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Abstract

Despite the recent malaria burden reduction in the Americas, focal transmission persists

across the Amazon Basin. Timely analysis of surveillance data is crucial to characterize

high-risk individuals and households for better targeting of regional elimination efforts. Here

we analyzed 5,480 records of laboratory-confirmed clinical malaria episodes combined with

demographic and socioeconomic information to identify risk factors for elevated malaria inci-

dence in Mâncio Lima, the main urban transmission hotspot of Brazil. Overdispersed

malaria count data clustered into households were fitted with random-effects zero-inflated

negative binomial regression models. Random-effect predictors were used to characterize

the spatial heterogeneity in malaria risk at the household level. Adult males were identified

as the population stratum at greatest risk, likely due to increased occupational exposure

away of the town. However, poor housing and residence in the less urbanized periphery of

the town were also found to be key predictors of malaria risk, consistent with a substantial

local transmission. Two thirds of the 8,878 urban residents remained uninfected after

23,975 person-years of follow-up. Importantly, we estimated that nearly 14% of them,

mostly children and older adults living in the central urban hub, were free of malaria risk,

being either unexposed, naturally unsusceptible, or immune to infection. We conclude that

statistical modeling of routinely collected, but often neglected, malaria surveillance data can

be explored to characterize drivers of transmission heterogeneity at the community level

and provide evidence for the rational deployment of control interventions.

Introduction

Malaria continues to be a major cause of morbidity and mortality in sub-Saharan Africa,

South and Southeast Asia, Oceania, and Latin America, with 219 million cases and 435,000

deaths worldwide in 2017 [1]. The disease typically affects the rural poor, since urbanization

tends to reduce malaria risk through improved housing, greater access to health services, and

environmental changes that may limit vector abundance [2]. Indeed, malaria rates are typically

lower in cities, compared to their rural surroundings, in most [3,4], although not all [5],
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endemic settings. Despite this, the rapidly growing urban population in developing countries

bears an increasingly larger proportion of the global malaria burden because of both local

transmission and importation from rural sites [6,7].

Sprawling towns and cities are heterogeneous, and so is urban malaria risk. For example, in

the early 1980s the number of infective bites per person was estimated to range between<1

every three years and>100 per year across the city of Brazzaville [8]. Risk heterogeneity trans-

lates into overdispersed frequency distributions of malaria episodes per person, with few sub-

jects experiencing a disproportionately large disease burden due to frequent reinfection [9,

10]. Low socioeconomic status, poor housing quality, and proximity to larval habitats are

among the household-level factors that fuel malaria transmission in urban Africa [11,12].

Travel to rural communities is another major risk factor that entails a different set of preven-

tive measures [13].

Surprisingly, the epidemiology of urban malaria has been little investigated in Latin Amer-

ica, the most urbanized region of the developing world [7,14]. Imported cases from surround-

ing rural sites appear to be the main contributors to malaria infections diagnosed in the city of

Quibdó, Colombia [15,16], but urban malaria transmission has been documented in coastal

Peru [17] and in the outskirts of major cities in Amazonian Brazil [18,19]. Anopheles darlingi,
the main malaria vector in the Amazon Basin, is typically found in forested areas [20], but

urban environments are not necessarily unsuitable for this species. Indeed, the accelerated

urbanization process in the Amazon over the past few decades originated a multitude of small

cities and towns characterized by poor housing and little public infrastructure and interspersed

with rural spaces. Unsurprisingly, immature stages of malaria vectors can develop in many

types of natural and man-made water habitats in precarious urban and peri-urban settlements

across the region, including the fish farming ponds recently opened for commercial aquacul-

ture [21–23].

