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Abstract

Understanding cell differentiation—the process of generation of distinct cell-types—plays a

pivotal role in developmental and evolutionary biology. Transcriptomic information and epi-

genetic marks are useful to elucidate hierarchical developmental relationships among cell-

types. Standard phylogenetic approaches such as maximum parsimony, maximum likeli-

hood and neighbor joining have previously been applied to ChIP-Seq histone modification

data to infer cell-type trees, showing how diverse types of cells are related. In this study, we

demonstrate the applicability and suitability of quartet-based phylogenetic tree estimation

techniques for constructing cell-type trees. We propose two quartet-based pipelines for con-

structing cell phylogeny. Our methods were assessed for their validity in inferring hierarchi-

cal differentiation processes of various cell-types in H3K4me3, H3K27me3, H3K36me3,

and H3K27ac histone mark data. We also propose a robust metric for evaluating cell-type

trees.

Introduction

Cellular differentiation is one of the key aspects of developmental biology. Cell differentiation

is known to be a hierarchical process where totipotent cell-types become more specialized cell-

types [1, 2]. Thus, the relationship of cell-types is expected to form a tree-like structure [3, 4].

This hypothetical tree-like relationship of cell-types in ontogeny and phylogeny is called a

“cell-type tree” [5, 6].

The changes of gene expression patterns during cellular differentiation are recorded as epi-

genetic changes in the genome [3, 7]. Epigenetic and transcription factors play a vital role in

cell differentiation since all cell-types in an individual organism have the same genome [8–10].

Histone modification creates one important class in epigenetic marks which have been found

to vary across different cell-types and play an important role in gene regulation [11]. Histone

modifications such as methylation, acetylation, phosphorylation, ubiquitination alter their

interactions with the DNA and thereby influence transcription and genomic function [11]. A

study of the change in histone marks across various cell-types can help us understand how cell

differentiation occurs [12]. Since the development of the sister cell-types is the same up to the

PLOS ONE | https://doi.org/10.1371/journal.pone.0221270 September 26, 2019 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Moumi NA, Das B, Tasnim Promi Z, Bristy

NA, Bayzid MS (2019) Quartet-based inference of

cell differentiation trees from ChIP-Seq histone

modification data. PLoS ONE 14(9): e0221270.

https://doi.org/10.1371/journal.pone.0221270

Editor: Qiang Wu, Macau University of Science and

Technology, MACAO

Received: May 17, 2019

Accepted: August 4, 2019

Published: September 26, 2019

Copyright: © 2019 Moumi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The dataset analyzed

in this study are available at https://figshare.com/

articles/Untitled_Item/9337469. All the scripts,

required to run our proposed pipelines, are

available at https://github.com/Moumiiiiii/cell-

differentiation-trees. The ChIP-Seq histone

modification data are available at ENCODE

database (downloaded from http://genome.ucsc.

edu/cgi-bin/hgFileUi?db=hg19&g=

wgEncodeUwHistone) and CISTROME DB (http://

cistrome.org/db/#/).

http://orcid.org/0000-0002-5640-0615
https://doi.org/10.1371/journal.pone.0221270
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221270&domain=pdf&date_stamp=2019-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221270&domain=pdf&date_stamp=2019-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221270&domain=pdf&date_stamp=2019-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221270&domain=pdf&date_stamp=2019-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221270&domain=pdf&date_stamp=2019-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221270&domain=pdf&date_stamp=2019-09-26
https://doi.org/10.1371/journal.pone.0221270
http://creativecommons.org/licenses/by/4.0/
https://figshare.com/articles/Untitled_Item/9337469
https://figshare.com/articles/Untitled_Item/9337469
https://github.com/Moumiiiiii/cell-differentiation-trees
https://github.com/Moumiiiiii/cell-differentiation-trees
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&amp;g=wgEncodeUwHistone
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&amp;g=wgEncodeUwHistone
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&amp;g=wgEncodeUwHistone
http://cistrome.org/db/#/
http://cistrome.org/db/#/


last stages of differentiation [1], evolutionary relatedness of cell-types is expected to be congru-

ent with the ontogenetic hierarchy of cellular differentiation [13]. Therefore, constructing and

analyzing cell-type trees could play an important role in our understanding of developmental

biology and how cell differentiation occurs [6, 14, 15].

The process of elucidating the hierarchical developmental relationships among cell-types

depends on extremely laborious experiments involving in vitro differentiation of cell-types

from various stem cell-types [16–18]. Fortunately, the propitious advancement in sequencing

technologies has enabled us to capture transcriptomic and epigenetic information at various

developmental stages [4]. Considering the hypothesis about the tree-like structure of the cell

differentiation process, various techniques from phylogenetic tree estimation have been

adapted to form cell-type trees by leveraging various sequence data (e.g., ChIP-Seq, RNA-seq).

The application of traditional phylogenetic tree estimation methods (maximum likelihood

(ML), maximum-parsimony (MP) and neighbor joining (NJ)) have previously been applied

for building cell-type trees [14, 15]. These studies underscore the usefulness of phylogenetic

tree estimation techniques for reconstructing the hierarchical process of cell differentiation.

ML-based technique was shown to be a better technique than MP and NJ. In this paper, we

demonstrate the usefulness of quartet-based tree estimation methods in the context of cell-

type trees. Quartet based phylogenetic tree estimation is very popular and highly accurate

since quartet is a statistically consistent estimate of the true species phylogeny despite gene tree

heterogeneity due to the presence of incomplete lineage sorting [19, 20]. Quartet based meth-

ods are robust to the “anomaly zone” [20, 21] (a condition where there could be gene tree

topologies that are more likely than the one that has the same topology as the species tree) as

there are no anomalous unrooted four-taxon species trees [19, 20]. Thus, various quartet-

based techniques have been developed and are being widely used due to their excellent accu-

racy [22–26].

In this study, we attempt to leverage the theoretical and practical advantages of quartet-

based techniques in constructing the cell-type trees. We propose two pipelines for inferring

cell-type trees: 1) Induced Quartet Amalgamation (IQA), and 2) Most Likely Quartet Amalgam-
ation (MLQA). Both these pipelines start with estimating quartets (in two different ways) from

ChIP-Seq data and then amalgamate the quartets to construct cell-type trees. We performed

an extensive experimental study using H3K4me3, H3K27me3 and H3K36me3 histone modifi-

cation data, and compared our techniques with ML-based technique. Unlike previous studies,

we included both the normal and cancerous cell-types to examine the power and applicability

of phylogenetic methods in analyzing both kinds. We also proposed a new evaluation criterion

to evaluate the cell-type trees which is more robust than the evaluation metrics used in previ-

ous studies [14, 15], especially in the presence of “alien” cell-types within a cluster of a particu-

lar cell-type. This can happen either because the data do not have enough phylogenetic

information to clearly distinguish the cell-types or due to the presence of “rogue taxa”—some

taxa that are relatively unstable in phylogenetic analyses [27–29]. Rogue taxa assume varying

phylogenetic positions in a collection of trees and thus have negative impact in phylogenetic

analyses, especially in estimating consensus history [28, 29]. Finally, we conclude that quartet-

based phylogenetic tree estimation can be considered as a useful and robust technique for

inferring cell-type trees.

