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Abstract

This research article aims to disclose the features of nanofluidic flow manifested with

Cattaneo-Christov model of heat and mass flux over non-linearly stretching surface. An

incompressible visco-elastic nanofluid saturates the given porous medium through Darcy-

Forchheimer relation. A non-uniformly induced magnetic effect is considered to accentuate

the electro-magnetic and thermal conductivity of the base fluid. The model is restricted to

small magnetic Reynolds. Boundary layer assumptions are incorporated for the given flow

model. Governing equations are remodeled into non-linear ordinary differential equations

through transformations. So formulated nonlinear system is solved through homotopy

analysis method (HAM) to achieve series solutions for velocity field, concentration of nano-

particles and temperature distribution. It is noticed that the temperature distribution and cor-

responding thermal boundary layer pattern shows declination for Cattaneo-Christov model

of heat and mass flux as compared to classical Fourier’s law of heat flux/conduction. Fur-

thermore, the intensive resistance offered by the addition of porosity factor in the flow model

results in rise of temperature profile, however, opposite behavior is noticed in concentration

of nanoparticles. The wall-drag intensity, the heat flux and the mass flux are discussed on

the premise of numerical information obtained upon simulation of the problem.

1 Introduction

Due to considerable importance of nanofluids in industrial, chemical, environmental, geologi-

cal and may other setups, the concept of suspension of metallic nano-size particles in typical

base fluids presented by Choi [1], termed as nanofluids, has become a subject of immense

interest for numerous researchers especially physicists for the past many years. The repute of

nano-science in present era enforces us to interpret the behavior of fluids and nanofluids over

various surfaces including stretching sheets, cylinders and plates etc. to analyze the drag force

variation, heat and mass flux mechanism and other important industrial aspects (see for
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example [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]) and cross references cited

therein where authors have focused on the heat and mass flux attributes of nanofluids. Indus-

trial and environmental setups that are likely to involve the heat and mass flux such as geologi-

cal setups, chemical actor-reactors and other heating systems are the main focus in convection

through porous medium. The porosity factor involved in such systems is merely to induce the

incremental inertial effect that results in variation of skin friction (wall-drag). Such formula-

tions are helpful in building heat insulation related materials, energy storage setups, fossil fuel

beds, disposal reactors for nuclear wastes and many others. The concept was initially intro-

duced by Darcy and the law, known as Darcy’s law, is valid for a restricted range of velocity. In

the case of porous media, it becomes almost impossible to ignore the high effects of inertial

force and resistance offered by the porosity factor. Thus, a squared velocity term within the

context of Darcian velocity is involved in the momentum equation to analyze the inertial

effects. Numerous articles have been reported on this subject explaining various influential

parameters. For example, Hayat et al. [16] reported Darcy model flow using Cattaneo-Christov

theory of heat and mass flux over a linearly stretching sheet. Reportedly, the momentum of the

fluid and the associated boundary layer resulted a declination for augmented values of porosity

factor. In another article, Bakar et al. [17] disclosed the fluid flow analysis at stagnation point.

The fluid momentum and the thermal boundary layer resulted in reducing behavior for aug-

mented porosity factor. Taseer et al. [18] has introduced a revised model for Maxwell nano-

fluid using Darcy Forchheimer relation. Similar results have been reported in this study as

compared to [17]. Alshomrani et al. [19] involved a convectively heated stretching surface

manifested with Darcy flow model to analyze the impact of porosity and enhanced frictional

force on fluid flow. Mandal and Seth [20] reported a Casson type nanofluid flow with Darcy-

Forchheimer relation. The magnetic effect resulted in obvious declination of the fluid momen-

tum. Hayat et al. [21] implemented Darcy model for curvy stretching sheet witnessing an

increase in thermal layer for incremental nature of porosity factor. Recently, Sheikholeslami

et al. [22] reported the impact of MHD (Lorentz forces) on Fe3O4-H2O Ferro-fluid flow using

permeable semi-annulus. The porosity factor resulted in higher resistance offered to the fluid

motion following a low velocity field. In another article, Sheikholeslami et al. [23] analyzed

the behavior of water based nanofluid in a porous media/enclosure with quite similar results.

Dogonchi et al. [24] reported a Cu −H2O based nanofluid flow through porous media between

a hot and cold cylindrical framework. The impact of thermal radiation and porosity factor in

CuO −H2O based nanofluid has been analyzed by Dogonchi et al. [25]. A novel correlation for

the averaged Nusselt number has been presented in this study. Quite similar but more effective

results have been reported in the study presented by Dogonchi et al. [26] involving an annulus

subject to thermal radiation.

