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Abstract

Regenerating the periodontal ligament (PDL) is a crucial factor for periodontal tissue regen-

eration in the presence of traumatized and periodontally damaged teeth. Various methods

have been applied for periodontal regeneration, including tissue substitutes, bioactive mate-

rials, and synthetic scaffolds. However, all of these treatments have had limited success in

structural and functional periodontal tissue regeneration. To achieve the goal of complete

periodontal regeneration, many studies have evaluated the effectiveness of decellularized

scaffolds fabricated via tissue engineering. The aim of this study was to fabricate a decellu-

larized periodontal scaffold of human tooth slices and determine its regeneration potential.

We evaluated two different protocols applied to tooth slices obtained from human healthy

third molars. The extracellular matrix scaffold decellularized using sodium dodecyl sulfate

and Triton X-100, which are effective in removing nuclear components, was demonstrated

to preserve an intact structure and composition. Furthermore, the decellularized scaffold

could support repopulation of PDL stem cells near the cementum and expressed cementum

and periodontal-ligament-related genes. These results show that decellularized PDL scaf-

folds of human teeth are capable of inducing the proliferation and differentiation of mesen-

chymal stem cells, thus having regeneration potential for use in future periodontal

regenerative tissue engineering.

Introduction

The regeneration of periodontal tissue is the aim of periodontal therapy to ensure the healing

of traumatized teeth. Several kinds of stem cells such as dental pulp stem cells (DPSCs), stem

cells from the apical papilla, dental follicle precursor cells, periodontal ligament stem cells

(PDLSCs), and stem cells from human exfoliated deciduous teeth (SHED) have been evaluated

for their usefulness in the regeneration of dental tissue[1–4]. Periodontal ligament (PDL) tis-

sue contains multipotent stem cells that exhibit a self-renewing capacity to differentiate into

various types of cells to form PDL, cementum, and alveolar bone [5, 6]. Stem cells derived
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from PDL cells have been shown to exhibit superior regenerative properties compared with

other cells derived from gingival connective tissue and alveolar bone cells[7].

There have been many attempts to regenerate periodontium, such as using cell- and scaf-

fold-based engineering, but no effective method for regenerating periodontal tissue has yet

been reported [8–10]. The various attempts made to achieve PDL regeneration have had limi-

tations, such as gene therapy possibly inducing (human) host responses and tumorigenesis,

growth factors being unstable, and biomaterial being likely to fail.

The selection of an appropriate scaffold material is crucial in tissue engineering. The princi-

pal functions of the scaffold are to maintain mechanical integrity, supply growth factors, con-

trol cell growth, and induce cell differentiation. Commonly used scaffolds such as ceramics,

synthetic polymers, and natural polymers have highly adjustable mechanical properties and

good production repeatability, but they show low bioactivity [11]. Since extracellular matrix

(ECM) scaffolds prepared by the decellularization of mammalian tissues show no immune

responses and inherently contain the tissue-specific factors involved in cell growth and differ-

entiation [12, 13], they have been used in studies of regenerative medicine and dentistry [14].

Clinical products derived from the decellularization of tissues are currently used for the

replacement and reconstruction of organs and tissues, including human dermis, porcine uri-

nary bladder, human pericardium, and porcine heart valves [15].

Various studies have attempted to apply scaffolds in the field of dentistry. Human dental

pulp ECM scaffold that was successfully decellularized promotes the proliferation and differ-

entiation of autologous mesenchymal stem cells [16]. The use of decellularized PDL cell-sheet

constructs for periodontal regeneration has also been reported [17, 18]. Decellularized human

PDL (dHPDL) cell sheets were shown to maintain the structural integrity of the ECM, retain

growth factors, and support allogenic cell repopulation in vitro [17]. Decellularized PDL cell-

sheet constructs that promote the differentiation of PDL and mesenchymal stem cells were

also shown to support periodontal attachment in a rat periodontal defect model [18]. However,

although the application of decellularized PDL tissue to cell sheets has been investigated, the

use of human teeth including hard tissue has not been.

