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Abstract

Big web data from sources including online news and Twitter are good resources for investi-

gating deep learning. However, collected news articles and tweets almost certainly contain

data unnecessary for learning, and this disturbs accurate learning. This paper explores the

performance of word2vec Convolutional Neural Networks (CNNs) to classify news articles

and tweets into related and unrelated ones. Using two word embedding algorithms of word2-

vec, Continuous Bag-of-Word (CBOW) and Skip-gram, we constructed CNN with the

CBOW model and CNN with the Skip-gram model. We measured the classification accuracy

of CNN with CBOW, CNN with Skip-gram, and CNN without word2vec models for real news

articles and tweets. The experimental results indicated that word2vec significantly improved

the accuracy of the classification model. The accuracy of the CBOW model was higher and

more stable when compared to that of the Skip-gram model. The CBOW model exhibited

better performance on news articles, and the Skip-gram model exhibited better performance

on tweets. Specifically, CNN with word2vec models was more effective on news articles

when compared to that on tweets because news articles are typically more uniform when

compared to tweets.

Introduction

Deep learning is a field of machine learning that has attracted significant attention following

the release of AlphaGo, which was developed by Google in 2016. Recently, various open source

deep learning libraries such as Google’s TensorFlow [1], Berkeley’s Caffe [2], University of

Montreal’s Theano [3], and SkyMind’s Deeplearning4J [4] were developed, thereby making it

easier for individuals to develop deep learning programs[1–4]. They are used in various studies

for various purposes such as data classification [5], behavior recognition [6], and event detec-

tion [7–9]. High-performance GPUs aid in the resurrection of deep learning by reducing com-

plex matrix calculation times used in deep learning [10, 11]. Additionally, vast amounts of big

web data are generated through the Internet, and a large amount of data and tag information

generated by online news and Twitter correspond to good learning materials for deep learning

systems [12–14].

Evidently, news articles and tweets are appropriate for deep learning that requires large

amounts of data to be effective because they are updated in real time and constantly

PLOS ONE | https://doi.org/10.1371/journal.pone.0220976 August 22, 2019 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Jang B, Kim I, Kim JW (2019) Word2vec

convolutional neural networks for classification of

news articles and tweets. PLoS ONE 14(8):

e0220976. https://doi.org/10.1371/journal.

pone.0220976

Editor: Paweł Pławiak, Politechnika Krakowska im

Tadeusza Kosciuszki, POLAND

Received: February 21, 2019

Accepted: July 26, 2019

Published: August 22, 2019

Copyright: © 2019 Jang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We uploaded the

minimal data set to the repository to make it

possible to reproduce the results of the

experiment. The DOI is as follows: https://doi.org/

10.6084/m9.figshare.5183710.v1.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-3911-5935
https://doi.org/10.1371/journal.pone.0220976
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220976&domain=pdf&date_stamp=2019-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220976&domain=pdf&date_stamp=2019-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220976&domain=pdf&date_stamp=2019-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220976&domain=pdf&date_stamp=2019-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220976&domain=pdf&date_stamp=2019-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220976&domain=pdf&date_stamp=2019-08-22
https://doi.org/10.1371/journal.pone.0220976
https://doi.org/10.1371/journal.pone.0220976
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.5183710.v1
https://doi.org/10.6084/m9.figshare.5183710.v1


accumulated. However, they typically contain unnecessary text, such as advertisements and

alternative uses of words, which may interfere with accurate learning [15]. Thus, it is necessary

to filter out unnecessary articles and tweets from the collected articles and tweets although it is

not possible to manually classify unnecessary articles and tweets in a large number of articles

and tweets.

