiences in virtual reality and real world [20, 21]. Knowl-

edge on the different motor strategies in advancing age may improve understanding regarding

neural control on behavioral deterioration [22, 23]. Therefore, the first and the second aim of

this study were to investigate the effect of age and to determine the effect of visual occlusion on

reach-to-grasp movements. The third aim was to determine whether reach-to-grasp perfor-

mance with different visual conditions is differentially affected by age. We hypothesized that

RTG performance would be deteriorated in middle-aged and older adults. We also hypothe-

sized that RTG performance would be deteriorated when vision of the hand was occluded at

the initial movement. Kinematics of RTG movement in reach and grasp components, as well

as its coordination would be weakened in aging groups and in a visual occlusion condition. In

addition, we hypothesized that performance of RTG movement with different visual condi-

tions would vary depending on age.

Materials and methods

Participants

Thirty-six healthy adults (21 women, 5 men) age ranged between 21 to 73 years participated in

the study. Participants who met inclusion and exclusion criteria were divided into three groups

including younger (age, 21–24 years), middle-aged (age, 41–55 years), and older adult groups

(age, 61–73). There are twelve participants in each age group. All participants were right-

handed as determined by the Edinburg Handedness Inventory. The participants met the fol-

lowing criteria: ability to understand the task instructions with score > 24 by Thai Mini Men-

tal Status, no hearing and visual problems not correctable with lens, and no neurological

problems. The participants were excluded if the following criteria were met: blood pressure

>140/90 mmHg, presence of joint limitation or pain at the upper extremity. The participants

were recruited from a local community. The Ethics committee of Srinakharinwirot University

approved the study (PTPT 2017–005). All participants obtained written informed consent

before the study was conducted. The individual in this manuscript has given written informed

consent to publish these case details.

Experimental setup

The experimental setup of the RTG task is shown in Fig 1. All participants were seated com-

fortably in front of the experimental table with the trunk secured by a belt and the feet sup-

ported on the floor. A square object (2.5 cm in width and 10 cm in height) was located 30 cm

along the midline of the trunk from the area where the hand was placed on the start switch.

The object was marked at the center to designate where the fingers should be contacted. The

barrier was cylindrical (2 cm in diameter and 30 cm in height) located 15 cm in front of the

start switch and 2.5 cm away from the midline between the start switch to the target object.

The barrier was placed at the right to force a curved hand path of the reach [11]. Performing
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the movement with the barrier in place serves to increase the task difficulty by challenging the

movement planning and transport-grasp coordination elements of a RTG movement [11, 24].

In addition, RTG movement was performed with the right hand with full vision and visual

occlusion conditions. Six participants in each group started with a full vision condition, and

the other six participants began with a visual occlusion condition to counterbalance between

different visual conditions. For the visual occlusion condition, the foamed shield was placed

between the starting switch and the barrier, such that it occluded vision of the arm and hand

at the initial part of movement and later allowed vision at the end of the movement (Fig 1).

Under vision occlusion of the arm and hand at movement initiation, the participant had to

minimize the use of visual feedback from the arm and heavily rely on the use of feed-forward

control during the movement initiation [11].

Before data collection, the experimenter demonstrated the task. Subsequently, the partici-

pants were allowed to practice with full vision one time at their preferred speed and three

times at a faster speed. This practice session allowed the participants to be aware of the fast

speed which was required during the actual testing. The foamed shield was placed between the

starting switch and barrier before data recording.

RTG task

Before each trial, the participants were asked to place their right hand at the start switch with

the thumb and index fingertips slightly touching each other at the tips. The hand and forearm

of the testing limb were placed on the table as a starting position. The other hand was placed

Fig 1. Experimental setup of the RTG task. Reach-to-grasp task setup in visual occlusion condition (A). Position of the barrier and the target object

from the top view (B).

https://doi.org/10.1371/journal.pone.0221320.g001
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on the lap during experiment testing. Light-emitting diode (LED) was used as a signal to initi-

ate movement. The LED light was positioned behind the object and 20 cm above the table sur-

face. All participants were instructed to move immediately after the LED emitted light. The

instruction was “upon LED activation, reach as fast as possible without collision of the barrier,

grasp the object with the thumb and index fingers, and lift it off a few centimeters from the

table”. Fifteen completed trials in each visual condition were averaged and used in the data

analysis. Moreover, the participants were allowed to take a 1-min or several-minute break to

avoid fatigue.