Recently, the engagement of Cattaneo-Christov model in nanofluids to analyze the heat

and mass flux mechanism is trending as numerous researchers are working on such formula-

tions. Heat flux is a natural process that occurs where there is a temperature difference within

a system or within the systems. Usually, the law of thermodynamics and heat conduction

reported by Fourier [27] has been extensively used for many years to analyze the heat and

mass characteristics however, it restricts the energy and concentration equations to parabolic

type equations that means an initial disturbance would lead to instant experience by the sys-

tem, called a paradox of heat and mass flux. This restriction was removed by Cattaneo [28] by

enforcing a modification with relaxation time factor. This term, therefore, covers/overcomes

the heat and mass flux paradox. Later on, Christov [29] further improved the version of model

presented by Cattaneo by replacing time derivative with Oldroyd upper-convective derivative.

The theory, thus, termed as Cattaneo-Christov heat and mass flux theory (CC-model). Related

to this discussion, Haddad [30] analyzed thermal instability using CC-model in Brinkman

Nanofluid flow over a non-linearly stretching surface

PLOS ONE | https://doi.org/10.1371/journal.pone.0221302 August 20, 2019 2 / 23

https://doi.org/10.1371/journal.pone.0221302


porous medium. Li et al. [31] utilized CC-model in heat and mass flux analysis of visco-elastic

fluid flow over stretching surface subject to slip conditions. A decreasing velocity profile is

noticed for enhanced magnetic effect however, the result is opposite for the thermal profile.

Sui et al. [32] disclosed the influence of CC-model on Maxwell nanofluidic flow through

stretching surface subject to slip conditions. Relatively small impact of relaxation parameters is

noticed on velocity profile as compared to thermal and salute layers. Ganji and Dogonchi [33]

reported a squeezing flow of nanofluids confined in parallel plates involving CC-model and

thermal radiation. The results indicated that thermal distribution is lesser for CC-model as

compared to the classical Fourier’s law. Upadhay et al. [34] discussed the impact of CC-model

on heat and mass transfer attributes in Powell-Eyring type nanofluidic flow. The thermal relax-

ation time parameter resulted in an improvement in heat flux rate. Acharya et al. [35] reported

impact of CC-model in a magnetized upper convective Maxwell type nanofluidic flow past an

inclined stretching sheet. The study was conducted in the context of generalized Fourier and

Ficks perspectives.

The theory of fluid flow, heat and mass transfer analysis over a stretching sheet/surface and

porous media is an important aspect. It’s numerous applications in engineering procedures

like paper production, aluminous plate cooling procedures, plastic sheet extrusions etc. are

remarkably best-known to the readers. This immense interest in the involvement of stretching

sheet in fluid flow resulted in numerous research studies reported in the last two decades. For

example, Sajid et al. [36] mentioned viscous flow of steady incompressible fluid instigated by

curvy extended stretching sheet. It is reported that the wall-drag force (skin-friction) on a

curvy surface is lesser than a flat surface. The studies mentioned above apprehend the argu-

ment that more focus has been emphasized on linear stretching surfaces and non-linearity in

stretching rate has been neglected upto a decent level though, the stretching with nonlinear

pattern is reasonably important in practical applications of fluids/nanofluids. The concept is

new maneuver and trending recently. Therefore, keeping in view the context of non-linearity

in stretching rates, recently, Rasool et al. [37] presented MHD nanofluidic flow over non-line-

arly stretching surface/sheet reporting some interesting jumps in the heat and mass flux rates.

An innovative study on MHD nanofluidic flow over vertically stretching surface/sheet has

been reported by Alarifi et al. [38]. The model involved heat source to balance the base temper-

ature of the surface. A report on second grade nanofluid flow past a porous media has be pre-

sented by Khan et al. [39]. The study incorporated stretching surface/sheet, heat and mass

transfer attributes. In a similar study, Khan et al. [40] reported an analysis on heat-mass flux

attributes as well as thermophoresis and Brownian diffusion in MHD nanofluid flow over

stretching surface. Palwasha et al. [41] reported a non-Newtonian nanofluid flow through

porous media using microorganisms magneto-tactics. Some recent studies can be seen in ([42]

[43] [44] [45] [46]) and cross references cited therein.