Word2vec is a word embedding technique that was proposed by Mikolov et al. [16, 17] in

2013 for word expression including the meaning and context of words in a document and

includes two learning algorithms, namely continuous bag-of-word (CBOW) and skip-gram

algorithms. The similarity among words calculated via the cosine similarity of word vectors in

word2vec includes the meaning of words in the document and this exceeds that of other word

embedding techniques [18], and thus, several studies such as emotion analysis, emotion classi-

fication, and event detection use word2vec [19–21]. A convolutional neural network (CNN) is

an artificial neural network that is frequently used in various fields such as image classification,

face recognition, and natural language processing [22–24]. In the field of natural language pro-

cessing, CNN exhibits good performance as a neural network for classification [25].

Given the importance and utilization of news articles and tweets, the word embedding

capability of word2vec and the classification ability of CNN for deep learning, they were exam-

ined in several studies [25–27]. A previous study [25] proved that a pre-trained word vector is

an important factor in sentence classification by comparing a random word vector with a pre-

trained word vector. An extant study[28] compared the performance of CBOW and Skip-

gram, two learning algorithms of word2vec. A previous study [29] indicated that dual word

embeddings performed better when compared to a single word embedding in document rank-

ing. Another study[30] examined the effect of character-level CNN on text classification.

Researchers [8] conducted a study to detect events via tokenizing a given document and pre-

dicting event triggering tokens. A previous study [7] proposed Multi-Group Norm Constraint

CNN (MGNC-CNN) via multiple word embedding to improve the sentence classification per-

formance of CNN. An extant study[9] proposed a neural network model that was independent

of the language via extracting features of sentence structures as opposed to words. However, to

the best of the authors’ knowledge, extant studies [7–9, 25, 28–30] did not explore word2vec’s

CNN classification effects on various parameters, such as the learning frequency and the train-

ing volume, in news articles and tweets.

In the present study, we explore the performance of word2vec [16, 17] CNNs [31] to classify

necessary and unnecessary documents in news articles and tweets. Previous studies in [18, 28]

compared the performances of the Skip-gram and CBOW for Wikipedia and medical journals,

and studies in [25, 32] compared the performance of the CNN classification model for various

data such as tweets, movie reviews, and customer reviews. However, any of previous studies

did not compare the performance of Skip-gram with CBOW for news articles and tweets and

did not consider the impact of training data size and the number of epochs in training the

CNN classification model. In this paper, we evaluate the performance of the word2vec CNN

classification model as a function of the data size and the number of epochs. To evaluate the

classification accuracy of CNN with word2vec models, we performed extensive experiments

on large sets of real tweets and news articles. The experimental results indicated that the use of

word2vec that learns semantic relations among words significantly improved the accuracy of

the classification model. The accuracy of the CBOW model is higher and more stable when

compared to the Skip-gram model. The CBOW model exhibited better performance when

used on news articles and the Skip-gram algorithm exhibited better performance when used

on tweets. Additionally, CNN with word2vec models were more effective for news articles

when compared to tweets because news articles typically exhibit more uniform formats when
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compared to tweets. It is expected that the results of the study will clearly reveal how the use of

word embedding models affects news articles and tweets classification via CNN.

The structure of this paper is as follows. First, we present background knowledge and

related research on word2vec and CNN. Second, we describe the data used and the proposed

classification model. Third, we show the experimental results. Finally, we describe the discus-

sion, conclusions, and future work.

Background knowledge and related works

In this section, we describe word2vec and CNN algorithms and summarize the related works.

Background knowledge

Word2vec. Word2vec understands and vectorizes the meaning of words in a document

based on the hypothesis that words with similar meanings in a given context exhibit close dis-

tances [33]. Fig 1 shows the model architectures of CBOW and Skip-gram, learning algorithms

of word2vec proposed by Mikolov. Both the learning algorithms exhibit Input, Projection, and

Output layers although their output derivation processes are different. The input layer receives

Wn = {W(t−2),W(t−1),. . .,W(t+1),W(t+2)} as arguments, where Wn denotes words. The projection

layer corresponds to an array of multidimensional vectors and stores the sum of several vec-

tors. The output layer corresponds to the layer that outputs the results of the vectors from the

projection layer. Specifically, CBOW is similar to the feedforward Neural Network Language