Data acquisition and analysis

The kinematic data of RTG movement was recorded using an electromagnetic tracking

motion system (MotionMonitor™, Innsport, Chicago, IL, USA), with six degree-of-freedom

Mini-Bird sensors (Ascension Technologies, Burlington, VT, USA). Three sensors were

attached on the upper extremity. The wrist sensor was attached on the styloid process of the

wrist. The other two sensors were attached on the nail beds of the thumb and index fingers.

All kinematic data was filtered using a zero-lag Butterworth low-pass filter with a cut-off fre-

quency of 20 Hz. The sampling rate for the three sensors was 100 Hz. The data was analyzed

using the Matlab Signal Processing Toolbox.

Kinematic characteristics related to the transport component and grasp component were

analyzed. For the transport component, three-dimensional displacement was derived from the

wrist sensor position. Tangential velocity of transport was calculated from the displacement

data of wrist sensor. The displacement data from x, y, and z coordinates of the wrist sensor

were differentiated to tangential velocity using a finite-different technique [25]. For grasp com-

ponent, three-dimensional displacement was derived from thumb and index finger sensors.

The grasp aperture size was calculated from the resultant distance between the thumb and

index finger sensors. The higher peak of grasp apertures after passing the barrier was used to

show grasp pre-shaping. The dependent variables in this study included 1) total movement

time (TMT): the time between movement initiation (the time before the release of thumb and

index finger from the start switch at which the tangential transport velocity was > 0.4 cm/s)

and movement termination (indicated by a tangential transport velocity reaching the lowest

velocity before the object was lifted off); 2) Transport component: maximum transport velocity

(MV) was defined as the maximum value of transport velocity; absolute time of maximum

transport velocity (TMV) was defined as the duration from the movement initiation to the

maximum transport velocity (Fig 2); relative time of maximum transport velocity (%TMV)

indicated acceleration time of the transport component which was defined as the absolute

time of maximum transport velocity that was normalized by total movement time of each trial;

deceleration time (DT) was defined as the duration from the peak of transport velocity to the

movement termination. TMT, MV, TMT, %TMV and DT were based on the wrist sensor; 3)

Grasp component: maximum aperture (MA) was defined as maximum resultant distance

between the thumb and index finger sensors of the maximum peak of grasp aperture; absolute

time of maximum aperture (TMA) was defined as the duration from movement initiation to

the maximum grasp aperture (Fig 2); relative time of maximum aperture (%TMA) which was

defined as the absolute time of maximum aperture that was normalized by total movement

time of each trial. MA, TMA and %TMA were based on the thumb and index finger sensors;

and 4) RTG coordination was measured by a cross correlation analysis between transport

velocity and aperture size. The coordination was expressed by cross-correlation coefficient (r)

as a function of time lag (T). Spatial coordination was derived from the correlation coefficient

at the most similar pattern between the transport velocity and grasp aperture trajectories,
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called maximum correlation coefficient (rmax). Temporal coordination, called maximum time

lag (Tmax), was quantified by the time used to shift the transport velocity trajectory relative to

the grasp aperture trajectory until the rmax was detected [16]. Strong coordination was evalu-

ated from the higher rmax and lower Tmax.

Statistical approach

For each participant, the mean values for each of the dependent measures were calculated for

each age group (older/middle/younger) × visual conditions (full vision/visual occlusion). An

analysis of variance (two-way mixed ANOVA) was conducted with age group as the between-

subjects factor (older/middle/younger) and visual conditions (full vision/visual occlusion) as

within-subject factors. Before performing ANOVA, normal distribution of the data was veri-

fied. Post hoc comparisons were performed using Bonferroni. Pairwise comparisons with Bon-

ferroni correction were used to interpret significant main effects. All significant interactions

were further explored by using one-way ANOVA to examine age group differences at each

visual condition, and paired sample t-test to examine differences between visual conditions

at each age group. The level of statistically significant difference for all analyses was set at

p< 0.05.

Results

Thirty-six healthy adults participated in the study. The mean age of the three age groups were

22.41 years, 49.16 years, and 65.5 years for young, middle-aged, and older adults, respectively.