A decellularization protocol can be applied to the delayed replantation of an avulsed tooth,

autologous transplantation, and periodontal therapy, via the decellularization of PDL tissue

following recellularization with PDL stem cells (PDLSCs) derived from orthodontically

extracted teeth, primary teeth, and supernumerary teeth. The aim of this study was to apply

and evaluate a decellularization protocol that can retain structural integrity and remove cell

and DNA effectively, and to test the periodontal recellularization potential of the decellularized

human tooth model in vitro.

Materials and methods

Tooth-slice sample preparation and cell culture

Third molars that were free of caries and restorations were collected randomly from patients

aged 17 to 25 years under approved guidelines set by the Institutional Review Board of the

Dental Hospital, Yonsei University (approval no. #IRB 2-2016-0030). Teeth were washed with

phosphate-buffered saline (PBS; Invitrogen, Carlsbad, CA, USA) and frozen at –80˚C until

use. After thawing at room temperature, the teeth were submerged in 0.5% chloramine-T

(Sigma-Aldrich, St. Louis, MO, USA) for 2 hours at 4˚C, followed by washing in cold running

water. The pulp tissues were removed with a barbed broach, and tooth slices were prepared

using an precision saw (IsoMet 1000, Buehler, Lake Buff, IL, USA) as described previously

(Cordeiro et al. 2008). Samples were collected in cold PBS and immediately subjected to the

decellularization procedures.
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Previously characterized PDLSCs at passages 3–6 were used in repopulation experiments in

a basal cell culture medium comprising alpha minimum essential medium (Invitrogen) con-

taining 10% fetal bovine serum (Invitrogen), 1% L-glutamine/penicillin/streptomycin solution

(Invitrogen), and 0.2% amphotericin B solution (Invitrogen) at 37˚C in 5% CO2.

Decellularization and repopulation

Based on a review of the literature and a previous study[16], two decellularization protocols

were evaluated in this study, as described in Table 1: Protocol I (PI) and Protocol II (PII). All

treatment steps were applied to tooth slices at room temperature with constant gentle agitation

of the samples in an orbital shaker (SH30, Fine PCR, Gunpo, Gyeonggi, Korea) in the presence

of protease inhibitor cocktail (EMD, Millipore, Darmstadt, Germany). At the end of each pro-

tocol, samples were rinsed with 10% ethylenediaminetetraacetic acid (EDTA, Fisher Scientific,

Houston, TX, USA) at pH 7.4 for 5 min, followed by three rinses of 10 min each with PBS

(Invitrogen).

For repopulation of the decellularized tooth slices (dHPDL), PDL at a density of 1×107

cells/mL in rat tail collagen I (Col I; Corning, Corning, NY, USA) was pipetted directly onto

dHPDL using PII or into empty wells (control) in 12-well culture plates (Corning). After 1

hour, 1 ml of basal culture media was applied to each well, and this was changed every 3 days.

Cells were cultured at 37˚C in 5% CO2 for either 2 or 5 weeks.

Residual DNA quantification

Immediately after each decellularization protocol, samples (n = 10~15) were homogenized

and residual DNA was isolated using the QIAamp DNA Investigator Kit (Qiagen, Valencia,

CA, USA) and quantified using a spectrophotometer (NanoDrop NE-2000, Thermo Scientific,

Waltham, MA, USA).

Scanning electron microscopy

Samples from the control, PI, and PII groups were incubated in fixative solution (2% parafor-

maldehyde [PFA], 2% glutaraldehyde, and 0.5% calcium chloride) and then postfixed in 1%

osmium tetroxide. Next, the samples were dehydrated sequentially in a graded series of ethanol

solutions, coated with platinum, and visualized using a scanning electron microscope (SEM;

Hitachi S-3000N, Hitachi Science Systems, Tokyo, Japan) at an accelerating voltage of 20.0 kV.