Model (NNLM) [34] and predicts the output word from other near word vectors. The basic

principle of CBOW involves predicting when a certain word appears via analyzing neighbor-

ing words. The projection layer of CBOW projects all words at the same position, and thus, the

vectors of all words maintain an average and share the positions of all words. The structure of

CBOW exhibits the advantage of uniformly organizing the information distributed in the data

set. Conversely, the Skip-gram exhibits a structure for predicting vectors of other words from

Fig 1. Model architecture of (A) CBOW and (B) Skip-gram.

https://doi.org/10.1371/journal.pone.0220976.g001
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one word. The basic principle of Skip-gram involves predicting other words that appear

around a certain word. The projection layer of the Skip-gram predicts neighboring words

around the word inserted into the input layer. The structure of the Skip-gram exhibits the

advantage of vectorizing when new words appear. Based on the study by Mikolov, CBOW is

faster and better suited when compared to Skip-gram when the data size is large, and Skip-

gram exhibits a better performance when compared to CBOW while learning new words.

However, other studies that compare the performance of CBOW and Skip-gram state that the

performance of Skip-gram exceeds that of CBOW [18, 28].

CNN. Fig 2 presents the general model of CNN [31]. CNN is a neural network that is use-

ful for extracting and classifying features because it can pass values to the next layer without

losing spatial information. These features of CNN are suitable for utilizing spatial information

such as semantic similarity between words in a sentence. CNN consists of input, multiple hid-

den, and output layers. The layers consist of feature maps and a fully connected layer with con-

volutional layers and pooling layers. The convolutional layer and the pooling layer extract the

characteristics of the input values and map the extracted values to the feature map. In this pro-

cess, the characteristics of the sentences can be extracted through the semantic similarity

between the words constituting the sentence, and then the fully connected layer has a classifi-

cation value from features extracted for classification. The process of CNN is as follows.

Within the input layer, parsed data is passed to the feature maps. The data is stored at a specific

location in the convolutional layer of the feature maps. The convolutional layer performs a

convolutional operation on the data and maps it to a pooling layer. The data performs a max

pooling operation before it is mapped to the pooling layer. The max pooling involves extract-

ing the largest value of the previous layer’s results. Subsequently, CNN creates a fully con-

nected layer that combines all convolutional and pooling layers. The fully connected layer

finally outputs the result to an output layer.

Fig 2. The general model of the CNN.

https://doi.org/10.1371/journal.pone.0220976.g002
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Related works

Word2vec. Lai et al. semantically and syntactically evaluated the performances of word

embedding learning algorithms including NNLM [34], Log-Bilinear Language Model [35],

Collobert and Westor (C & W) [36], and word2vec [18]. In their evaluation, they confirmed

that the performance of word2vec exceeds that of other algorithms. They used Wikipedia and

New York Times articles as learning data sets for word embedding and used semantic and syn-

tactic performance evaluation methods such as WordSim353 set [37], TOEFL set [38], analogy

task [16] using CNN, and POS tagging. The performance evaluation indicated that the perfor-

mance of Skip-gram exceeded that of CBOW in sentence classification via CNN although it

did not examine a performance comparison with other factors such as iteration or the effect of

training size on CNN performance.

Chiu et al. compared the performance of CBOW and Skip-gram, which are two learning

algorithms of word2vec [28]. They used biomedical-related data as learning data sets. The per-

formance of both algorithms was also evaluated using UMNSRS-Sim and UMNSRS-Rel [39],

which exhibit biomedical-related word pairs including the similarity of 566 and 587 word

pairs. They evaluated the performance of the algorithms via comparing the similarity extracted

from each learning algorithm. They indicated that the performance of Skip-gram exceeded

that of CBOW. This was in contrast to Mikolov’s claim that CBOW exhibited better perfor-

mance for news data. The aforementioned difference indicated that the performance of algo-

rithms is dependent on the type of learning data, and this implies that different results may be

obtained while using Twitter as learning data.