Statistical modeling of routinely collected malaria surveillance data can be particularly chal-

lenging. Poisson regression models are commonly used to analyze count-type data in epidemi-

ology, but cannot adequately fit overdispersed malaria case distributions that are typically

found in endemic settings [9,10]. A variety of alternative models have been used instead, e.g.

the negative binomial (NB) [9]. However, as malaria rates decline, more subjects will remain

uninfected over extended periods of time, increasing the proportion of zero counts in cohort

studies. Zero-inflated statistical models, such as the zero-inflated negative binomial (ZINB),

usually provide a better fitting to malaria count data [10,24] and household-level malaria vec-

tor densities [25] with an excess of zero counts. The ZINB model combines the NB distribution

and the logit distribution. As a consequence, it can additionally estimate the fraction of unex-

posed or protected individuals in the population by allowing for a mixture of two latent classes:

(i) at-risk individuals who contribute cases according to the NB distribution function and (ii)

not-at-risk individuals with zero cases, described by the logit component, hence termed “struc-

tural zeros”. The not-at-risk fraction of the population described by the structural zero compo-

nent of the model is intrinsically free of any malaria risk and will remain uninfected

irrespective of any protective measure. Importantly, this subpopulation can bias estimates of

the effect of interventions for controlling and eliminating malaria [10]. A further challenge for

statistical modeling of malaria surveillance data is the clustering of observations into house-

holds, where key risk factors for infection such as poor housing quality and proximity to mos-

quito breeding sites are shared [11,12]. Random-effects (RE-) ZINB models can account for

the dependency between observations [26] but, surprisingly, have not yet been used to analyze

data from community-wide malaria surveys.

Despite the dramatic decrease in the burden of malaria in Brazil in recent decades, focal

transmission persists across the Amazon Basin [27]. Transmission rates are greatest in Juruá
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Valley, next to the Brazil-Peru border. With 0.5% of the Amazon’s population, the region

accounts for 18.5% of the country’s malaria burden, estimated at 157,000 cases in 2016 [1]. A

large proportion of infections in Juruá Valley are reportedly acquired in urban settings–up to

45% in the municipality of Mâncio Lima, compared with the country’s average of 17% in 2013

[28]. Here, we characterize high-risk individuals and households by applying RE-ZINB regres-

sion analysis to overdispersed and household-clustered surveillance data. Our findings may

allow for better targeting of interventions in the main malaria hotspot of Brazil.

Material and methods

Ethics statement

The study protocol was approved by the Institutional Review Board of the Institute of Biomed-

ical Sciences, University of São Paulo, Brazil (CEPH-ICB 1368/17); written informed consent

and assent were obtained.

Study area and population

The municipality of Mâncio Lima covers a surface area of 4,672 km2 in northwestern Brazil

(S1 Fig) and comprises a single town next to the Japiim river, where nearly half of its 17,545

inhabitants reside. Streams, wetlands rich in moriche palm trees, and fish farming ponds are

widespread in the town. With a typical equatorial humid climate, Mâncio Lima receives most

rainfall between November and April, but malaria transmission occurs year-round. The

annual parasite incidence, estimated at 436.4 cases per 1,000 inhabitants in 2016, is the highest

for a municipality in Brazil [29]. Local distribution of long-lasting insecticidal bed nets

(LLINs) and indoor residual spraying (IRS) with pyrethroids or propoxur are currently limited

to high-risk households. The primary local malaria vector is An. darlingi, but An. albitarsis s.l.
is also abundant across the town, especially in fish farming ponds [22,30].

The study population comprised all permanent residents in the town of Mâncio Lima enu-

merated by a census survey between November 2015 and April 2016. During the survey, dwell-

ings were geo-localized and a questionnaire was applied to collect demographic, health,

behavioral, and socioeconomic data. Principal component analysis was used to compute an

assets-based wealth index for each household [31].

Malaria surveillance and treatment

The study outcome was laboratory-confirmed malaria, defined as any episode of parasitemia,

irrespective of parasite density or symptoms, diagnosed through active or passive case detec-

tion from 1 January 2014 through 30 September 2016. We retrieved malaria case records from

the electronic malaria notification system of the Ministry of Health of Brazil (http://200.214.