Materials and methods

Data preprocessing

Histone marks are found in every 200 base pair length of DNA [15]. ChIP-Seq is a technology

which records histone modification throughout the whole genome. It is assumed that histone
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marks can be independently gained or lost in regions of the genome during cell differentiation

[6].

ChIP-Seq data are converted into peak data where the peak signifies presence of histone

marks in the genome. Similar to previous studies [6], we used peak lists as the raw data for our

study. We represent the data based on the presence or absence of peaks at any given position

and treat this as a binary character. One can use any peak finder, such as MACS (Model-based

analysis of ChIP-Seq [30]), PeakSeq [31], Hotspot [32], to convert the ChIP-Seq histone modi-

fication libraries into peaks. We used the publicly available peaks given by the ENCODE proj-

ect (for H3K4me3, H3K27me3, H3k36me3) and CISTROME DB [33] (for H3K27ac) in our

analysis. Previous studies [6] introduced two different data representations: 1) Windowing
representation and 2) Overlap representation. In windowing representation, a ChIP-Seq

library (a cell-type) is divided into bins of certain sizes, and each of the bins are coded as either

1 or 0 depending on whether there exist at least one peak in a bin. In overlap data representa-

tion, all ChIP-Seq libraries are taken into account at once and “interesting regions” based on

genome peaks are identified (see [6] for details). Considering each peak as an interval on the

genome, the interval graph is defined by all peaks in all libraries. An interval graph has one ver-

tex for each interval and an edge between two vertices when the corresponding intervals over-

lap [34]. With these representation techniques, ChIP-Seq libraries are represented as strings of

0s and 1s. In this study, we used the overlap representation since no notable difference was

found between these two techniques in terms of the reliability of the cell-type trees, and over-

lap representation was preferred in previous studies for its compactness [6, 15].

We wrote necessary scripts in C++, Perl and Python to implement our proposed methods

(available at https://github.com/Moumiiiiii/cell-differentiation-trees). The scripts for overlap

representation was obtained from the authors (Nair et al. [6]). We used QFM [23] to amalgam-

ate quartets (as described in the following section). The code for QFM was obtained from the

authors (Reaz et al. [23]).

Overview of the quartet-based pipelines

Quartet is an unrooted tree with four taxa. We denote a quartet by q = ab|cd, where the inter-

nal edge in q separates a and b from c and d (meaning that ab|cd is the bipartition defined by

the internal edge in q). Unlike previous studies [6, 15] that used maximum-parsimony, maxi-

mum-likelihood or neighbor joining method on the binary data matrix obtained from the

ChIP-Seq libraries, we estimate quartets—representing the evolutionary history of four cell-

types. For a collection of n cell-types, we estimate a set of ð
n
4
Þ quartets (one for each group of 4

cell-types). We generate this set of ð
n
4
Þ quartets in two different ways (referred to as IQA and

MLQA, and are described in subsequent sections). Finally, we amalgamate these quartets to

get a single coherent tree on n cell-types. A quartet q is consistent with a tree when the tree has

an internal edge that separates the same pairs of taxa as in q. Note that it may not always be

possible to find a tree which is consistent with all the ð
n
4
Þ quartets. In that case, we try to find a

tree such that maximum number of quartets are consistent with it. This is an NP-hard problem

[35], but efficient methods such as QFM [23] and QMC [24] are available for quartet amal-

gamation. We used QFM since it was shown to have better accuracy compared to QMC [23].

However, QMC is faster than QFM and we recommend QMC in case the dataset is too large

for QFM to analyze. Fig 1 illustrates our proposed methodologies for quartet-based cell-type

tree construction.

Induced Quartet Amalgamation (IQA). Given a binary data matrix M on n cell-types

obtained from the overlap representation, we consider all possible combinations of 4 cell-types

and thus have a collection of ð
n
4
Þ groups. For each group of 4 cell-types, we generate a data
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matrix Mi (1� i� ðn
4
Þ) which contains four rows corresponding to the four cell-types. Next,

for each Mi, we estimate a quartet using maximum-likelihood approach. For this purpose, we

used RAxML [36]. Thus we have a set of ð
n
4
Þ induced quartets from M. Finally, we combine

these quartets using QFM to estimate a tree on n cell-types.

Most Likely Quartet Amalgamation (MLQA). For each group of 4 taxa (a, b, c, d), there

are three different quartet topologies: ((a, b), (c, d)), ((a, c), (b, d)) and ((a, d), (b, c)). Thus,

there are 3 � ð
n
4
Þ possible quartets on n cell-types. In MLQA, we generate all these quartets and

their associated likelihood values (with respect to M) using RAxML. Next, from the three dif-

ferent quartet topologies on four cell-types, we retain the one which has the highest likelihood

Fig 1. Illustration of the methodology for quartet-based cell-type tree construction. We begin with the binary data matrix resulted from the ChIP-Seq data libraries

using the overlap representation. Next, we generate a set of ð
n
4
Þ quartets in two different ways. Finally, we amalgamate these quartets using QFM [23].

https://doi.org/10.1371/journal.pone.0221270.g001
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value. In this way we have a collection of ð
n
4
Þ quartets. Finally, we combine these most likely

quartets using QFM to get a single cell-type tree.

Experimental studies

Dataset. Histone modification ChIP-Seq data was collected from the ENCODE database

[37]. We used H3K4me3, H3k27me3, H3k36me3 and H3K27ac dataset. The histone modifica-

tion peak data was obtained from the ENCODE database and CISTROME DB [33]. Although

the differentiation process of cancerous cell-types differ from normal cell-types, we considered

both normal and cancerous cell-types to determine how phylogenetic approaches perform

under various cell differentiation processes. All the cell-types used for the experimentation

process are listed in Table 1. We used two replicates for most of the cell-types except for

HCFaa, HFF, and CD14 since the ENCODE database contains only one replicate for these

cell-types. We have data from different timestamps (day 0, 2, 5, 9, 14) of differentiation process

for human Embryonic Stem cell-types (hESC). So we denote by H7_hESC_T5 the data from

day 5.