Cell viability analysis

The survival of PDL seeded onto dHPDL from PII (n = 10) was compared after 2 weeks of cul-

ture. dHPDL without cell seeding served as a negative control. Samples were incubated with

the Cell Counting Kit-8 assay (Dojindo Laboratories, Kumamoto, Japan) for 1 hour, and the

quantity of water-soluble colored formazan formed by the activity of dehydrogenases in living

cells was measured using a spectrophotometer (Benchmark Plus microplate spectrophotome-

ter, Bio-Rad Laboratories, Hercules, CA, USA) at 450 nm. All samples were run in triplicate.

Table 1. The tested decellularization protocols.

Protocol Treatment

Protocol I 2% Triton X-100 and 0.1% NH4OH for 72 hours

Protocol II Three cycles of 1% SDS for 24 hours and 1% Triton X-100 for 24 hours

SDS, sodium dodecyl sulfate.

https://doi.org/10.1371/journal.pone.0221236.t001
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Histological and immunohistochemistry staining

For histological staining, tooth slices with intact control PDL, dHPDL derived from PI and

PII, or repopulated decellularized PDL were fixed with 4% PFA for 1 h, decalcified with EDTA

(pH 7.4; Fisher Scientific) for 6 weeks at room temperature, embedded in paraffin, sectioned at

a thickness of 4 μm, and stained with hematoxylin and eosin (H&E).

The expression levels of Col I, collagen XII (Col XII), fibronectin, osteocalcin (OC), and

cementum protein 23 (CP23) were evaluated by immunohistochemistry (IHC). Protease K

(Dako, Carpinteria, CA, USA) was used to retrieve the antigen for the OC and CP23 staining,

while no such treatment was performed for Col I, Col XII, and fibronectin. In brief, samples

from the control group and dHPDL derived from PI and PII were immersed in 3% hydrogen

peroxide for 10 min to inactivate endogenous peroxidase activity, and then incubated with the

primary antibody overnight. The primary antibodies were a 1:10000 dilution of antihuman

Col I rabbit monoclonal antibody (ab138492, Abcam, Cambridge, UK), a 1:1000 dilution of

antihuman Col XII rabbit polyclonal antibody (sc-68862, Santa Cruz Biotechnology, Santa

Cruz, CA, USA), a 1:4000 dilution of antihuman fibronectin rabbit polyclonal antibody

(F3648, Sigma-Aldrich), a 1:8000 dilution of antihuman OC rabbit polyclonal antibody

(#AB10911, Millipore, Temecula, CA, USA), and a 1:1000 dilution of antihuman CP23 goat

polyclonal antibody (sc-164031, Santa Cruz Biotechnology). The sections were subsequently

incubated for 20 min with horseradish-peroxidase-labeled polymer conjugated with the sec-

ondary rabbit antibody in the EnVision+ system kit (Dako) or for 30 min with the Vectastain

Elite ABC Kit (PK-6105, Vector Laboratories, Burlingame, CA, USA; goat IgG, diluted 1:200).

The color was developed using 3,3’-diaminobenzidine substrate (Dako) and counterstained

with Gill’s hematoxylin solution (Merck, Darmstadt, Germany). Negative control sections

were stained in the same manner but without the primary antibody reaction procedure.

Fluorescence staining

PDL specimens were fixed, permeabilized, and blocked following the Image-iT Fix-Perm kit

(Life Technologies, Carlsbad, CA, USA) recommendations. NucBlue Fixed Cell ReadyProbes

(Life Technologies) were used for staining the nuclei. Immunoreactivity was visualized with a

confocal microscope (Zeiss LSM 700) combined with the Zen software (Carl Zeiss, New York,

NY, USA).