130.44/sivep_malaria/). Because malaria is a notifiable disease in Brazil and diagnostic testing

and treatment are not available outside the network of government-run health care facilities,

the database comprises the vast majority of malaria episodes confirmed by thick-smear

microscopy in Mâncio Lima residents over the study period (33 months). According to a

recent estimate, the electronic malaria notification system comprises 99.6% of all clinical

malaria cases diagnosed countrywide [32]. At least 100 fields are routinely examined for

malaria parasites under 1000× magnification by experienced local microscopists before a slide

is declared negative. Partially supervised chloroquine-primaquine and artemether-lumefan-

trine regimes were administered to treat Plasmodium vivax and P. falciparum malaria, respec-

tively [33]. A minimal interval of 28 days between two consecutive episodes was required to
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count the second episode as a new malaria infection; when different species were diagnosed

<28 days apart, a single mixed-species infection was counted.

Statistical methods

The R package gamlss [34] was used for statistical analysis (R Foundation for Statistical Com-

puting, Vienna, Austria). The generalized additive models for location, scale and shape

(GAMLSS) approach [35] was used to fit ZINB [10,24] distribution functions to malaria counts

and to choose the best-fitting model. We note that the term “additive” refers to the option, pro-

vided by the GAMLSS approach but not applied here, to include nonparametric components

into the linear predictors of the models. We used randomized normal quantile-quantile (Q-Q)

plots and detrended normal Q-Q plots, known as worm plots, as diagnostic tools to analyze

residuals [36].

Individual- and household-level explanatory variables were added to the count component

of the first standard ZINB regression model. The individual-level variables entered in the mul-

tivariable models were: age (stratified as 0 [birth]-5, 6–15, 16–40, 41–60, and>60 years); sex

(female vs. male); reported bed net use, either insecticide-impregnated or not, the previous

night (no vs. yes); sleeping time (before 10 pm, between 10 and 11 pm, after 11 pm); and wake-

up time (before 7 am, between 7 and 8 am, after 8 am). Household-level variables were: house-

hold size (<5 vs.�5 people); wealth index (stratified into terciles); LLIN available in the house-

hold (no, yes, unknown); IRS within the past three years (no, yes, unknown); and housing

quality indicators such as incomplete walls and ceiling (no vs. yes), presence of screens in

doors and windows (no vs. yes), and type of lavatory (indoors vs. outhouse). We used the R

package GoodmanKruskal to identify significant pairwise associations between model covari-

ates; none was found (S2 File). The multivariable model was adjusted for the covariate “follow-

up duration”, the number of person-years at risk contributed by each study participant. This

was calculated for the period between the date of birth or 1 January 2014, whichever was the

most recent, and 30 September 2016, when the follow-up ended.

Next, to account for clustering of observations into households, household-level RE terms

were also considered into the multivariable ZINB regression. Worm plot diagnostic of the

RE-ZINB model indicated too large fitted variance, with many data points lying outside the 95%

confidence intervals (CI) of the expected deviation. To reach satisfactory model diagnostics, we

shrunk the random-effects distribution toward the overall mean [37] by decreasing the degrees

of freedom originally estimated by the model to 150; further details are provided in S1 File.

We next used the random-effect predictors to characterize the spatial heterogeneity in

malaria risk while controlling for potential confounders [26]. The high (low) magnitude of

household random-effects predictors was used to select households with higher (lower) than

average malaria incidence density. We examined the spatial distribution of households with

the top 5% and bottom 5% random-effects predictors of the RE-ZINB models (here termed

“hot houses” and “cold houses”, respectively) by mapping their GPS coordinates.

Given the results of the spatial analysis described above, we tested whether model fitting

could be further improved by including a variable describing subjects’ zone of residence,

whether in the center (“urban hub”) or in the less-urbanized periphery of the town, close to

the most vegetated areas. To this end, geo-localized houses were classified as centrally or

peripherally situated using the computational approach described in S3 File. We next used the

Akaike information criterion (AIC) to compare the quality of RE-ZINB models with and with-

out the covariate “zone of residence”.

To further characterize study participants at no risk of malaria [10], we built additional

RE-ZINB models with the following variables added to the structural zero component: zone of
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residence, age, sex, and follow-up duration. The following variables were initially entered in

the count component: age, sex, bed net use, follow-up duration, zone of residence, household

size, LLIN availability, recent IRS, presence of complete walls, and type of lavatory.