Evaluation criteria. To evaluate the estimated cell-type trees, total number of cell-types in

a subtree that belong to a particular group was considered by Nair et al. [6, 15]. Since the cell-

types within a particular group (e.g., Fibroblast, Epithelial, etc.) can be scattered across multi-

ple subtrees, the two largest subtrees were considered for each cell-type. The larger this quan-

tity is for a certain approach, the better its performance is for that particular cell-type. We note

that this metric tends to be very sensitive towards a single intrusion of an alien cell-type of a

different group within a subtree since it considers the clades containing only a particular

group of cell-types. Therefore, we have introduced a new metric (α), which takes the relative

abundance of a particular group of cell-type in a clade compared to the other groups of cell-

types. A formal definition of the α ratio is as follows.

a ¼
number of cell‐types that belong to the same group in a subtree

size of that subtree

Higher values of α ratio indicate better clustering of the same cell-types (α = 1 indicates

that there is a clade that contains only the cell-types within a particular group). This evalua-

tion metric is comparatively more tolerant towards an intrusion of alien cell-types within a

cluster of a particular cell-type. For better understanding of our proposed α ratio, we have

shown an example in Fig 2. The cell-type tree in this figure contains three different groups of

cell-types (F1 * F8, Ep1 * Ep4, and B1 * B3). For the eight Fibroblast cell-types, the two larg-

est clades containing only Fibroblast cell-types are of size 2 ((F1, F2) and (F7, F8)). Thus,

according to the metric used in previous studies, the evaluation measure for the Fibroblast

cell is (2,2). This result gives a misleading impression of the Fibroblast cell-types being

scattered sparsely. This happened because of the intrusion of a single Epithelial cell within a

clade that contains all the eight Fibroblast types. On the other hand, the α ratio for this cell-

type is 8

9
, implying that all the eight Fibroblast cell-types were contained in a subtree with

nine cell-types. So the α ratio rightly shows that the result is not as bad as the first metric

indicated.

Thus, the α ratio along with the previous metric used in [6] can better elucidate the relative

accuracy of various estimated cell-type trees. We have considered this ratio for groups with

substantial numbers of cell-types (mostly Fibroblast and Epithelial), since for the other groups

with small numbers of cell-types, α ratio may not be required to get a better understanding of

the relative performance.

Cell differentiation trees from quartets
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Table 1. Cell-types, short description, and general group for H3K4me3, H3K27me3, H3K36me3, and H3K27ac data.

Cell name Short description Group Tissue type H3K4me3 H3K27me3 H3K36me3 H3K27ac

7250(Hs352.

Sk)

Unavailable Fibroblast Skin, muscle - - - ✓

AG04449 fetal buttock/thigh fibroblast Fibroblast Skin ✓ - - -

AG04450 fetal lung fibroblast Fibroblast Lung ✓ ✓ - ✓

AG09319 gum tissue fibroblasts Fibroblast Gingival ✓ - - -

AoAF aortic adventitial fibroblast cell-types Fibroblast Blood vessel ✓ - - -

BJ skin fibroblast Fibroblast Skin ✓ ✓ ✓ ✓

CACO2 human colorectal adenocarcinoma cell-types Epithelial Colon - ✓ ✓ -

CD14 Monocytes-CD14+ from human leukapheresis production Blood Blood ✓ ✓ - -

CD20(1) B cell-types replicate, African American Blood Blood ✓ - - -

CD20(2) B cell-types replicate, Caucasian Blood Blood ✓ - - -

GM06990 B-lymphocyte Blood Blood - ✓ ✓ -

GM12873 B-lymphocyte, lymphoblastoid Blood Blood - - - ✓

GM12878 B-Lymphocyte Blood Blood - ✓ ✓ ✓

GM18526 lymphoblastoid Blood Blood - - - ✓

GM19240 B-lymphocyte, lymphoblastoid Blood Blood - - - ✓

HAc astrocytes-cerebellart Astrocytes Cerebellar ✓ - - -

HAsp astrocytes spinal cord Astrocytes Spinal cord ✓ - - -

HBMEC brain microvascular endothelial cell-types Endothelial Blood vessel ✓ - - -

HCC827 lung cancer cell Epithelial Lung - - - ✓

HCF cardiac fibroblast Fibroblast Heart ✓ - - -

HCFaa cardiac fibroblasts- adult atrial Fibroblast Heart ✓ - - -

HCM cardiac myocytes cell Myocytes Heart ✓ - - -

HCPEpiC choroid plexus epithelial cell-types Epithelial Epithelium ✓ - - -

HCT-15 quasidiploid human cell line Epithelial Colon - - - ✓

HEEpiC esophageal epithelial cell-types Epithelial Epithelium ✓ - - -

HEK293T highly transfectable derivative of human embryonic kidney

293 cells

Epithelial Kidney ✓ - - -

Hela-S3 cervical adenocarcinoma Epithelial Cervix - ✓ ✓ ✓

HepG2 human liver cancer cell line Epithelial Liver - ✓ ✓ ✓

hESC undifferentiated embryonic stem cell-types hESC Embryonic stem

cell

✓ ✓ ✓ -

HFF foreskin fibroblast Fibroblast Foreskin ✓ - - -

HFF MyC foreskin fibroblast cell-types expressing canine cMyc Fibroblast Foreskin ✓ - - -

HMEC mammary epithelial cell-types Epithelial Breast ✓ ✓ - -

HPAF pulmonary artery fibroblasts Fibroblast Blood vessel ✓ - - -

HPF pulmonary fibroblasts isolated from lung tissue Fibroblast Lung ✓ - - -

HRE renal epithelial cell-types Epithelial Epithelium ✓ ✓ ✓ -

HRPEpiC retinal pigment epithelial cell-types Epithelial Epithelium ✓ - - -

Huh7 well differentiated hepatocyte-derived carcinoma cell line Epithelial Liver - - - ✓

HUVEC umbilical vein endothelial cell-types Endothelial Blood vessel ✓ ✓ ✓ -

HVMF villous mesenchymal fibroblast cell-types Fibroblast Connective ✓ - - -

IMR90 fetal lung fibroblasts Fibroblast Lung - - - ✓

JHU-06 cancer cell line Endothelial Blood - - - ✓

JHU-11 cancer cell line Blood Blood - - - ✓

K562 human myelogenous leukemia cell Blood Blood - ✓ ✓ -

KOPT_K1 lymphoma or leukaemia cancer cell line Blood Blood - - - ✓

LCL lymphoblastoid Blood Blood - - - ✓

(Continued)
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Results and discussion

Results on H3K4me3 dataset

Trimethylation of Histone H3 at Lysine 4 (H3K4me3) is a well studied histone mark which is

associated with transcription start sites of active genes [38]. We analyzed both replicate 1 and 2

for H3k4me3 dataset. Replicate 1 includes 37 cell-types and replicate 2 includes 34 cell-types of

8 different groups. We did not consider both the replicates together as the combined dataset

becomes prohibitively large (in terms of computational time and space complexity) to analyze

as we have to consider 3 � ð
71

3
Þ quartets. This dataset does not contain any cancerous cell-type.