The MHD (Magnetohydrodynamics) is another very important aspect in engineering,

chemical and environmental setups involving fluid flow analysis. Instruments such as bearings,

generators, chemical actor/reactors, pumps and many others are tormented by MHD. The

applications of MHD are also found in industrial systems where a high speed machine is work-

ing having tiny size. The temperature range is witnessed between zero to 350-degrees on the

scale of Celcius. Over the years, the concept of MHD has been involved in fluid flow analysis

to help improve the thermal and electro-magnetic conductivity of the subjected fluid/nano-

fluid. Some related studies have been reported in this text. For example, Singh et al. [47] pre-

sented an MHD flow using variable thermal conductivity. The analysis involved stagnation

point formulation. MHD convective heat-mass transfer under Soret-Dufour effects has

been reported by Chatterjee et al. [48] using Power-Law model and porosity. Lund et al. [49]

reported a study on the dual solution for MHD Williamson fluid flow with slippage. Khan
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et al. [50] reported MHD mixed convection in second grade nanofluidic flow considering

Browniian diffusion and thermophoresis together with Hall effects over a stretching sheet/sur-

face. Khan et al. [51] involved MHD in nanoliquid thin film flow in a cylinder. Zuhra et al.

[52] discussed the heat-mass flux attributes in second grade MHD nanofluid flow saturated

with gyrotactic micro-organisms and nanoparticles. The influence of inclined MHD on heat

and mass transfer attributes in Carreau nanoliquid flow has been reported by Khan et al. [53].

MHD Cu −H2O based natural convection in complex shaped enclosure has been reported by

Dogonchi et al. [54]. A similar study on copper-water nanofluidic flow through a horizontal

semi-cylinder has been reported by Dogonchi et al. [55].

In all the studies mentioned above, the major emphasis has been given to linearity in

stretching rates. Here in this research, the non-linearity in stretching rate of the surface

has been targeted to interpret various aspects of fluid flow analysis. Furthermore, no such

study is found in literature involving non-linear stretching surface, Darcy-Forchheimer rela-

tion and Cattaneo-Christov model of heat-mass flux all together. The article is organized as

follows: Firstly, a Darcy-Forchheimer relation along with Cattaneo-Christov model of heat

and mass flux is implemented on steady, incompressible and viscoelastic nanofluid flow

bounded by a flat non-linearly stretching sheet/surface. Boundary layer assumptions,

Brownian diffusion and thermophoresis are attended. Secondly, the governing equations are

remodeled into non-linear ordinary differential equations through transformations. Thirdly,

HAM [56] is used to get the final series solutions. Fourthly, graphs are plotted to investigate

the variation in velocity field, temperature distribution and concentration of the nanoparti-

cles. Finally, a correlation is given for elevated values of different parameters to help the

audience in understanding the variation in skin-friction (wall-drag), heat and mass flux

rates.

2 Problem formulation

Consider a viscoelastic incompressible nanofluidic flow manifested with Cattaneo-Christov

model of heat and mass flux over non-linearly stretching surface. The nanofluid saturates the

given porous medium through Darcy-Forchheimer relation. A non-uniformly induced mag-

netic effect is involved to accentuate the electro-magnetic and thermal conductivity of the base

fluid. The model is restricted to small Reynolds to dismiss the influence of induced magnetic

effect. Cattaneo-Christov model is employed to involve the effect of modified Fourier’s law.

The stretching velocity is u = Uw = axn where n = 1 implies linear rate of stretching and n> 1

implies non-linearity in stretching of the sheet. The stretching rate is assumed to be non-linear

for the given flow model. The sheet extends along x–direction while y–direction is taken sur-

face normal to it. There is no fluid movement along the y–axis and the steady flow is assumed

along x–axis only. Schematic can be seen in Fig 1.

The governing equations are as follows,
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According to Cattaneo-Charistov heat flux theory, see for example [35], we have,

~p ¼ � krT � l1

@~p
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� �

; ð5Þ

and
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@~q
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þ~v � r~q � ~q � r~v þ r �~vð Þ~q

� �

: ð6Þ

(5) & (6) are the equations for heat and mass flux with relaxation time λ1 for thermal and λ2

for solute levels. Classical Fourier’s law can be deduced by setting λ1 = λ2 = 0 in the above men-

tioned equations. Considering the natural incompressibility i.e.r �~v ¼ 0 and assumption of

steady flow i.e.
@p
@t ¼

@q
@t ¼ 0 in (5-6) yields,

~p ¼ � krT � l1ð~v � r~p � ~p � r~vÞ; ð7Þ

and,

~q ¼ � DBrrC � l2ð~v � r~q � ~q � r~vÞ: ð8Þ

Fig 1. Physical model and coordinate system.