The characteristics of the participants based on the different age groups are summarized in

Table 1.

Fig 2. Dependent variables. Transport velocity (A) and grasp aperture profiles (B).

https://doi.org/10.1371/journal.pone.0221320.g002

Table 1. Participant characteristics.

Group N Age (years)

Mean ± SD

Age range

(years)

Sex

Female/male

Young adult 12 22.41±0.95 21–24 7/5

Middle-aged adult 12 49.16±5.07 41–55 6/6

Older adult 12 65.50±4.01 61–73 8/4

https://doi.org/10.1371/journal.pone.0221320.t001
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Effect of age groups and visual conditions

Sample transport velocity and grasp aperture profiles of full visual and partial visual occlusion

conditions for a representative younger, middle-aged and older adults are shown in Fig 3.

Compared to the younger group, aging groups exhibited longer movement time when reach-

to-grasp with full vision and partial visual occlusion.

The means and standard deviations for all dependent variables are reported in Table 2. A

significant main effect of age was found for all dependent variables, except %TMV and rmax. A

significant main effect of visual condition was found for TMT, MV, TMV, TMA, %TMV, %

TMA and rmax. Significant interactions between age and visual condition was found for TMT

and TMV. These results will be reported in detail.

Total movement time (TMT). There was a main effect of age (F2, 33 = 23.45, p< 0.0001)

driven by significant differences between the young group and both the other groups (younger

vs middle-aged, p< 0.0001; younger vs older, p< 0.0001). There was no significant difference

between middle-aged and older groups (p> 0.05). There was also a main effect of visual con-

dition (F1, 33 = 15.46, p< 0.0001) with movements taking longer in the visual occlusion condi-

tion compared to full vision (p< 0.001). A significant interaction between age and visual

condition emerged (F2, 33 = 4.14, p< 0.05). Post hoc test using one-way ANOVA showed mid-

dle-aged and older groups had a longer movement time compared to the younger group in

both full vision and visual occlusion conditions (full vision: middle-aged (558.33±86.47 ms) vs

younger (416.66±52.39 ms), p = 0.001; older (610.88±115.07 ms) vs younger, p< 0.0001 and

visual occlusion: middle-aged (638.50±81.79 ms) vs younger (420.55±52.93 ms), p < 0.0001;

older (654.50±118.15 ms) vs younger, p< 0.0001) (Fig 4A). Post hoc test using paired sample

t-test revealed that visual occlusion made a longer movement time in middle-aged (p = 0.002)

and tended to be a longer movement time, but it is not statistically significant in older age

groups (p = 0.05) when compared to full vision. This statistic might reach significance if the

sample size was increased, which needs to be further investigated. However, this difference

was not observed in the younger group (p = 0.803) (Fig 4A).

Maximum velocity (MV). There was a main effect of age (F2, 33 = 37.96, p< 0.0001) with

significant higher MV between the younger group and both the other groups (younger vs mid-

dle-aged, p< 0.0001; young vs older, p< 0.0001). There was no significant difference between

middle-aged and older groups (p> 0.05). There was also main effect of visual condition (F1, 33

= 29.92, p< 0.0001) with significantly lower MV for the visual occlusion compared to the

full condition (p< 0.0001). There was no significant interaction between group and visual

condition.

Absolute timing. Time to maximum velocity (TMV) and Time to maximum aperture

(TMA). There was a main effect of age (TMV, F2, 33 = 16.00, p< 0.0001; TMA, F2, 33 = 26.25,

p< 0.0001) with significantly shorter TMV and TMA between the younger group and both

the other groups (TMV: younger vs middle-aged, p< 0.0001; younger vs older, p< 0.0001)

and TMA: younger vs middle-aged, p < 0.0001; younger vs older, p< 0.0001). There was

no significant difference between middle-aged and older groups for both absolute timings

(p> 0.05). There was also a main effect of visual condition (TMV, F1, 33 = 28.28, p< 0.0001;

TMA, F1, 33 = 17.48, p< 0.0001) with TMV and TMA that occurred significantly later in the

visual occlusion condition compared to full vision (TMV, p< 0.0001; TMA, p< 0.0001).