Replicate 1. Cell-type tree was constructed using overlap representation from the histone

mark of the 37 cell-types. Fig 3 shows the trees constructed by three approaches (ML, IQA and

MLQA) with color coding to clearly differentiate various groups of cell-types. In general, we

can observe that similar types of cell-types tend to form a clade. For example, all the hESC cell-

types are placed inside a single subtree and are clustered together. Moreover, even within this

subtree in IQA tree, cell-types from day 9 and day 14 are clustered together and are separated

from the subtree that includes day 0, 2 and 5; whereas cell-types from day 5, 9, 14 and cell-

types from day 0, 2 are clustered separately in two adjacent subtrees in MLQA approach and

ML based approach.

Table 2 shows the number of cell-types belonging to the largest and the second-largest clus-

ters for a particular cell-type. Ideally one group should include all of the cell-types and the

other should have zero member (just like hESC group) to exhibit their tendency in clustering

together. However, it is not necessarily the case for some of the cell-types. While hESC, Skeletal

muscle, Blood, Myocytes, and Astrocytes were clustered ideally for IQA approach, all of the 8,

2 and 16 Epithelial, Endothelial and Fibroblast cell-types were not clustered together. Likewise,

in MLQA approach, we can observe ideal clustering for hESC, Skeletal muscle, Blood and

Myocytes. But it failed to cluster 2 cell-types from Astrocytes. But it is noteworthy from Fig 3

that, a single Epithelial cell (HCPEpiC) has entered within the Fibroblast cluster in IQA

approach, in absence of which, IQA tree would have a (15,1) pair for this dataset. Similar

trends hold for MLQA and ML trees. In MLQA tree, HCPEpiC has been placed within a

Table 1. (Continued)

Cell name Short description Group Tissue type H3K4me3 H3K27me3 H3K36me3 H3K27ac

MCF-10A mammary gland, non-tumorigenic epithelial, inducible cell

line

Epithelial Breast - - - ✓

NHDF Neo neonatal dermal fibroblasts Fibroblast Skin ✓ - - -

NHEK epidermal keratinocytes Epithelial Skin ✓ ✓ ✓ -

NHLF lung fibroblasts Fibroblast Lung ✓ - - ✓

RPTEC renal proximal tubule epithelial cell-types Epithelial Epithelium ✓ - - -

SAEC small airway epithelial cell-types Epithelial Epithelium ✓ ✓ ✓ -

SKMC skeletal muscle cell-types Skeletal

Muscle

Brain ✓ - - -

SKNMC human neuroblastoma cell Epithelial Brain ✓ - - -

SKNSH human Neuroblastoma Cell Epithelial Brain - ✓ ✓ -

TAM_R human breast cancer cell line Epithelial Breast - - - ✓

Toledo lymphoblastoid Blood Blood - - - ✓

WI_38 embryonic lung fibroblast cells Fibroblast Embryonic lung ✓ - - -

WI_38_TAM embryonic lung fibroblast Fibroblast Embryonic lung ✓ - - -

https://doi.org/10.1371/journal.pone.0221270.t001
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cluster of Fibroblast cell-types, and in ML tree HCPEpiC is not clustered with other Epithelial

cell-types.

In order to investigate this unstable placement of some cell-types, we performed Principal

Component Analysis (PCA) [39] on the overlap representation of the histone modification

data. PCA reduces the dimensionality of the data while retaining most of the variation in the

dataset by identifying directions, called principal components, along which the variation in the

data is maximal [39]. In the PCA plot in Fig 4, we plotted the cell-types along PC1 and PC2

(two principal components that captures the largest and the second largest amounts of vari-

ance). PCA analysis reflects that the histone mark data of HCPEpiC is indeed more closely

Fig 2. Example for α ratio. One Eplithelial (EP1) cell-type has been placed within a subtree containing all the

Fibroblast cell-types (F1 * F8). Thus the largest subtree containing only Fibroblast cell-types is 2.

https://doi.org/10.1371/journal.pone.0221270.g002
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Fig 3. Cell-type trees on H3K4me3 (replicate 1). (a) IQA approach, (b) MLQA approach, and (c) ML approach.

https://doi.org/10.1371/journal.pone.0221270.g003
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related to the Fibroblast cell-types than it is to the other Epithelial cell-types. PCA analysis also

explains the placement of two Endothelial cell-types in two separate clusters as the PCA plot

clearly shows that these two cell-types are not closely related according to the data from his-

tone modification. Moreover, PCA analyses support the groupings of the hESC and Blood cell-

types (as recovered by most of the the phylogenetic approaches) without the intrusion of any

alien entity. Therefore, phylogenetic methods are able to capture the variability in the histone

modification data.

We now compare the trees in terms of the α ratio (see Table 3). We considered α ratio for

two cell groups: Epithelial and Fibroblast. Since the other cell-types in different groups are

clustered together or lacks substantial numbers of cell-types in them, they are not considered

for being analyzed with the α ratio. For each cell group, we first show the α ratio for the largest

Table 2. Groupings for cell-type trees on H3K4me3 (replicate 1) data using various phylogenetic approaches.

hESC

(5)

Skeletal Muscles

(1)

Blood

(2)

Myocytes

(1)

Astrocytes

(2)

Epithelial

(8)

Endothelial

(2)

Fibroblast

(16)

IQA (5,0) (1,0) (2,0) (1,0) (2,0) (4,2) (1,1) (10,3)

ML (5,0) (1,0) (2,0) (1,0) (2,0) (6,1) (1,1) (15,1)

MLQA (5,0) (1,0) (2,0) (1,0) (1,1) (5,2) (1,1) (6,2)

https://doi.org/10.1371/journal.pone.0221270.t002

Fig 4. PCA performed on H3K4me3 (replicate 1) and corresponding scores are plotted on PC1 and PC2. (a) 9 closely clustered cell-types that include 8

Fibroblast cell-types and one alien Epithelial cell-type are selected from the 37 cell-types in a rectangular box. It is notable that this intruder Epithelial cell-type

(HCPEpiC) is the same one from the cluster of 15 Fibroblast cell-types in the tree (Fig 3) generated using IQA approach. This observation reflects a deeper

similitude between the cell-type tree using IQA based approach and the PCA for this dataset. (b) 9 cell-types from (a) are zoomed in for a comprehensible view.

https://doi.org/10.1371/journal.pone.0221270.g004

Table 3. α ratio for various cell-type trees on H3K4me3 (replicate 1) data.