https://doi.org/10.1371/journal.pone.0221302.g001
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The respective equations of energy and concentration of nanoparticles are, therefore,
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with boundary conditions,

u ¼ Uw ¼ axn; C ¼ Cw; v ¼ 0; T ¼ Tw at y ¼ 0; ð13Þ

C ¼ C1; u ¼ 0; T ¼ T1 as y!1: ð14Þ

Defining,
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Using (15) in (1)–(2) & (9)–(10), we have
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f ð0Þ ¼ 0; �ð0Þ ¼ 1; yð0Þ ¼ 1; f 0ð0Þ ¼ 1;

f 0ð1Þ ¼ 0; �ð1Þ ¼ 0; yð1Þ ¼ 0:
ð19Þ

Here, γi for i = 1, 2 is the relaxation time parameter for temperature and concentration of

nanoparticles. Fr is local inertial force, M is magnetic effect, λ is known for porosity, Pr is

known as Prandtl factor, Le is known as Lewis factor, k1 is known as viscoelastic factor, Nb is

called Brownian diffusion factor and Nt is called thermophoretic force factor. Mathematically,
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Quantities of physical and industrial interest such as wall drag (Cf), heat flux (local Nusselt)

(Nu) and mass flux (local Sherwood) (Sh) numbers are given by:

Cf ¼
1
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where qw, τw and qm are the surface heat flux, shear stress and surface mass flux, respectively.

Using the definitions of τw, qw and qm and simplifying,
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Therefore, the non-dimensional forms are given below:
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where Rex = axn+1/ν is the local Reynolds number.
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3 Methodology

Homotopy analysis method (HAM) is an efficient solver for nonlinear systems where small

and large physical parameters are involved for analysis of variation in the respective flow pro-

files. Thus, it is more suitable and economical as compared to that of perturbation method for

solving non-linear systems of equations. It is applied in most of non-linear systems developed

in engineering, industrial, science and finance problems. Define,

f0 ¼ 1 � exp ð� ZÞ; y0 ¼ exp ð� ZÞ; �0 ¼ exp ð� ZÞ; ð24Þ

L̂f ¼
@

3f
@Z3
�
@f
@Z
; L̂y ¼

@
2
y

@Z2
� y; L̂� ¼

@
2
�

@Z2
� �; ð25Þ

such that,
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where Ki, i = 1, 2, � � �, 7, are constants. Subsequently, the zeroth order deformation problems:
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@�̂

@Z
þ

nþ 1

2

� �

f̂ 2 @
2
�̂

@Z2

" #

þ
Nt
Nb

@
2
ŷ

@Z2

 !

;

ð29Þ

correspond to,

ð1 � zÞL̂f ½f̂ ðZ; zÞ � f0ðZÞ� ¼ zĥf Pf ½f̂ �;

ð1 � zÞL̂y½ŷðZ; zÞ � y0ðZÞ� ¼ zĥyPy½f̂ ; ŷ; �̂�;

ð1 � zÞL̂�½�̂ðZ; zÞ � �0ðZÞ� ¼ zĥ�P�½f̂ ; ŷ; �̂�:

ð30Þ
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with boundary conditions,

f̂ ð0; zÞ ¼ 0; ŷð0; zÞ ¼ 1; �̂ð0; zÞ ¼ 1;
@ f̂
@Z
j
ð0;zÞ ¼ 1;

@ f̂
@Z

�
�
�
ð1;zÞ
¼ 0; ŷð1; zÞ ¼ 0; �̂ð1; zÞ ¼ 0;

ð31Þ

where ĥf ; ĥy and ĥ� are auxiliary-parameters and z 2 [0, 1] is known as embedding factor.

Pf̂ ; Pŷ and P�̂ are non-linear operators. The Taylor’s series expansion results in,

f̂ ¼
X1

i¼0

fiðZÞz
i; ŷ ¼

X1

i¼0

yiðZÞz
i; �̂ ¼

X1

i¼0

�iðZÞz
i; ð32Þ

where ZiðZÞ ¼
1

i!
@iZ
@zi

�
�
�
z¼0

for Z ¼ f̂ ; ŷ or �̂. The speedy and smooth convergence of the series

solutions is strictly dependent on choice ĥ. For z = 0, 1,

X1

i¼0

fiðZÞ ¼ f ¼ f0 þ
X1

i¼1

fi;

X1

i¼0

yiðZÞ ¼ y ¼ y0 þ
X1

i¼1

yi;

X1

i¼0

�iðZÞ ¼ � ¼ �0 þ
X1

i¼1

�i:

ð33Þ

Consequently, the ith deformations:

Mf ½f̂ � ¼
@

3fi� 1

@Z3
þ
Xi� 1

j¼0

fi� 1� j

@
2fj
@Z2
� M2 @fi� 1

@Z

� l
@fi� 1

@Z
�

2n
nþ 1

� �

1þ Frð Þ
Xi� 1

j¼0

@fi� 1� j

@Z

@fj
@Z

� k1

nþ 1

2n

� �
Xi� 1

j¼0

@fi� 1� j

@Z

@
3fj
@Z3
�

nþ 1

2n

� �
Xi� 1

j¼0

@fi� 1� j

@Z

@
4fj
@Z4
�

@
2fi
@Z2

� �2
" #

;