The best RE-ZINB models were selected using the strategy stepGAICALL.A() proposed by

Stasinopoulos and colleagues [34] with the following steps: (a) an initial NB model was built

for the count component (forward approach); (b) given this model, a model was built for the

logit component (forward approach); (c) given the NB and logit models, we checked whether

the terms for the logit model were needed using backward elimination; (d) given the NB and

logit models, we checked whether the terms for the NB model were needed (backward elimina-

tion). The generalized AIC (GAIC) was used for model comparison.

Results

The study comprised 8,878 subjects with ages ranging between <1 month and 105 years

(mean, 27.0 years) distributed into 2,329 households. They experienced a total of 5,480 labora-

tory-confirmed malaria episodes over 23,975.3 person-years of follow-up, with an overall

malaria incidence density estimated at 22.6 cases per 100 person-years at risk. Plasmodium
vivax accounted for 84.2% of the episodes (incidence density, 19.0 cases per 100 person-years

at risk); 14.4% of the infections were due to P. falciparum, (incidence density, 3.2 cases per 100

person-years at risk), and 1.4% due to both species. The incidence densities were lowest

among under-five children and over-sixty adults (Fig 1A), mostly due to the age-related varia-

tion in P. vivax incidence (Fig 1B). This age-incidence pattern likely reflects the combined

effect of differential exposure and acquired immunity across age groups. Male adults aged 16–

60 years were more often infected than their female counterparts (Fig 1A), consistent with

increased occupational exposure.

Statistical model fitting

The frequency distribution of malaria cases was overdispersed, with a mean of 0.62 (range, 0

to 12; variance, 1.4) episodes per person. The vast majority (67.4%) of study participants

remained free of malaria and less than 1% of them had six or more repeated episodes during

Fig 1. Age-related malaria incidence distribution in urban Mâncio Lima, northwestern Brazil. (A) Age- and gender-related malaria incidence density,

regardless of the infecting parasite species. (B) Species-specific age-related malaria incidence density.

https://doi.org/10.1371/journal.pone.0220980.g001
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the follow-up. Empirical frequency distribution data were properly fitted with ZINB distribu-

tions (Fig 2).

We analyzed data from 8,431 individuals (447 were excluded due to missing values in key

variables) and the RE-ZINB count regression model obtained comprises the explanatory vari-

ables listed in S1 Table. RE-ZINB regression analysis estimated that 13.6% (95% CI, 5.1–

31.3%) of the study participants (roughly 1,200 residents) were intrinsically free of malaria risk

and accounted for the excess zero counts beyond the NB expectations.

We next examined the spatial distribution of “hot houses” and “cold houses”. These were

defined as the households within the top 5% (hot houses) and the bottom 5% (cold houses)

estimates of random-effects predictors for the count compartment of the RE-ZINB regression

model, adjusted for all explanatory variables shown in S1 Table. We show that most hot houses

are indeed situated in the periphery of the town (Fig 3) and, therefore, geo-localized houses

were classified as centrally or peripherally situated using the computational method described

in S3 File. The covariate indicating the zone of residence (whether in the center or in the less-

urbanized periphery of the town) was introduced to the regression and the RE-ZINB model fit-

ting was improved (Table 1). These results further indicate that households in the less-urban-

ized periphery of the town, surrounded by more densely vegetated areas, constitute the

priority target for spatial interventions aimed to reduce local malaria transmission.

Study households with lower-than-average (“cold houses”) and higher-than-average

malaria incidence (“hot houses”) were identified using the random-effect predictors from the

zero-inflated negative binomial (RE-ZINB) model. Red dots show “hot houses” with the top

5% random-effect predictors and blue dots show “cold houses” with the bottom 5% random-

effect predictors of RE-ZINB model; all other households are represented as grey dots. Vege-

tated areas (data retrieved from Brazilian Institute for Space Research (2018) PRODES Project,

http://www.inpe.br/cra/projetos_pesquisas/terraclass2014.php.) are shown in green and roads

Fig 2. Zero-inflated negative binomial (ZINB) model fit to malaria episode counts per person in urban Mâncio

Lima, northwestern Brazil.

https://doi.org/10.1371/journal.pone.0220980.g002

Statistical modeling of urban malaria risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0220980 August 9, 2019 6 / 14

http://www.inpe.br/cra/projetos_pesquisas/terraclass2014.php
https://doi.org/10.1371/journal.pone.0220980.g002
https://doi.org/10.1371/journal.pone.0220980


and streets (data retrieved under the Open Database License from the Open Street Map Foun-

dation website at https://www.openstreetmap.org/#map=13/-7.6220/-72.8960&layers=HNas)

are shown as thin black lines. Figure created with the QGIS software version 3.4.3, an open

source Geographic Information System (GIS) licensed under the GNU General Public License

(https://qgis.org/en/site/about/index.html).