Epithelial

(8)

Fibroblast

(16)

ML tree 6

6
, 7

16
, 8

22

15

15
, 16

26

MLQA tree 5

5
, 7

12
, 8

29

6

6
, 9

10
, 12

14
, 16

22

IQA tree 4

4
, 5

13
, 7

16
, 8

27

10

10
, 15

16
, 16

24

https://doi.org/10.1371/journal.pone.0221270.t003
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subtrees that contain only the cell-types of a particular group. Then we gradually increase the

number of cell-types from that group and consider the smallest clade required to house those

numbers of cell-types. The largest clades in the ML, MLQA and IQA trees that contain only

cell-types from Epithelial group have 6, 5, and 4 cell-types, respectively. Next, as we increase

the number of cell-types, it takes a subtree of 13 cell-types for IQA to accommodate 5 Epithe-

lial cell-types. Next, to house 7 cell-types, IQA needs a subtree of 16 entities. Finally, to include

all the 8 Epithelial cell-types, it takes a subtree of 27 cell-types. Similarly, we show the α ratio

for the three approaches for both Epithelial and Fibroblast groups. MLQA approach takes a

subtree with 29 cell-types to accommodate 8 Epithelial cell-types whereas ML based method

takes a subtree of 22 cell-types and IQA approach takes a subtree with 27 cell-types. Therefore,

the Epithelial cell-types are more closely related in IQA approach and ML based approach

than they are in the MLQA based approach. The relevance and strength of the α ratio in assess-

ing the quality of cell-type trees is more prominent when we looked at the Fibroblast cell-

types. Although MLQA seemed to be performing very poorly on Fibroblast group (see

Table 2) with (6,2) groupings compared to the ML-based technique with (15,1) groupings, we

can see that MLQA takes a subtree of 22 cell-types to cluster all the 16 Fibroblast cell-types

whereas ML tree takes 26 cell-types. Similar trend holds for IQA which takes 16 cell-types to

house 15 Fibroblast cell-types (just one more than the ML tree), but reconstructs a clade with

24 cell-types (which is 2 less than the ML tree) containing all the 16 Fibroblast cell-types. Thus

α ratio enables us to evaluate cell-type trees by looking at various numbers of cell-types within

a particular cell-type group and gives a better understanding about the relative performance.

We also looked at how similar cell-types from different tissue types are related to each other

and observed interesting and biologically meaningful relationships. HUVEC (which is an

endothelial cell) was placed as a sister to the clade containing CD14 and CD20 (blood type).

This placement seems to be biologically meaningful as HUVEC is from blood vessel and CD14

and CD20 are from blood tissue. Another important observation is that, among the fibroblast

cell-types, those that are from lung tissue (AG04450, NHLF and HPF) are clustered together.

We note that WI_38 and WI_38_TAM—two cell-types from embryonic lung tissue—are sister

in the ML tree, but they are not sister in the IQA tree. Interestingly, in the IQA tree, WI_38

was placed as a sister to the clade containing NHLF and HPF that are also from lung tissue.

Similarly, the fibroblast cell-types from the skin and foreskin tissues tend to be grouped

together. Moreover, cell-types from heart (HCFaa, HCF, HCM) and blood vessel (HPAF,

HBMEC) appear to be closely related. Among the epithelial cell-types, those that are from epi-

thelium tissue tend to form a cluster. Moreover, all the cells from embryonic stem cell tissue

type are placed within a single clade. Similar trends are observed for other dataset as well, and

thus are not detailed in the subsequent sections.

Fig 5 shows the trees constructed by IQA, MLQA and ML on replicate 2. All these trees ide-

ally placed the hESC, Skeletal Muscles, Blood and Myocytes cell-types in separate clusters. In

addition to these, IQA and MLQA clustered the Astrocytes cell-types together, where ML tree

failed to put them together in a single cluster. ML tree produced better groupings for the 12

cell-types in the Fibroblast group by placing 8 of them in a single subtree (see Table 4). How-

ever, if we look at the intermediate α values in Table 5, IQA and MLQA are in fact better than

ML as they take smaller subtrees to group various numbers of cell-types than ML tree. When

we consider all the 12 Fibroblast cell-types, the α ratio is same for all these three methods. Sim-

ilar to replicate 1, we performed PCA analysis which is consistent with the placement of the

cell-types in the trees (see Fig 6).

In terms of grouping the 9 Epithelial cell-types, MLQA is better than IQA and ML since it

placed 7 of them in a single cluster. Likewise, for grouping 8 Fibroblast cell-types, MLQA took

substantially less number of cell-types compared to ML (14 for MLQA and 22 for ML tree).
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However, when we considered all the 9 Epithelial cell-types, ML and IQA achieved better α
values than MLQA.

H3K27me3 dataset

Histone H3 lysine 27 trimethylation (H3K27me3) is an important epigenetic mark which is

associated with the downregulation of genes [40]. Thus, it acts in opposition to H3K4me3

which is associated with gene activation [41]. Replicate 1 from this dataset has 20 cell-types

which contains both the normal and cancerous cell-types and replicate 1 and 2 together has 37

cell-types.

Replicate 1. Fig 7 shows the ML, IQA and MLQA estimated trees on the 5 cell-type

groups from replicate 1. All these methods are comparable in terms of grouping various cell-

types. IQA tree is better than ML and MLQA since it did a better job in grouping the Blood

Fig 5. Cell-type trees for H3K4me3 (replicate 2). (a) IQA approach, (b) MLQA approach, and (c) ML approach.

https://doi.org/10.1371/journal.pone.0221270.g005

Table 4. Groupings for cell-type trees on H3K4me3 (replicate 2) data.

hESC

(5)

Skeletal Muscles

(1)

Blood

(2)

Myocytes

(1)

Astrocytes

(2)

Epithelial

(9)

Endothelial

(2)

Fibroblast

(12)

IQA (5,0) (1,0) (2,0) (1,0) (2,0) (4,1) (1,1) (6,4)

MLQA (5,0) (1,0) (2,0) (1,0) (2,0) (7,1) (1,1) (3,2)

ML (5,0) (1,0) (2,0) (1,0) (1,1) (6,1) (1,1) (8,1)

https://doi.org/10.1371/journal.pone.0221270.t004

Table 5. α ratio for cell-type trees on H3K4me3 (replicate 2) data.