ð34Þ

My½f̂ ; ŷ; �̂� ¼
@

2
yi� 1

@Z2
þ Pr

Xi� 1

j¼0

fi� 1� j

@yj

@Z
þ PrNb

Xi� 1

j¼0

@yi� 1� j

@Z

@�j

@Z
þ PrNt

Xi� 1

j¼0

@yi� 1� j

@Z

@yj

@Z

� Pr g1

n � 1

2

� �
Xi� 1

j¼0

f 2

i� 1� j

Xj

k¼0

@fk� j
@Z

@yj

@Z
þ

nþ 1

2

� �
Xi� 1

j¼0

f 2

i� 1� j

@
2
yj

@Z2

" # !

;

ð35Þ

M�½f̂ ; ŷ; �̂� ¼
@

2
�i� 1

@Z
þ PrLe

Xi� 1

j¼0

fi� 1� j

@�j

@Z
�
Nt
Nb

@
2
yi� 1

@Z2

� PrLeg2

n � 1

2

� �
Xi� 1

j¼0

f 2

i� 1� j

Xj

k¼0

@fk� j
@Z

@�j

@Z
þ

nþ 1

2

� �
Xi� 1

j¼0

f 2

i� 1� j

@
2
�j

@Z2

" #

;

ð36Þ
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correspond to,

Lf ½fi � Fifi� 1� ¼ ĥfMi
f ;

Ly½yi � Fiyi� 1� ¼ ĥyMi
y
;

L�½�i � Fi�i� 1� ¼ ĥ�Mi
�
;

ð37Þ

with boundary conditions,

f̂ið0Þ ¼ 0; ŷið0Þ ¼ 0; �̂ið0Þ ¼ 0;
@ f̂i
@Z

�
�
�
ð0Þ

¼ 0;

@ f̂i
@Z

�
�
�
ð1Þ

¼ 0; ŷið1Þ ¼ 0; �̂ið1Þ ¼ 0;

ð38Þ

where Fi = 1 for i> 1, otherwise 0. Finally,

The general solutions are,

fi ¼ K1 þ K2eZ þ K3e� Z þ f ?i ðZÞ;

yi ¼ K4eZ þ K5e� Z þ y
?

i ðZÞ;

�i ¼ K6eZ þ K7e� Z þ �
?

i ðZÞ;

ð39Þ

where f ?i ; y
?

i and �
?

i are special solutions.

4 Convergence analysis

The auxiliary parameters involved in series solutions for the velocity field (f0), temperature dis-

tribution (θ) and concentration of the nanoparticles (ϕ) for the problem under consideration

are termed as convergence control parameters. These parameters are critical in choosing

appropriate values to speed-up the convergence. The intervals of interest for f, θ and ϕ are pre-

sented in Fig 2. One can see that the intervals of convergence are [-1.30, -0.10], [-1.50, -0.10]

and [-1.50, -0.10], respectively. Data upto 40th order approximations is listed in Table 1. 15th

order of approximations are sufficient to achieve convergence in velocity field whereas temper-

ature and concentration requires 10th order approximations.

Fig 2. H-Curves.

https://doi.org/10.1371/journal.pone.0221302.g002
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5 Results & discussion

The given non-linear system of Eqs (16)–(18) with boundary conditions (19) is solved by

HAM for series solutions. Numerical data for wall-drag (skin-friction) coefficient (Cf), local

Nusselt (heat flux) (Nu) and local Sherwood (mass flux) (Sh) is compiled in Tables 2 & 3,

respectively. Tables 4 & 5 are the results of comparison/validation of skin friction, local Nusselt

and local Sherwood with Rasool et al. [37], respectively. Table 6 is the correlation of the skin-

friction while Table 7 is the correlation of local Nusselt and local Sherwood for pertinent fluid

parameters. In distinction, a reducing behavior in skin friction (Cf) and mass flux (Sh) is noted

for visco-elastic nanofluid parameter (k1). Furthermore, the Brownian diffusion rate (Nb)

and thermophoresis effect (Nt) appeared as reducing factors for heat flux (Nu). Influence of

various fluid parameters on the flow profiles i.e. velocity field, temperature distribution and

concentration of the nanoparticles in base conventional fluid, is shown in Figs 3–13. The influ-

ences of porosity and inertia on the non-dimensional velocity f0(η) and corresponding varia-

tions are plotted in Figs 3 and 4, respectively. The influence of porosity parameter λ presents a

decreasing behavior in the respective profile plotted in Fig 3. Physically, the existence of porous

factor results in increment of resistance offered by medium to the fluid motion that causes dec-

lination in the fluid momentum and connected boundary layer thickness reduces. Fig 4 shows

Table 1. Convergence.