Predictors of malaria incidence density

Table 2 shows independent associations between explanatory variables and malaria incidence

density revealed by the best-fitting multivariable ZINB regression model with RE estimators,

which include zone of residence as a covariate. We note that the count compartment of the

ZINB model allows for identifying predictors of malaria incidence density in the at-risk frac-

tion (86.4%) of the population. Age between 6 and 60 years, male sex, residence in the less-

urbanized periphery, and indicators of poor housing quality were key predictors of increased

malaria incidence density in the community (Table 2). It is not surprising that LLIN availabil-

ity in the household, reported bed net use, and recent IRS were all positively associated with

malaria incidence density, given that households perceived to be at increased malaria risk are

selectively targeted for LLIN distribution and IRS.

To further characterize high-risk study participants, we tested whether their increased

malaria incidence density was due to larger proportions of subjects experiencing at least one

malaria episode or to an increased number of repeated malaria episodes (that may include par-

asite recrudescences and relapses in addition to new infections) among those who had malaria

episodes recorded during the study. We found that both factors contribute to the increased

malaria incidence density observed in high-risk population strata. Indeed, 742 (42.5%) of

1,746 male study participants aged 16–40 years, but only 2,020 (30.2%) of the remaining 6,685

study participants, had at least one malaria episode during the 33-month follow-up

(P< 0.0001, χ2 = 94.78, 1 degree of freedom). Moreover, 1,263 (40.3%) of 3,135 study partici-

pants living in the periphery of Mâncio Lima, compared to 1,499 (28.3%) of the 5,296 individ-

uals living in the central area of the town, experienced at least one malaria episode during the

Fig 3. Spatial distribution of households and malaria incidence in urban Mâncio Lima, northwestern Brazil.

https://doi.org/10.1371/journal.pone.0220980.g003

Table 1. Degrees of freedom and Akaike information criterion (AIC) values for the RE-ZINB regression models fitted to empirical data.

Regression model Zone of residence Degrees of freedom AIC

Fixed effects Random effects

Random-effects ZINB No 17 150 17319.74

Yes 18 150 17225.61

https://doi.org/10.1371/journal.pone.0220980.t001
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follow-up (P< 0.0001, χ2 = 128.36). However, once infected high-risk subjects were also more

likely to have repeated malaria episodes during the follow-up. In fact, the frequency distribu-

tions of malaria episodes in male study participants aged 16–40 years and those living in the

periphery were significantly shifted to the right, compared to their respective counterparts (S2

Fig.).

Table 2. Independent predictors of malaria incidence density in urban Mâncio Lima, Brazil, identified by multivariable random-effects zero-inflated negative bino-

mial (RE-ZINB) regression analysis.

RE-ZINB model estimates, count compartment

Variable No. subjects IRR 95% CI P-value

Individual-level

Age (years)

0–5 1002 Ref.

6–15 1973 1.29 1.10 1.51 0.0017

16–40 3545 1.51 1.30 1.75 <0.0001

41–60 1262 1.35 1.14 1.60 0.0006

>60 649 0.74 0.59 0.91 0.0053

Gender

Male 4184 Ref.

Female 4247 0.79 0.74 0.85 <0.0001

Bed net use the previous night

No 2469 Ref.

Yes 5962 1.10 1.01 1.21 0.0328

Follow-up duration

8431 3.83 2.71 5.40 <0.0001

Household-level

Zone of residence

Center 5296 Ref.

Periphery 3135 1.56 1.44 1.68 <0.0001

Household size

� 5 4524 Ref.

> 5 3907 1.11 1.03 1.20 0.0084

LLIN available

No 2870 Ref.