Ling et al. mentioned that the lack of sensitivity of word2vec to the order of words is useful

for semantic expression although this causes it to exhibit a suboptimal performance while solv-

ing grammatical problems [40]. To solve this issue, they proposed the Structured Skip-gram

that modified the Skip-gram and Continuous Window (CWindow) that modified the CBOW.

The proposed two algorithms predicted word orders and words in the output layer. Wikipedia

and Twitter were used for the learning data, and POS (Part-Of-Speech) Tagging was used for

the evaluation. When compared to existing CBOW and Skip-gram, Skip-gram exhibited better

performance and Structured Skip-gram exhibited better performance when compared to

CWindow and Structured Skip-gram. Although the study used Twitter data as learning data,

the performance evaluation may not be applicable to sentence classification because it only

focuses on grammatical issues.

Nguyen et al. examined the extraction of events via word2vec and Recurrent Neural Net-

work (RNN) [41]. They termed the most definite word for expressing an event as the event

trigger and termed temporary expressions related to the event as the event argument. Word

embedding and RNN were used to predict the trigger and argument in an event involving an

event trigger and an arbitrary number of event arguments. Random initialization, skip-gram,

CBOW and a concatenation-based variant of CBOW (C-CBOW) were used. Specifically,

C-CBOW predicted the target word via the concatenation of the vectors surrounding the

words. The data set used in the study corresponded to English Gigaword corpus [42]. In the

event trigger and argument prediction, C-CBOW exhibited the best performance and Skip-

gram exhibited a better performance than that of existing CBOW and Skip-gram. However,

CNN and other neural network models were used, and thus, it is necessary to compare

CBOW’s and Skip-gram’s performances in CNN-based models.

Additionally, several studies performed in-depth investigations of word2vec. Liu et al. used

word2vec to embed a sentence containing citations and analyzed the emotional content by

comparing sentences containing positive and negative expressions [19]. Zhang et al. used

word2vec and Support Vector Machine (SVM) [43] to classify emotions in comments via

Word2vec convolutional neural networks for news articles and tweets classification
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extracting features from comments and learning features in comments [20]. In the field of

information retrieval, Nalisnick et al. conducted research that searched for related documents

by using the similarity between words in the documents [29]. In the field of event detection,

Peng et al. proposed a minimally supervised event pipeline (MSEP) that detected events with

minimal supervision via word2vec [21]. Specifically, MSEP initially defines the type of event

via semantic role labeling, which uses a few examples of data and common nouns and verbs.

Subsequently, MSEP uses word2vec to compare the contents of the input document with the

contents of the pre-classified event documents and detects events based on their similarity.

Verma et al. extracted key sentences in news to detect events from business-related news, ana-

lyzed them using word2vec, and then proceeded to classify them based on k-NN [13].

CNN. CNN is an artificial neural network that is frequently used for various applications

such as image classification, face recognition, and natural language processing [22–24]. In the

field of classification, Kim used arbitrarily initialized word vectors and pre-trained word vec-

tors with CNN to classify labeled documents [25]. He analyzed movie reviews [44], Stanford

Sentiment Treebank [45], and customer reviews [46] and classified the same. Additionally, the

performance of the pre-trained word vector exceeded that of the randomly initialized word

vector in the CNN model. Although he indicated that the performance of the proposed CNN

model improved the existing classification, he did not confirm that the improvement in perfor-

mance was due to the training size and the number of learning iterations.

Zhang et al. proposed Multi-Group Norm Constraint CNN (MGNC-CNN) via multiple

word embedding to improve the sentence classification performance of CNN [7]. Previous

CNN sentences classification techniques used one word embedding while CNN used multiple

word embedding to expand the meaning of the incoming word and extract more features.