Approximation Order −f@ −θ0 −ϕ0

1 0.779232 0.63500 0.50000

2 0.652004 0.59794 0.50578

5 0.571883 0.59486 0.50658

10 0.518020 0.59364 0.50735

15 0.452200 0.59364 0.50735

20 0.452200 0.59364 0.50735

30 0.452200 0.59364 0.50735

40 0.452200 0.59364 0.50735

https://doi.org/10.1371/journal.pone.0221302.t001

Table 2. Numerical results/data of skin-friction nþ1
2

� �1=2 1þ 1
β

� �
f 00

h i
for both linear and non-linear cases.

k1 Fr λ M Re1=2x Cfx

(non-linear)

Re1=2x Cfx

(linear)

0.0 0.1 0.2 0.2 −0.7706 −0.73600

0.1 −0.55577 −0.53387

0.2 −0.32691 −0.31573

0.3 −0.08405 −0.08160

0.2 0.0 0.2 0.2 −0.31470 −0.30507

0.3 −0.35131 −0.33707

0.6 −0.38793 −0.36907

0.9 −0.42454 −0.40107

0.2 0.1 0.0 0.2 −0.34521 −0.33173

0.3 −0.31775 −0.30773

0.6 −0.29029 −0.28373

0.9 −0.26283 −0.25973

0.2 0.1 0.2 0.0 −0.32019 −0.30933

0.3 −0.33530 −0.32373

0.6 −0.38061 −0.36693

0.9 −0.45612 −0.43893

https://doi.org/10.1371/journal.pone.0221302.t002
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the change in velocity profile for various incremental values of inertial coefficient. Similar to

the porosity factor, reduction in flow profile is witnessed with incremental values of Fr. A simi-

lar trend is noticed in velocity profile for various values of visco-elastic nano-fluid parameter

k1 plotted in Fig 5. Physically, the incremental values of k1 result in increasing the fluid viscos-

ity that reduces the flow motion. Figs 6–11. The visco-elastic nanofluid parameter results in

increasing thermal field and the associated boundary layer shows increasing thickness. The

results are plotted in Fig 6. The relaxation time parameter for the Temperature γ1 reduces the

temperature profile and the associated thickness of thermal boundary layer as well. Physically,

it confirms that incremental nature of thermal relaxation time parameter requires more time

to shift the heat from intensively packed fluid particles to the low energetic fluid particles. One

can call it a demonstration of characteristics of non-conducting fluid material. Thus, a decay

in temperature profile is noted. The results are plotted in Fig 7. Fig 8 shows the variation

noted in thermal distribution and the associated boundary layer for incremental values of the

induced non-uniform magnetic effect. An increasing trend is noticed in temperature profile

Table 3. Numerical results/data of local Nusselt � nþ1
2

� �1=2
θ0

� �
and local Sherwood � nþ1

2

� �1=2
ϕ0

� �
for both non-linear (n = 1.2) and linear (n = 1) cases at Pr = 1, k1 =

0.2.

Nb Nt Le γ1 γ2 � Re� 1=2x Nux

(non-linear)

� Re� 1=2x Shx

(non-linear)

� Re� 1=2x Nux

(linear)

� Re� 1=2x Shx

(linear)