Epithelial

(9)

Fibroblast

(12)

ML tree 6

6
, 7

16
, 8

22
, 9

26

8

8
, 10

12
, 11

15
, 12

17

MLQA tree 7

7
, 8

14
, 9

28

3

3
, 6

7
, 11

13
, 12

17

IQA tree 4

4
, 8

17
, 9

28

6

6
, 7

8
, 11

13
, 12

17

https://doi.org/10.1371/journal.pone.0221270.t005
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and Epithelial cell-types (see Table 6). All these methods performed poorly on the Epithelial

cell-types as the size of the largest cluster with only the Epithelial cell-types is 2. Table 7 shows

the similarity among these three approaches in terms of the α ratio for Epithelial group. Note

that all these methods take a subtree with 9 cell-types to group 6 (out of 8) Epithelial cell-types.

However, to accommodate all the 8 cell-types, the size of the subtree was increased to 13.

We can see from Table 6 that IQA approach outperforms the other two on the cell-types

from Blood (the largest cluster in IQA tree contains 2 cell-types whereas the other two trees

Fig 6. PCA on H3K4me3 (replicate 2) and corresponding scores are plotted on PC1 and PC2. (a) 7 closely clustered cell-types including Fibroblast cell-types and

one alien Epithelial cell (HCPEpiC) are selected from the 34 cell-types in a rectangular box. This particular Epithelial cell-type was placed within a subtree containing

the Fibroblast cell-types in the cell-type trees estimated by all three methods (see Fig 5). (b) 7 cell-types from (a) are zoomed in for a comprehensible view.

https://doi.org/10.1371/journal.pone.0221270.g006

Fig 7. Cell-type trees on H3K27me3 (replicate 1). (a) IQA approach, (b) MLQA approach, and (c) ML approach.

https://doi.org/10.1371/journal.pone.0221270.g007
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contain only 1 cell-type). Likewise, for Epithelial group, IQA and ML based approaches per-

form slightly better than the MLQA approach. For the remaining groups, these three

approaches show identical clustering. PCA analysis on this data is shown in Fig 8 which

strongly support our findings from the cell-type trees estimated by various approaches.

Replicate 1 and 2. IQA and ML trees are very similar except that ML tree is slightly better

on the Blood cell-types. The MLQA approach reconstructs a slightly worse tree in terms of

grouping the Epithelial cell-types (see Fig 9 and Table 8). The other two methods (IQA and

ML) also performed poorly on Epithelial cell-types as they were able to cluster only 3 cell-types

in the largest cluster.

Fig 9 shows that while IQA approach succeeds in clustering hESC and Endothelial cell-

types, ML based approach showed slightly better performance for Epithelial and Blood cell-

types. MLQA estimated tree is comparatively worse than the other two trees. All the

approaches exhibited poor performance on the Epithelial group. There are 15 cell-types in this

group but all the approaches were able to cluster only 3 cell-types in the largest subtree.

Table 9 shows α ratio for Epithelial group and it is noteworthy that a similar performance

degradation (as we observed on Replicate 1) was observed when we considered all the cell-

types. For 14 cell-types of this group, IQA approach provides the smallest α value. Yet, while

adding the 15th, ML based approach achieved a smaller value of α than IQA and MLQA. PCA

analyses are demonstrated in Fig 10 which support the findings from the cell-type trees. We

note that the cancerous cell-types from Epithelial group (Hela(1), Hela(2) and HepG2) and

Blood group (K562(1), K562(2) and GM06990) are closely related both in the cell-type trees

and in the PCA plot.

Comparative analyses on H3k4me3 and H3K27me3

We compared the trees estimated on H3K4me3 with the trees estimated on H3K27me3. We

observed that the relationships between various cell-types are consistent between these two

dataset. Similar cell-types tend to group together with a few exceptions (as described in previ-

ous sections). Moreover, cell-types from the same tissue type tend to form clusters on both

H3k4me3 and H3K27me3. The similarity of results between the two dataset reinforces our

opinion and the results from previous studies [1, 6, 13] that phylogenetic analyses yield biolog-

ically meaningful results on such data.

Table 6. Groupings for cell-type trees on H3K27me3 (replicate 1) data.

hESC

(5)

Epithelial

(8)

Fibroblast

(2)

Blood

(4)

Endothelial

(1)

ML tree (5,0) (2,1) (1,1) (1,1) (1,0)

MLQA tree (5,0) (1,1) (1,1) (1,1) (1,0)

IQA tree (5,0) (2,1) (1,1) (2,1) (1,0)

https://doi.org/10.1371/journal.pone.0221270.t006

Table 7. α ratio for cell-type trees on H3K27me3 (replicate 1) data.

Epithelial

(8)

ML tree 2

2
, 5

6
, 6

9
, 8

13

MLQA tree 1

1
, 5

6
, 6

9
, 8

13

IQA tree 2

2
, 5

6
, 6

9
, 8

13

https://doi.org/10.1371/journal.pone.0221270.t007
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H3K36me3 dataset

H3K36me3 (Histone H3 lysine 36 methylation) is a histone modification involved in epige-

netic regulation and is a common epigenetic mark [42]. The modifications of H3K36 are very

diverse and play roles in many important biological processes such as DNA replication, tran-

scription, recombination and repair of DNA damage [43]. This dataset (replicate 1) includes

17 cell-types. Fig 11 shows the trees estimated by ML, IQA and MLQA. The performance met-

rics are shown in Tables 10 and 11. PCA plot is shown in Fig 12. In general, the relative perfor-

mance of these three methods are similar to what we observed on the previous two datasets

(H3K4me3 and H3K27me3).

Fig 8. PCA on H3K27me3 (replicate 1) and corresponding scores are plotted on PC1 and PC2. (a) 12 closely clustered cell-types are selected from the 20 cell-

types in a rectangular box. (b) 12 cell-types from (a) are zoomed in for a comprehensible view which helps us note that these 12 includes 2 Fibroblast cell-types just

like the cell-type trees from all three approaches in Fig 7. Here 2 Fibroblast cell-types (BJ and AG04450) are located close to the cluster of 3 Blood cell-types and 8

Epithelial cell-types. 7 cell-types from these 12 are similarly enclosed in a rectangle for further investigation. (c) 7 cell-types from (b) are zoomed in and annotated

where we can see 2 Blood cell-types (K562 and GM06990) are closely related to 5 Epithelial cell-types which is a nearly similar scenario for the corresponding trees

as well.

https://doi.org/10.1371/journal.pone.0221270.g008
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H3K27ac dataset

Enhancer is an active regulatory element in genome which can affect gene transcription [44].