There was no significant interaction between age and visual condition on TMA. However,

there was significant interaction between age and visual condition on TMV (F2, 33 = 6.365,

p = 0.005). Post hoc test using one-way ANOVA showed middle-aged and older age groups had

a prolonged TMV compared to the younger group in both visual conditions (full vision: mid-

dle-aged (229.16±51.49 ms) vs younger (150.55±33.53 ms), p = 0.001; older (239.16± 28.35 ms)
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vs younger, p< 0.0001 and visual occlusion: middle-aged (287.33±55.01 ms) vs younger

(156.61±38.05 ms), p< 0.0001; older (270.11±78.35 ms) vs younger, p< 0.0001) (Fig 4B). Post

hoc test using paired sample t-test revealed that visual occlusion made a prolonged TMV in

middle-aged (p< 0.0001) and older groups (p = 0.04) compared to full vision. The younger

group did not show any difference between visual conditions (Fig 4B).

Fig 3. Transport velocity and grasp aperture profiles. Sample transport velocity and grasp aperture profiles of 2 visual conditions

(solid line full vision, dashed line partial visual occlusion) for younger adults (A), middle-aged adults (B) and older adults (C).

https://doi.org/10.1371/journal.pone.0221320.g003
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Deceleration time (DT). The age effect was statistically significant (F2, 33 = 11.07, p<

0.0001). Deceleration time was longer for middle-aged and older groups compared with the

younger group (younger vs middle-aged, p< 0.05; younger vs older, p< 0.0001). There was

no significant difference between middle-aged and older groups (p> 0.05). However, the

visual condition effect did not reach any significance (F1, 33 = 1.74, p> 0.05). There was no sig-

nificant interaction between age and visual condition.

Relative timing. Relative time to maximum velocity (%TMV). There was no main effect

of age (%TMV, F2, 33 = 2.29, p> 0.05). However, there was a main effect of visual condition

(%TMV, F1, 33 = 7.264, p< 0.05), with %TMV occurring later in visual occlusion compared to

a full visual condition (p< 0.05). There was no significant interaction between age and visual

condition.

Relative time to maximum aperture (%TMA). There was a main effect of age (%TMA, F2, 33

= 7.79, p = 0.002), with %TMA occurring significantly later only in the middle-aged group

compared to the younger group (p� 0.001). There was also a main effect of visual condition

(%TMA, F1, 33 = 4.967, p< 0.05), with %TMA occurring later in visual occlusion compared to

Table 2. Mean and standard deviations for all dependent variables.

Variables Age group Visual condition

Younger Middle-aged Older Full vision Visual occlusion

TMT (ms) 418.61 (51.54) 598.41 (91.93) 632.69 (116.21) 528.63 (119.56) 571.18 (138.14)

MV (cm/s) 141.25 (23.79) 96.39 (11.20) 95.95 (13.24) 117.33 (28.10) 105.067 (25.13)

TMV (ms) 153.58 (35.21) 258.25 (59.98) 254.63 (69.39) 206.29 (62.22) 238.01 (82.43)

TMA (ms) 270.75 (37.54) 432.02 (67.85) 438.22 (99.58) 359.57 (100.21) 401.09 (109.11)

DT (ms) 265.02 (50.61) 340.16 (61.67) 378.05 (76.42) 322.33 (78.05) 333.16 (80.04)

%TMV 37.00 (8.47) 43.14 (6.93) 40.30 (6.75) 38.99 (7.13) 41.30 (8.25)

%TMA 64.91 (5.11) 72.35 (3.95) 69.26 (6.90) 67.80 (7.50) 69.88 (4.39)

MA (cm) 10.17 (1.28) 8.78 (1.52) 8.15 (1.59) 8.99 (1.65) 9.08 (1.73)

Tmax (ms) 105.75 (34.29) 162.86 (25.92) 178.00 (49.32) 154.48 (49.00) 143.25 (48.35)

rmax 0.87 (0.06) 0.84 (0.07) 0.84 (0.07) 0.86 (0.06) 0.84 (0.07)

https://doi.org/10.1371/journal.pone.0221320.t002

Fig 4. Illustration of age-by-visual condition interaction with post-hoc analysis. Total movement time (TMT) (A), time to maximum velocity (TMV) (B). P-
values were shown for significance between the age groups and between the visual conditions with �p< 0.05, ��p = 0.002, ���p� 0.001. Analyzing the difference

between visual conditions in each age group using paired sample t-test; analyzing the difference between age groups in each visual condition using one-way

ANOVA. Error bars represented standard deviation.

https://doi.org/10.1371/journal.pone.0221320.g004
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a full visual condition (p< 0.05). There was no significant interaction between age and visual

condition.