Yes 3057 1.11 1.02 1.22 0.0196

Unknown 2504 0.95 0.86 1.05 0.2857

Recent IRS

No 1520 Ref.

Yes 1497 1.23 1.09 1.39 0.0012

Unknown 5414 1.00 0.90 1.11 0.9724

Complete walls

No 22 Ref.

Yes 8409 0.28 0.16 0.49 <0.0001

Type of lavatory

Outhouse 4657 Ref.

Indoors 3774 0.86 0.79 0.93 0.0002

Abbreviations: RE-ZINB, random-effects zero-inflated negative binomial; IRR, incidence rate ratio; CI, confidence interval; LLIN, long-lasting insecticidal bed net; IRS,

indoor residual spraying.

https://doi.org/10.1371/journal.pone.0220980.t002
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Not-at-risk subjects

The not-at-risk fraction of the population described by the structural zero compartment of the

RE-ZINB model may be either unexposed, naturally unsusceptible to infection, or may have

acquired immunity over time. Because our explanatory variables did not directly measure natu-

ral susceptibility or acquired immunity, we focus further analyses on age, sex and zone of resi-

dence as proxies of exposure. These variables were added to the logistic (structural zero)

component of the RE-ZINB model, which was further adjusted for follow-up duration (person-

years at risk). The best-fitting RE-ZINB regression model revealed a negative association of age

between 16 and 40 years (but not sex) and residence in the periphery of the town with the odds

of being a structural zero. Interestingly age> 60 years (a proxy of cumulative exposure and

acquired immunity) remained as a significant predictor of decreased malaria incidence density,

but not of being a structural zero (Table 3). This indicates that age-related and spatial differ-

ences in malaria exposure, rather than acquired immunity, can account, at least in part, for the

presence of not-at-risk subjects in the community. Overall, associations between covariates and

malaria incidence density identified by the NB compartment of the RE-ZINB model that also

included covariates in the logit compartment (Table 3) were similar to those identified by the

RE-ZINB model with an empty (i.e., no covariates added) logit compartment (Table 2).

Discussion

The long-standing consensus that malaria transmission is spatially heterogeneous provides the

basis for targeting control interventions in elimination settings [38,39]. Residual malaria trans-

mission clusters at different spatial scales, from regions to households [40–42], with specific

high-risk groups termed “hot-pops” being disproportionally affected [40]. Identifying hot-

pops is a top priority of malaria elimination programs.

Here, we examine the drivers of small-area variation in malaria rates in the main urban hot-

spot in Brazil by fitting multivariable RE-ZINB regression models to community-wide surveil-

lance data. We show that RE-ZINB models can: (i) properly fit overdispersed malaria count

data and identify hot pops, (ii) characterize spatial heterogeneity in malaria risk while control-

ling for potential confounders and identify hot houses, and (iii) characterize the not-at-risk

fraction of the population.

Results suggest both imported and locally acquired infections contribute to the malaria bur-

den in the study population. Each entails different malaria control interventions. We hypothe-

size that increased occupational exposure characterizes the main malaria hot-pop in the

community, comprised of adult male residents often engaged in subsistence farming in nearby

settlements [43]. These subjects may serve as a source of new parasite strains continuously

introduced in the town, being the main targets of interventions to reduce malaria importation.

Control measures may include deploying periodic malaria screening and treatment, as well as

LLINs, to the most mobile subjects in the community. Conversely, the RE-ZINB model esti-

mates that 14% of the study participants comprises the not-at-risk fraction of the population.

This relatively large fraction of the urban population is mostly comprised of children and

older adults living in the central urban hub who will remain uninfected regardless of any

malaria control measure.

Local transmission also appears to contribute to malaria risk, especially in the less-urbanized

periphery. We confirm that better housing is associated with reduced malaria incidence [44,45]

even in an endemic setting dominated by vectors that feed and rest predominantly outdoors [46].