Real-time reverse-transcription polymerase chain reaction assay

After 5 weeks of cell seeding and culture, total RNA was extracted from the repopulated tooth

slices and from PDL cultured onto cultured dishes (control group) using the RNeasy Mini Kit

(Qiagen) (n = 4 for the control group and n = 12 for each experimental group). RNA (100 ng)

was reverse transcribed to synthesize cDNA using the Maxime RT premix kit [oligo d(T)15

primer; Intron Biotechnology, Seongnam, Gyeonggi, Korea] according to the manufacturer’s

instructions. A quantitative real-time polymerase chain reaction (qPCR) assay was performed

with SYBR Premix Ex Taq (Takara Bio, Otsu, Japan) and a real-time polymerase chain reaction

(PCR) system (ABI 7300, Applied Biosystems, Carlsbad, CA, USA) as per the manufacturer’s

instructions. The qPCR conditions were 95˚C for 10 sec followed by 40 cycles of 95˚C for 5 sec

and 60˚C for 30 sec, with a final 5-min extension at 72˚C. The sequence and size of the primers

used are listed in Table 2. The expressions level of each gene was normalized to that of

GAPDH (the gene encoding glyceraldehyde-3-phosphate dehydrogenase), and the relative

expression levels of the studied genes were calculated using the 2–ΔΔCt method[19].
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Statistical analysis

All experiments were performed at least in triplicate. Statistical analysis was performed with

SPSS (version 23.0, Chicago, IL, USA). The normality of the data was evaluated using the Sha-

piro-Wilk test, with a significance criterion of p<0.05. The Kruskal-Wallis test followed by the

post-hoc Bonferroni test (Bonferroni correction; p<0.017) was used for comparing residual

DNA contents, with a significance criterion of p<0.05. The Mann-Whitney U test was per-

formed for cell viability after repopulation and real-time reverse-transcription PCR, also with

a significance criterion of p<0.05.

Results

Evaluation of different decellularization protocols of human PDL

Residual nuclei and DNA contents after decellularizing PDL were evident compared to the

control group not subjected to decellularization (Fig 1A–1C). Compared to the control group,

nuclei and DNA were eliminated in the PI and PII groups, and there was a notable DNA

reduction for PII of up to approximately 62.32% (Fig 1A and 1B). As seen in H&E and DAPI

(4’,6-diamidino-2-phenylindole) staining, disperse nuclei were evident for PI (Fig 1A-b and

1A-e), while almost no nuclei were observed for PII (Fig 1A-c and 1A-f). SEM images revealed

that some Sharpey’s fibers had been removed, but they had retained their morphology in both

the PI and PII groups compared to controls. The density of Sharpey’s fibers was preserved

more for PII than for PI (Fig 1C-a and 1C-b).

ECM characterization of decellularized PDL

IHC staining of samples for PI and PII indicated that Col I was almost intact compared with

the control group (Fig 2A–2C). Fibronectin was notably diminished for PI and PII (Fig 2G–

2I). Col XII was decreased for PI but increased for PII compared to controls (Fig 2D–2F).

Recellularization potential of human PDLSCs in decellularized PDL

PDLSCs were viable after 2 weeks of seeding PDLSCs onto decellularized scaffold for PII fol-

lowed by culturing (Fig 3). PDL cells were repopulated on decellularized scaffold in H&E and

Masson’s trichrome staining. Immunostaining of histological sections for OC showed positive

staining in PDL cells adjacent to cementum, while significant CP23 staining was also found

(Fig 3B).

Table 2. Primers used for the real-time polymerase chain reaction assay.

Gene Primer sequence (5’–3’) Size (bp)

ALP F: GGACCATTCCCACGTCTCAC
R: CCTTGTAGCCAGGCCCATTG

137

Col XII F: CGGACAGAGCCTTACGTGCC
R: CTGCCCGGGTCCGTGG

180

CP23 F: AACACATCGGCTGAGAACCTCAC
R: GGATACCCACCTCTGCCTTGAC

142

OC F: CAAAGGTGCAGCCTTTGTGTC
R: TCACAGTCCGGATTGAGCTCA

150

GAPDH F: TCCTGCACCACCAACTGCTT
R: TGGCAGTGATGGCATGGAC

100

F, forward; R, reverse; ALP, alkaline phosphatase; Col XII, collagen XII; CP23, cementum protein 23; OC, osteocalcin; GAPDH, glyceraldehyde-3-phosphate

dehydrogenase.