0.1 0.1 1.0 0.2 0.2 0.6975 0.2884 0.6700 0.2800

0.4 0.1 1.0 0.2 0.2 0.6031 0.6424 0.5800 0.6175

0.7 0.1 1.0 0.2 0.2 0.5087 0.6930 0.4900 0.6677

1.0 0.1 1.0 0.2 0.2 0.4143 0.7132 0.4000 0.6850

0.2 0.1 1.0 0.2 0.2 0.6660 0.5244 0.6400 0.5050

0.2 0.4 1.0 0.2 0.2 0.5663 0.07157 0.5500 0.1700

0.2 0.7 1.0 0.2 0.2 0.4772 0.00615 0.4600 0.0165

0.2 1.0 1.0 0.2 0.2 0.3828 0.00475 0.3700 0.0014

0.2 0.1 0.5 0.2 0.2 0.6660 0.4457 0.6400 0.4300

0.2 0.1 1.0 0.2 0.2 0.6660 0.6031 0.6400 0.5050

0.2 0.1 1.5 0.2 0.2 0.6660 0.6817 0.6400 0.5800

0.2 0.1 2.0 0.2 0.2 0.6660 0.8822 0.6400 0.6550

0.2 0.1 1.0 0.0 0.2 0.6398 0.5244 0.6100 0.5050

0.2 0.1 1.0 0.3 0.2 0.6791 0.5244 0.6550 0.5050

0.2 0.1 1.0 0.6 0.2 0.7521 0.5244 0.7000 0.5050

0.2 0.1 1.0 0.9 0.2 0.8010 0.5244 0.7450 0.5050

0.2 0.1 1.0 0.2 0.0 0.6660 0.4982 0.6400 0.4750

0.2 0.1 1.0 0.2 0.3 0.6660 0.5375 0.6400 0.5200

0.2 0.1 1.0 0.2 0.6 0.6660 0.5865 0.6400 0.5650

0.2 0.1 1.0 0.2 0.9 0.6660 0.6311 0.6400 0.6100

https://doi.org/10.1371/journal.pone.0221302.t003

Table 4. Comparison of Cf results with Rasool et al. [37].

Fr Cf (Current) Cf (Rasool et al. [37])

0.0 −1.1899 −1.1950

0.3 −1.2501 −−
0.6 −1.3600 −1.3618

0.9 −1.4314 −−
1.2 −1.5111 −1.5117

https://doi.org/10.1371/journal.pone.0221302.t004

Nanofluid flow over a non-linearly stretching surface

PLOS ONE | https://doi.org/10.1371/journal.pone.0221302 August 20, 2019 12 / 23

https://doi.org/10.1371/journal.pone.0221302.t003
https://doi.org/10.1371/journal.pone.0221302.t004
https://doi.org/10.1371/journal.pone.0221302


for stronger magnetic effect. Physically, the retardation offered to the fluid motion by sudden

jumps created by Magnetic field increase the particles’ collision which is responsible for

increasing trend in temperature boundary layer. Figs 9 and 10 retrieve the increasing trend of

Brownian diffusion parameter and thermophoretic force for associated thermal profile. Physi-

cally, the erratic motion of fluid packets appeared due to increasing trend in Brownian motion,

thus an enhancing nature of temperature profile is noted. Further, the increase in thermo-

phoretic force produces more intensive and vigorous thermophoretic influence causing the

nano-particles to move away from the stretching sheet. This development induces boost in

the temperature profile. Figs 11–13 are the plots of variation in concentration of nanoparticles

against the concentration relaxation time parameters, Thermophoretic force and Prandtl num-

ber. Fig 11 is specifically plotted for variation in concentration profile against the incremental

values of relaxation parameter for concentration of the nanoparticles. A mixed trend is noted

as plotted in the respective figure. Physically, the relaxation parameter allows sufficient time to

the nanoparticles to dilute in the base fluid that results in an increasing trend with the passage

Table 5. Comparison/validation of results with Rasool et al. [37] setting γ1 = γ2 = 0 = k1, n = 1.2.

Nb Nt Pr −Nux −Nux −Shx −Shx
(Current) (Rasool et al. [37]) (Current) (Rasool et al. [37])

0.1 0.1 1.0 0.4801 −− 0.5001 −−
0.5 0.4312 0.4338 0.5222 0.5227

0.75 0.3722 0.3777 0.5460 0.5478

1.0 0.3200 0.3274 0.5999 0.5600

0.2 0.0 1.0 0.4499 0.4470 0.5790 0.5798

0.3 0.4091 0.4089 0.4192 0.4198

0.5 0.3862 0.3858 0.3300 0.3307

0.7 0.3602 −− 0.2801 −−
0.2 0.1 0.5 0.3222 0.3255 0.2222 0.2217

1.0 0.5072 0.5086 0.3999 0.4056

1.5 0.6200 0.6266 0.5684 0.5685

2.0 0.7101 −− 0.7100 −−

https://doi.org/10.1371/journal.pone.0221302.t005

Table 6. Correlation of skin-friction (wall-drag).

Parameter Linear stretching Nonlinear stretching

k1 0.9994624 0.9994624

Fr −1 −1

λ +1 +1

M −0.9583148 −0.9583321

https://doi.org/10.1371/journal.pone.0221302.t006

Table 7. Correlation of heat and mass flux.