We analyzed H3K27ac as it is an important enhancer mark and computed cell-type trees using

IQA, MLQA and ML based approaches (Fig 13). This dataset contains 22 cells of 4 different

types (Epithelial, Fibroblast, Blood and Endothelial). The performance of various methods on

H3K27ac dataset is demonstrated in Tables 12 and 13 and Fig 13. The experimental results

show that, similar to our observation on other dataset, the proposed phylogenetic approaches

can construct meaningful trees on histone acetylation data since they tend to cluster the similar

cell-types together. Table 12 reflects the fact that IQA tree clusters Epithelial cell-lines better

than the other two approaches. MLQA tree fails to cluster all Blood cell-lines in one sub-tree

devoid of any alien cell-lines. ML based approach performed slightly better than IQA and

MLQA on Fibroblas cell-types as the largest Fibroblast clade in ML tree contains 4 cell-types,

Fig 9. Cell-type trees on H3K27me3 (replicate 1 and 2). (a) IQA approach, (b) MLQA approach and (c) ML approach.

https://doi.org/10.1371/journal.pone.0221270.g009

Table 8. Groupings for cell-type trees on H3K27me3 (replicate 1 and 2) data.

hESC

(10)

Epithelial

(15)

Fibroblast

(3)

Blood

(7)

Endothelial

(2)

ML tree (10,0) (3,2) (1,1) (2,2) (2,0)

MLQA tree (8,1) (1,1) (1,1) (2,1) (2,0)

IQA tree (10,0) (3,1) (1,1) (1,1) (2,0)

https://doi.org/10.1371/journal.pone.0221270.t008

Table 9. α ratio for cell-type trees on H3K27me3 (replicate 1 and 2) data.

Epithelial

(15)

ML tree 3

3
, 9

12
, 12

18
, 15

24

MLQA tree 1

1
, 4

5
, 9

12
, 12

16
, 13

21
, 15

29

IQA tree 3

3
, 8

11
, 9

13
, 11

16
, 13

21
, 14

23
, 15

26

https://doi.org/10.1371/journal.pone.0221270.t009
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whereas for IQA and MLQA approaches, this value is 3. Table 13 shows the alpha ratio for Epi-

thelial and Fibroblast groups. We have not included Blood in this table since both IQA and

ML approaches were able to cluster this group in an ideal manner.

Combined analyses with H3k4me3 and H3K27me3

Combined analyses (also known as concatenation) is a traditional approach to species tree (a

phylogenetic tree showing the evolutionary history of a group of species) estimation from

multi-locus data. Combined analyses concatenates gene sequence alignments into a supergene

matrix, and then estimates the species tree using a sequence based tree estimation technique

(e.g., maximum parsimony, maximum likelihood, Bayesian analysis, etc.). Although combined

Fig 10. PCA on H3K27me3 (replicate 1 and 2) and corresponding scores are plotted on PC1 and PC2. (a) 23 closely clustered cell-types including Blood,

Epithelial and Fibroblast cell-types are selected from the 37 cell-types in a rectangular box. (b) Upon zooming in the 23 cell-types from (a), we can see that 3

Fibroblast cell-types (BJ(1), BJ(2) and AG04450) have entered into the cluster comprising Epithelial and Blood cell-types which is an identical situation to the

clustering tendencies exhibited in the cell-type trees in Fig 9. 6 cell-types from these 23 are similarly enclosed in a rectangle for further investigation. (c) 6 cell-types

from (b) are zoomed in and annotated. Close relationships among the the cancerous cell-types from Epithelial group (Hela(1), Hela(2) and HepG2) and the

cancerous cell-types from Blood group (K562(1), K562(2) and GM06990) are suggested by both the PCA plot and the cell-type trees.

https://doi.org/10.1371/journal.pone.0221270.g010
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analyses is not statistically consistent [45] and can return inaccurate trees with high confidence

[46–49], it has been used in many biological studies since it can construct highly accurate spe-

cies trees by leveraging the high amount of phylogenetic signal from the combined superma-

trix, especially when the degree of gene tree discordance is low [50, 51]. To demonstrate the

applicability of combined analyses and thereby showing the feasibility of analyzing multiple

egigenetic marks at the same time, we performed combined analyses on H3k4me3 and

H3K27me3 data.

We selected these two epigenetic marks since they have the highest number of common

cell-lines among the datasets that we have analysed in this study. There are 13 cells common to

both these dataset. We combined the alignments containing 13 cell-lines, resulting from the

overlapping representations of H3k4me3 and H3K27me3, into a supermatrix and analyzed the

data using maximum likelihood and quartet based techniques.

Fig 11. Cell-type trees on H3K36me3 (replicate 1). (a) IQA approach, (b) MLQA approach, and (c) ML based approach.

https://doi.org/10.1371/journal.pone.0221270.g011

Table 10. Groupings for cell-type trees on H3K36me3 (replicate 1) data.

hESC

(5)

Epithelial

(7)

Fibroblast

(1)

Blood

(3)

Endothelial

(1)

ML tree (5,0) (4,1) (1,0) (2,1) (1,0)

MLQA tree (5,0) (4,1) (1,0) (1,1) (1,0)

IQA tree (5,0) (4,1) (1,0) (1,1) (1,0)

https://doi.org/10.1371/journal.pone.0221270.t010

Table 11. α ratio for cell-type trees on H3K36me3 (replicate 1) data.

Epithelial

(7)

IQA tree 4

4
, 6

7
, 7

9

MLQA tree 4

4
, 7

8

ML tree 4

4
, 5

6
, 6

9
, 7

11

https://doi.org/10.1371/journal.pone.0221270.t011
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We selected 13 common cell-types from these two marks and computed cell-type tree

based on three approaches (IQA, MLQA and ML). The results from combined analyses show

that the cell-type trees constructed from merged peak data of the same cell-lines from these

two epigenetic marks appear to carry a meaningful clustering pattern. We can see from Fig 14

Fig 12. PCA on H3K36me3 (replicate 1) and corresponding scores are plotted on PC1 and PC2. (a) 11 closely clustered cell-types that include Blood, Epithelial

and Fibroblast are selected from the 17 cell-types in a rectangular box. (b) When these 11 cell-types from (a) are zoomed in, it becomes evident that BJ from

Fibroblast and GM06990, GM12878 and K562 from Blood are intruders in the Epithelial cluster which is a comparable scenario with the Epithelial clusters from

the cell-type trees in Fig 11.

https://doi.org/10.1371/journal.pone.0221270.g012

Fig 13. Cell-type trees for H3K27ac. (a) IQA approach (b) MLQA approach and (c) ML approach.

https://doi.org/10.1371/journal.pone.0221270.g013

Table 12. Groupings for cell-type trees on H3K27ac data.