Maximum aperture. Maximum aperture (MA). There was a main effect of age (F2, 33 =

6.50, p = 0.004) with a significant smaller grasp aperture only in the older group compared to

the younger group (p = 0.004). There was no main effect of visual condition (MA, F1, 33 = 0.21,

p> 0.05). There was no significant interaction between age and visual condition.

RTG coordination. Maximum time lag (Tmax). There was a main effect of age (Tmax, F2, 33

= 15.79, p< 0.0001), with Tmax being significantly longer in the older and the middle-aged

group compared to the younger group (older vs younger, p< 0.0001; middle-aged vs younger,

p� 0.001). There were no significant differences between middle-aged and older groups

(p> 0.05). Whereas, there was no main effect of visual condition (F2, 33 = 0.70, p> 0.05).

There was no significant interaction between age and visual condition.

Maximum correlation coefficient (rmax). There was no main effect of age, but there was a

main effect of visual condition (F1, 33 = 4.55, p< 0.05), with a significantly lower rmax in visual

occlusion condition compared to full vision (p< 0.05). There was no significant interaction

between age and visual condition.

Figs 4 and 5 show the means and SDs between full-vision and visual occlusion conditions

of all kinematic parameters.

Discussion

The aim of the study was to determine the effect of age and visual occlusion when performing

the RTG task with visual occlusion of the initial hand movement. Furthermore, we also deter-

mined whether the RTG performance with different visual occlusion conditions was differen-

tially affected by age. Our findings demonstrated that RTG performances were deteriorated

with age and were decreased when vision was occluded. Moreover, overall movement perfor-

mances were deteriorated in aging groups when vision was occluded, while there was no evi-

dent deterioration in younger adults. This is the first study to demonstrate the effect of visual

occlusion when performing RTG movements in a real life task in regards to the participants’

ages.

Effect of aging

All parameters in our study were deteriorated with age except relative time to maximum

velocity and spatial coordination. Relative time to maximum velocity was not changed in

aging groups, possibly due to a prolonged movement time and later occurrence of peak

velocity for preserving the consistent ratio of duration in transport component relative to

total movement time [3, 14]. Aging groups that preserved a spatial coordination are in line

with the previous study which reported that movement pattern was similar between younger

and older adults [3]. It is possible that participants in aging groups need extended time to

coordinate transport velocity and grasp aperture in order to preserve the similarity of the

pattern of movements.

Effect of visual condition

The occluded vision of the arm and hand at the beginning of the movement deteriorated the

RTG performance. Under visual occlusion, participants reached with prolonged overall move-

ment performance, lower peak velocity, and later occurrences of timing and proportionally

temporal setting of peak velocity and peak aperture, as well as disrupted spatial coordination.

Our findings consistent with the previous studies that reported the role of vision of the hand

during RTG movement [9, 10, 12]. Our evidence suggested that the visual information of the
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hand affected the RTG performance. The possible reason is the presence or absence of the

visual information about the moving limb during the initial movement is important for the

execution of the RTG movement.

Effect of aging on visual condition

Our study demonstrated an interaction between age and visual condition in total movement

time and time to peak velocity indicating that the effects of visual condition on RTG perfor-

mance were different depending on age group. The results showed that overall movement per-

formance in younger adults was unaffected by visual occlusion, whereas middle-aged and

older adults took longer to complete movements when vision was occluded compared to full

vision. The significant interaction of age and visual condition for overall movement time and

time to peak velocity was further analyzed.

Fig 5. (A-H). Illustration of dependent variables in full-vision and visual occlusion conditions in each age group.

Maximum transport velocity (MV) (A), maximum aperture (MA) (B), deceleration time (DT) (C), absolute time of

maximum aperture (TMA) (D), relative time of maximum transport velocity (%TMV) (E), relative time of maximum

aperture (%TMA) (F), maximum time lag (Tmax) (G), maximum correlation coefficient (rmax) (H). No significant

interaction of age-by-visual condition. Error bars represented standard deviation.

https://doi.org/10.1371/journal.pone.0221320.g005
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Older and middle-aged groups demonstrated a longer overall performance and later occur-

rence of peak velocity in both visual conditions, indicating a slow movement in aging groups.