Interestingly, hot houses identified by the analysis of random-effects predictors of the RE-ZINB

regression model tend to be peripherally located, but they do not form clear, easily detectable clus-

ters. Importantly, the fraction of study participants residing along the town boundaries (37% of
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the total) appear to be at increased risk after controlling for potential confounders, indicating that

the association between place of residence and malaria risk is mostly spatial, and is not severely

confounded by age, sex, and housing quality differences among households. These findings are

consistent with focal malaria transmission across the urban-rural transition in the periphery of

the town [43]. Control measures to reduce local malaria transmission include, among others, IRS

and LLIN distribution targeted at hot houses. Moreover, large-scale screening of windows and

Table 3. Independent predictors of malaria incidence density and odds of being at no risk of malaria in urban Mâncio Lima, Brazil, identified by multivariable ran-

dom-effects zero-inflated negative binomial (RE-ZINB) regression analysis with explanatory added to the structural zero component of the model.

Count model Structural zero

Variable No. subjects IRR 95% CI P-value OR 95% CI P-value

Individual-level

Age (years)

0–5 1002 Ref. Ref.

6–15 1973 1.16 0.93 1.46 0.1892 0.68 0.39 1.20 0.1831

16–40 3545 1.16 0.94 1.44 0.1658 0.31 0.15 0.64 0.0015

41–60 1262 1.15 0.90 1.47 0.2567 0.55 0.28 1.06 0.0745

>60 649 0.63 0.45 0.89 0.0084 0.56 0.19 1.69 0.3046

Gender

Male 4184 Ref.

Female 4247 0.78 0.73 0.84 <0.0001

Bed net use the previous night

No 2469 Ref.

Yes 5962 1.11 1.01 1.21 0.0265

Follow-up duration

8431 - - - - 0.13 0.07 0.24 <0.0001

Household-level

Zone of residence

Center 5296 Ref. Ref.

Periphery 3135 1.39 1.25 1.54 <0.0001 0.56 0.38 0.82 0.0031

Household size

� 5 4524 Ref.

> 5 3907 1.10 1.02 1.19 0.0145

LLIN available

No 2870 Ref.

Yes 3057 1.11 1.01 1.21 0.0276

Unknown 2504 0.96 0.87 1.06 0.4064

Recent IRS

No 1520 Ref.

Yes 1497 1.22 1.08 1.38 0.0015

Unknown 5414 0.99 0.90 1.10 0.8864

Complete walls

No 22 Ref.

Yes 8409 0.29 0.16 0.51 <0.0001

Type of lavatory

Outhouse 4657 Ref.

Indoors 3774 0.87 0.80 0.94 0.0003

Abbreviations: RE-ZINB, random-effects zero-inflated negative binomial; IRR, incidence rate ratio; CI, confidence interval; OR, odds ratio; LLIN, long-lasting

insecticidal bed net; IRS, indoor residual spraying.

https://doi.org/10.1371/journal.pone.0220980.t003
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other house openings may represent a valuable measure to render high-risk hot houses mosquito-

proof, as suggested by recent data from urban Africa [47].

The present study has some limitations. First, surveillance data were retrieved retrospec-

tively from a case notification database and no blood samples were available for further confir-

matory (e.g., molecular) diagnostic tests. We assume that nearly all malaria episodes diagnosed

by microscopy and treated in study participants were retrieved [32], but routine surveillance

overlooks transient sub-microscopic parasitemias that do not develop into detectable infec-

tions but remain infectious to mosquitoes [48]. Therefore, risk factors described for micros-

copy-positive malaria in the community are not necessarily the same for sub-microscopic,

often asymptomatic infections. Next, surveillance data comprises cases diagnosed by both pas-

sive and active case detection, but our data set does not allow for distinguishing between case-

finding strategies. Moreover, analyses of passively detected cases are prone to biases due to var-

iation in access to health facilities and health-seeking behavior, even in relatively compact

urban areas where health facilities are readily accessible and provide care at no cost. Finally,

the infrequency of P. falciparum malaria precludes further between-species comparisons of

risk factors in the study population.

Conclusion

We conclude that both local transmission and imported cases from rural and/or forest areas

are responsible for the maintenance of malaria in the urban setting of Mâncio Lima. Large sets

of routinely collected surveillance data linked to additional demographic and socioeconomic

information can be explored for evidence-based planning and deployment of malaria control

interventions.
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