Epithelial

(8)

Fibroblast

(5)

Blood

(8)

Endothelial

(1)

ML tree (4,2) (4,1) (8,0) (1,0)

MLQA tree (4,2) (3,1) (5,3) (1,0)

IQA tree (6,1) (3,1) (8,0) (1,0)

https://doi.org/10.1371/journal.pone.0221270.t012
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that, 5 cell-lines from hESC are always clustered together which is similar to the behavior of

hESC clusters from the previous cell-type trees computed from individual epigenetic mark.

Also, Tables 14 and 15 reflect the fact that, IQA and MLQA approaches outperforms ML

based approach while clustering Epithelial cell-lines. For other cell-types, performance of all

these methods are similar.

These results demonstrate the feasibility of applying combined anslysis on multiple epige-

netic marks. Although epigenetic marks can be modified relatively independently from each

other which is similar to the independent evolution of multiple markers (genes) within a

group of species [52], combined analyses on multiple epigenetic marks can be useful to eluci-

date the relationships among various cell-types.

Conclusions

We proposed two quartet-based phylogenetic tree construction methods to infer cell differen-

tiation trees. Due to the growing awareness that phylogenetic tree estimation methods are

Table 13. α ratio for cell-type trees on H3K27ac data.

Epithelial

(8)

Fibroblast

(5)

IQA tree 6

6
, 8

14

3

3
, 5

7

MLQA tree 4

4
, 6

9
, 8

17

3

3
, 5

7

ML tree 4

4
, 8

14

4

4
, 5

6

https://doi.org/10.1371/journal.pone.0221270.t013

Fig 14. Cell-type trees estimated using combined analyses on H3K4me3 and H3K27me3. (a) IQA approach, (b) MLQA approach, and (c) ML based approach.

https://doi.org/10.1371/journal.pone.0221270.g014

Table 14. Groupings for cell-type trees estimated by combined analyses on H3K4me3 and H3K27me3.

hESC

(5)

Epithelial

(4)

Fibroblast

(2)

Blood

(1)

Endothelial

(1)

ML tree (5,0) (2,1) (1,1) (1,0) (1,0)

MLQA tree (5,0) (3,1) (1,1) (1,0) (1,0)

IQA tree (5,0) (3,1) (1,1) (1,0) (1,0)

https://doi.org/10.1371/journal.pone.0221270.t014
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useful in inferring processes of cell differentiation, various standard phylogenetic methods

have been applied on various epigenetic information. The results of this study supported the

validity of quartet-based approach (which is being widely used in constructing species trees

from multi-locus data) for inferring reliable cell-type trees using ChIP-Seq histone modifica-

tion data. We analyzed a collection of real biological data, containing both normal and cancer-

ous cell-types with multiple replicates, to assess the performance of our proposed methods.

Experimental results suggest that our methods can reconstruct meaningful cell-type trees. In

this study, we also proposed a new metric to evaluate the reliability of cell-type trees.

Phylogenetic methods, in most of the cases, were successfully able to place similar cell-types

together within a clade, but we observed a few cases (especially for Epithelial cell-types) where

different cell-types from different groups were clustered together. PCA analyses of the overlap

representation of the ChIP-Seq histone modification data suggest that this is possibly not due

to any shortcomings of the phylogenetic tree estimation methods, rather the underlying data

may not have sufficient information to clearly distinguish these cell-types. It could also be due

to the close interaction and transition between cell-types [53–55]. For example, Epithelial cells

can give rise to Fibroblasts under certain conditions, which is known as epithelial-mesenchy-

mal transition (EMT) [56, 57]. The reverse phenomenon, where Fibroblasts may give rise to

Epithelial, a process called mesenchymal–epithelial transition (MET), is also possible [58, 59].

However, more rigorous experiments are required to further validate these hypotheses regard-

ing the presence of different cell-types within the subtree of a particular group.

This study shows the strength and applicability of standard phylogenetic tree estimation

techniques in supplementing the traditional laborious in vitro experiments for elucidating the

relationships among various cell-types. Thus, we believe that the approaches presented in this

study will help biologists and systematists to address various fundamental questions in cell

development and differentiation. However, this study can be extended in several directions.

Our proposed methods are applicable to other epigenetic marks (e.g., RNA-seq) as well given

that we have an appropriate data representation (e.g., window and overlap representation)

technique so we can apply various phylogenetic methods. Kin et al. [1] converted the expres-

sion data into qualitative data (expressed/non-expressed) and applied maximum parsimony

based phylogenetic tree estimation method to construct cell-type trees from RNA-Seq data.

Similarly, our techniques can be applied to the RNA-Seq data to infer cell differentiation trees.

It would be interesting to analyze how various phylogenetic approaches perform on RNA-Seq

data and to investigate what types of data representations are appropriate for various epige-

netic marks. We leave this as a future work. Another important avenue is to investigate how to

remove “batch effects”—the systematic error introduced when samples are processed in multi-

ple batches. The batch effect may mislead the phylogenetic analysis, because it can inflate the

correlations within the same batch [60]. However, it remains unclear to what extent batch

effect may influence the phylogenetic analyses of the Chip-Seq data, and appropriate extensive

simulation studies need to be designed and performed to better understand the impact of

batch effects. One approach for eliminating the risk of batch effects is to perform the whole

Table 15. α ratio for cell-type trees estimated by combined analyses on H3K4me3 and H3K27me3.

Epithelial

(4)

Fibroblast

(2)

IQA tree 3

3
, 4

7

1

1
, 2

5

MLQA tree 3

3
, 4

6

1

1
, 2

5

ML tree 2

2
, 3

5
, 4

7

1

1
, 2

4

https://doi.org/10.1371/journal.pone.0221270.t015
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study in a single batch [60]. More sophisticated methods (for an example, principal variation

component analysis (PVCA) [61, 62]) can be used to measure how much variation in the data

is due to batch effects. Finally, proposing theoretical framework and mathematical basis for

comparing various phylogenetic approaches for estimating cell-differentiation trees using epi-

genetic data would be important to understand the relative performance of various techniques

under different realistic model conditions.
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