https://doi.org/10.1371/journal.pone.0221236.t002
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Differentiation of human PDLSCs in decellularized PDL

Real-time PCR was performed to assess the gene expression of cementum/PDL markers

(Table 2) by PDLSCs repopulated on decellularized PDL scaffolds of the tooth slices. The

expression levels of alkaline phosphatase (ALP), CP23, and OC were significantly up-regulated

Fig 1. Comparison of different decellularization protocols for periodontal tissue in human tooth slices. (A)

Residual nuclei (arrowheads) are indicated by hematoxylin and eosin (H&E) staining (a–c) and fluorescence staining

with 4’,6-diamidino-2-phenylindole (DAPI) (d–f). More cell nuclei were removed in Protocol II (PII) than Protocol I

(PI) after decellularization in H&E and DAPI staining. (B) Residual total DNA contents after decellularization of the

periodontal ligament (PDL). The normality of the data was evaluated using the Shapiro-Wilk test (p<0.05). �p<0.05 in

Kruskal-Wallis test followed by the post-hoc Bonferroni test (Bonferroni correction; p<0.017). (C) Scanning electron

microscopy images of the different protocol groups. Arrowheads indicate remaining Sharpey’s fibers in the PDL. D,

dentin. Scale bars: 20 μm in A(a–c), 50 μm in A(d–f), and 20 μm in C.

https://doi.org/10.1371/journal.pone.0221236.g001

Fig 2. Immunohistochemistry (IHC) staining of collagen I (Col I), collagen XII (Col XII), and fibronectin in the

decellularized PDL of tooth slices. Scale bars: 20 μm in a–i.

https://doi.org/10.1371/journal.pone.0221236.g002
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after recellularization, by 5.61±0.70-, 1.96±0.30-, and 275.87±201.47-fold (mean±SD), respec-

tively. Col XII was also up-regulated (by 1.46±0.24-fold), but the change was not statistically

significant (Fig 4).

Discussion

Decellularization protocols have been applied to various tissues and organs to fabricate bioac-

tive ECM scaffold that could eliminate cells and cellular components completely without

Fig 3. Characterization of decellularized human PDL periodontal ligament (dHPDL) recellularized with PDL

stem cells (PDLSCs). (A) Cell viability for PII after recellularization. PDLSCs repopulated onto dHPDL when

applying PII were viable compared with the control group. The Mann-Whitney U test (�p<0.05) was used to assess cell

viability. (B) PDLSCs seeded onto decellularized tooth slices in PII repopulated and infiltrated toward the cementum

(black arrows) in H&E and Masson’s trichrome (MT) staining. PDLSCs expressed osteocalcin (OC) and cementum

protein 23 (CP23) near the cementum (red arrows) in recellularized human tooth slices in IHC staining. C, cementum.

Scale bars: 20 μm.

https://doi.org/10.1371/journal.pone.0221236.g003
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affecting the ECM [20–22]. Incompletely decellularized tissue might induce immune

responses [23, 24], while a suitably tissue-engineered scaffold was found to not elicit immune

responses in vivo [25]. The present study decellularized PDL in human tooth slices to assess

the efficacy of nuclei and DNA removal while maintaining their native structure and composi-

tion. Furthermore, the recellularization potential of decellularized PDL scaffold was assessed

by real-time PCR with the aid of periodontal tissue markers.

The successful application decellularization techniques might be dependent on many fac-

tors, including the types of tissue and organs, and the thickness, density, and cellularity of the

tissue [26]. Previous studies found that using NH4OH and Triton X-100 could successfully

remove cellular components [17, 26]. Decellularization with 1% Triton X-100 and 1% sodium

dodecyl sulfate (SDS)—as used in PII in the present study—was effective in porcine anterior

cruciate ligament and monkey kidney [27, 28]. Different methods using NH4OH, Triton X-

100, hypertonic buffer, and SDS have recently been applied to human dental pulp tissue [16],

but there had been no clinical investigation of decellularizing PDL obtained from human

tooth slices. We applied a combination of NH4OH, Triton X-100, and SDS, which demon-

strated effective decellularization compared to the other combinations of agents used in the

previous studies.