Parameter Nusselt (n = 1) Nusselt (n = 2) Sherwood (n = 1) Sherwood (n = 2)

Nb +1 +1 −0.8572771 −0.8575619

Nt +1 0.9997769 0.9184755 0.8374697

Le N/A N/A −1 −0.9873802

γ1 −1 −0.9939203 N/A N/A
γ2 N/A N/A −1 −0.9991548

https://doi.org/10.1371/journal.pone.0221302.t007
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Fig 3. Variation in velocity field for incremental values of λ.

https://doi.org/10.1371/journal.pone.0221302.g003

Fig 4. Variation in velocity field for incremental values of Fr.

https://doi.org/10.1371/journal.pone.0221302.g004
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Fig 5. Variation in velocity field for incremental values of k1.

https://doi.org/10.1371/journal.pone.0221302.g005

Fig 6. Variation in temperature field for incremental values of k1.

https://doi.org/10.1371/journal.pone.0221302.g006
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Fig 7. Variation in velocity field for incremental values of γ1.

https://doi.org/10.1371/journal.pone.0221302.g007

Fig 8. Variation in temperature field for incremental values of M.

https://doi.org/10.1371/journal.pone.0221302.g008
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Fig 9. Variation in temperature field for incremental values of Nt.

https://doi.org/10.1371/journal.pone.0221302.g009

Fig 10. Variation in temperature field for incremental values of Nb.

https://doi.org/10.1371/journal.pone.0221302.g010
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Fig 11. Variation in concentration of nanoparticles for incremental values of γ2.

https://doi.org/10.1371/journal.pone.0221302.g011

Fig 12. Variation in concentration of nanoparticles for incremental values of Nt.

https://doi.org/10.1371/journal.pone.0221302.g012
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of time. Fig 12 shows the behavior of concentration profile for incremental values of thermo-

phoretic parameter. An increasing trend is noted for higher values of thermophoresis parame-

ter. Physically, during the thermophoresis, nanoparticles are forced to move from hotter

region to the colder region, therefore, the hot particles saturated near the sheet, start moving

away from the sheet surface. This movement results in an augmentation in the concentration

distribution. The un-deniable fact that the Prandtl number induces a decreasing impact on

concentration of nanoparticles is seen in Fig 13. Physically, the incremental values of Prandtl

number correspond to a weaker thermal diffusivity. Thus, the concentration of the nanoparti-

cles reduces for higher Prandtl.

Conclusion

A locally similar analysis on Darcy Forchheimer visco-elastic nanofluid flow bounded by a

non-linearly stretching sheet/surface manifested with Cattaneo-Christov theory of heat—mass

flux has been carried out in this analytic research article. The key findings are itemized below:

• Increasing values of interial coefficient and porosity result in declination of the velocity field

and the associated momentum boundary layer.

• The visco-elastic nanofluid parameter shows reduction in the velocity field however, an

increment is noted in the thermal layer for augments in the aforementioned parameter.

• The intensive resistance offered by the addition of porosity factor in the flow model results

in rise of temperature profile, however, opposite behavior is noticed in concentration of

nanoparticles.

Fig 13. Variation in concentration of nanoparticles for incremental values of Pr.

https://doi.org/10.1371/journal.pone.0221302.g013
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• Larger Prandtl number shows reduction in concentration of the nanoparticles.

• Thermal relaxation time parameter allows more heat to be absorbed by the system. Thus, a

decay is noted.

• Solute relaxation time parameter shows mixed behavior in concentration of nanoparticles.

• Skin-friction force is intensive for higher thermal relaxation time parameter.

• Local Nusslt shows increasing behavior for higher values of thermal relaxation time parame-

ter, however, the values are higher for non-linear case as compared with linear case.

• Local Sherwood is increasing function of concentration relaxation time parameter, however,

the values are lower for linear case as compared to the non-linear case.

Nomenclature:

u, v Components of velocity/m�s−1

x, y Cartesian coordinates/m
μ Viscosity (dynamic) of the fluid/Pa�s
ν Viscosity (kinematic) of fluid/m2�s−1

B0 Magnetic field/A�m−1

σ Electric conductivity/(Om)−1

K Permeability/H�m−1

n Positive number

ρfl Density/kg�m−3

Cb Drag coefficient (dimensionless)

α Thermal diffusivity/m2�s−1

k Thermal conductivity/W�m−1�K−1

Tw Temperature of the wall/K
T Temperature/K
(ρflc)fl Productive heat capacity (fluid)/J�m−3�k−1

(ρflc)np Productive heat capacity (nanoparticles)/J�m−3�k−1

T1 Temperature away from surface/K
DTh Thermophoretic force effect

DBr Brownian motion (diffusion)

M Magnetic parameter

a Positive constant number

Fr Local inertia

λ Porosity

Le Lewis factor

Pr Prandtl factor

Nt Thermophoretic parameter

Nb Brownian diffusion parameter

Shx Local Sherwood number (mass flux)

Nux Local Nusslt number (heat flux)

η Dimensionless variable

f0 Dimensionless velocity

θ Dimensionless temperature field

ϕ Dimensionless concentration of the nanoparticles

γ1 Thermal relaxation parameter

γ2 Solute relaxation parameter

https://doi.org/10.1371/journal.pone.0221302.t008
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