Slowing of RTG movement is a common compensatory strategy reflected in an alteration in

movement control processes of aging [3, 22, 26]. Prolonged movement time in the middle-

aged and older adults may result from reduced sensorimotor control, slow processing informa-

tion, decreased motor planning, and deficits in neuromuscular control, leading to increased

time to execute the task [8, 27–29]. The result demonstrated an increase in acceleration time in

the aging groups, consistent with the findings of Grabowski and Mason (2014) [5]. Given the

fact that we found no effect of age on %TMV it seems likely that the age differences found in

TMV were driven by the increased movement time (TMT) in the older and middle-aged

groups compared to the young [3].

The occlusion of the visual feedback of the hand at the initial movement did not affect over-

all movement performance in the younger age group. The results are in line with Fukui and

Inui (2006) reported that younger adults can utilize visual information of the target while

occluded vision of the hand at the initial movement [9]. It is possible that younger adults pre-

serve their ability to process sensory information within limited visual feedback under visual

occlusion [30]. Therefore, only visual information of the target is enough for the younger

group to process the motor program to maintain overall performance. In contrast, aging

groups, especially in the middle-aged group, spent longer movement time when vision of the

hand at initial movement was occluded. It is possible that visual feedback of the hand at initial

movement was important to control RTG movement. Aging groups are perhaps more reliant

on visual feedback [12, 30]. Our findings of older adults are in line with the study of Coats et al

2011 [12] and reported that older groups relied more on visual feedback than the younger age

groups when vision of the hand was occluded. For the middle-aged group, our results were

consistent with the previous studies of reaching movement findings that young adults use

visual information more efficiently than middle-aged adults, possible due to impaired ability

to monitor online movement through visual feedback in middle-aged groups [28, 31]. Further

investigation is required to clarify the possible reason as to why the middle-aged group were

more affected than older adults when vision was occluded. In conclusion, our findings support

that aging groups, especially middle-aged, tend to rely more on a visual feedback control when

vision of the hand was occluded. Recently, Grabowski and Mason (2012 and 2019) [18, 32]

investigated RTG performance in virtual reality and reported conflicting results with our find-

ings. Previous studies revealed that middle-aged participants tend to use full visual feedback of

the hand to improve RTG performance, while older participants have a tendency to rely more

on a feed-forward strategy when vision was occluded [18]. In addition, the recent research

reported visual occlusion using virtual reality did not affect movement time of RTG movement

across different age groups [32]. In contrast, our results demonstrated that both middle-aged

and older adults tended to be more reliant on visual feedback of the hand at the initial move-

ment stage. These conflicting results may be due to the difference between a virtual reality and

a real task. Different brain activity was observed and reported when comparing virtual reality

to real world [20, 21]. Observation of real hand action activated a right posterior parietal cortex

which related to motor processing. Whereas, observed virtual reality grasping action activated

visual perceptual network which does not directly engage action representations [21]. There-

fore, previous studies performed RTG movement in virtual environment which provided only

visual information about the position of the thumb and index fingers during the movement.

Visual information might not be sufficient enough to improve RTG performance [18, 32]

when relating to our study. This may be the reason that the participants in middle-aged and

older age groups in previous studies tended to rely more on feedforward planning in a virtual

environment [32].
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Conclusions

Our study showed that kinematic RTG behavior had deteriorated with age. RTG performance

also decreased when performing movement with visual occlusion compared to full vision.

Moreover, our findings demonstrated that the effect of visual occlusion on RTG performance

(in a real-world task) depended on the age group of the participant. Overall movement perfor-

mance in middle-aged and older adults is affected by visual occlusion, whereas it is unaffected

in younger adults. Thus implies that visual feedback of the hand in the initial movement was

significant in controlling RTG movement in middle-aged and older adults, but not in younger

adults.

The findings of our study may have broader implications for understanding the effects of

visual occlusion in middle-aged and older adults. In addition, they provide significant infor-

mation of different movement strategies among age groups, which may be beneficial for geriat-

ric rehabilitation programs for different age ranges.
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