In the present study, PII removed up to 62.32% of the DNA content, which was more than

for PI. It seems that the SDS used in PII provided more complete removal of nuclear remnants

than Triton X-100 [27, 28]. Ionic detergents such as SDS are more disruptive to tissue structure

than is Triton X-100 [29]. However, the removal effectiveness was lower in the present study

than in previous studies: at least 90% of host DNA was eliminated by SDS treatment in tissues

and organs including rat forearm [30], porcine cornea [31], porcine heart valve [32], human

vein [33], and human heart [34]. It appears that the specific characteristics of the tooth

Fig 4. Gene expression in the recellularized human PDL group analyzed using the quantitative real-time reverse-

transcription polymerase chain reaction. PDLSCs were seeded in the control group or in the decellularized group

using PII. �p<0.05 for alkaline phosphatase (ALP) in Mann-Whitney U test; �p<0.05 for CP23 and OC in Student’s t-

test.

https://doi.org/10.1371/journal.pone.0221236.g004
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structure including its constituent hard tissue result in less elimination of hard tissue, and so

additional agents for the complete removal of DNA (e.g., DNAase) need to be investigated in

the future.

Sharpey’s fibers, which are the principal PDL fibers functioning in both tooth attachment

and PDL regeneration, were shown to have a denser arrangement in PII. For evaluating the

integrity of decellularized ECM, structural proteins such as collagen, fibronectin, and laminin

as well as glycosaminoglycans should be evaluated [35]. Although fibronectin was notably

decreased for PI and PII, Col I (which is the predominant type of collagen in PDL) was pre-

served in IHC staining, whereas Col XII was enhanced for PII. These findings could be attrib-

uted to teeth being involved in the mature/functional stage of PDL, as compared with

developing stages, while the expression of Col I decreases with maturity [10, 36]. Furthermore,

Col XII is responsible for the organization of collagenous fibers in response to mechanical

loading in mature PDL [36]. The findings from both the present SEM and IHC analyses indi-

cated that utilizing SDS and Triton X-100 preserved collagen fibrous network without any

marked loss of structural proteins. This is consistent with [13] demonstrating the efficacy of

1% SDS and 1% Triton X-100 for the decellularization of heart-valve leaflets while preserving

the integrity of the ECM scaffold.

Few studies have evaluated the influence of a decellularized scaffold on gene expression and

cell differentiation. The gene expression markers selected in the present study are relevant to

wound healing and the regeneration of bone, cementum, and PDL tissue (Table 2). The

expression levels of CP23, ALP, and OC were higher than that of Col XII at 5 weeks after cell

seeding. This could be explained by the induction of a later differentiation response of the

repopulating PDL cells after the initial proliferative phase [18].

The human PDLSCs in this study were viable and able to be recellularized onto decellular-

ized periodontal scaffold, as demonstrated by the cell viability analysis and H&E staining. OC

expression was more prominent than CP23 expression in IHC staining. The expression of OC

surrounding the cementum in the recellularized constructs suggests that decellularized scaf-

folds have the potential of inducing biomineralization and bone remodeling [7]. It is notewor-

thy that PDLSCs could be infiltrated and repopulated close to the cementum area from outside

of the ECM.

Tooth avulsion accounts for 16% of all traumatic injuries in the permanent dentition, and it

is accompanied by severe damage to the PDL [37]. PDL cells are damaged by inadequate stor-

age of the avulsed teeth. Following the replantation of avulsed teeth, inflammatory root resorp-

tion and further tooth loss could occur. In this study, decellularized PDL scaffolds of tooth

sections preserved their structure, and collagen remained in the ECM. They also have potential

for recellularization and to induce the expression of genes related to PDL and bone regenera-

tion. The application of autologous mesenchymal stem cells to the decellularized periodontal

scaffold of avulsed tooth that potentially promotes the proliferation and differentiation of PDL

cells could be a novel approach for PDL regeneration.
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