They used word2vec, GloVe [47], and Syntactic word embedding [48] as types of word embed-

ding. Thus, the performance of the MGNC-CNN exceeded those of previous sentence classifi-

cation algorithms. However, they did not compare the performance of Skip-gram with CBOW

in CNN sentence classification because they evaluated the performance by only using CBOW

while using word2vec as word embedding.

In the field of event detection, Feng et al. proposed the hybrid neural network (HNN) that

combined Bidirectional LSTM (Bi-LSTM) [49] and CNN to create a language-independent

neural network [9]. Specifically, Bi-LSTM is a multiple bidirectional recurrent neural network

that is capable of simultaneously modeling preceding and following information and word

representation. Thus, HNN extracts the features of sentence structures via Bi-LSTM and CNN

and determines and classifies event triggers in sentences. The performance of HNN exceeded

that of CNN, RNN, LSTM, and Bi-LSTM in the event detection model using English, Chinese,

and Spanish. However, only Skip-gram was used, and thus, this did not provide comparison

information between Skip-gram and CBOW.

Burel et al. proposed Dual-CNN that added a semantic layer to CNN to solve the event

detection problem in a crisis situation from tweets [50]. Each word in the tweet was analyzed

and possessed a vector value. Simultaneously, words extracted as named entities in the tweet

were entered into the semantic layer with additional vector values. Two word embedding fea-

tures were extracted via CNN. Dual-CNN extracted more features from the semantic layer and

improves accuracy. Thus, they classified the relevance, event type, and information type of the

corresponding tweet.

Classification model

Table 1 shows the hardware specification of the deep learning computer we used. We used

Deeplearning4J [4] for the machine learning library, which is the world’s first commercially

Word2vec convolutional neural networks for news articles and tweets classification
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available open source based library. We built and tested our model through the library. Addi-

tionally, we maximized the speed of machine learning via NVIDIA-developed Compute Uni-

fied Device Architecture (CUDA) [10]. Specifically, CUDA is a General-Purpose computing

Graphics Processing Units technology that enables the use of parallel processing algorithms in

the Graphics Processing Unit (GPU). We used CUDA to accelerate the research process via

processing CPU-processed operations on the GPU.

Fig 3 shows the process for storing the data for word2vec needed by CNN. News articles

and tweets were used as training datasets of word2vec CBOW and Skip-gram. Word2vec com-

pleted the training and created and saved files containing News and CBOW, Twitter and

CBOW, News and Skip-gram, Twitter, and Skip-gram.

Table 2 provides a detailed description of our training datasets for word2vec. We collected

news articles and tweets for 62 days from March 1, 2018, to May 1, 2018. We collected approxi-

mately 2000 EA news articles per day on average and approximately 4700 EA tweets per day.

We collected news articles and tweets via Application Programming Interfaces (APIs) pro-

vided by NAVER, which is the most popular portal in Korea, and Twitter. We used fifty-three

words related to the disease as keywords for crawling articles and tweets [15, 51].

Table 3 shows keywords used to collect news articles and tweets related to the disease. All

data were collected in accordance with the terms of service and privacy of Twitter and

NAVER. We removed all unnecessary elements from the collected articles and tweets such as

URL and HTML tags. We verified the similarity between articles and tweets and extracted the

unique articles and tweets via Sift4 [52] that is a string distance algorithm inspired by Jaro-

Winkler [53]. We extracted words from the articles and tweets using Open Korean Text Pro-

cessor Java (OKTPJ) [54], which is the most widely used Natural Language Processing (NLP)

technique in Korea. Subsequently, we performed a tokenization function that delivered a list

of tokens consisting of words or tags. Although approximately twice as many significant tweets

were collected when compared to news articles, the total number of words extracted through

NLP [54] is similar in both categories. This was because Twitter generates more data when

compared to news although it communicates through short text and universal words.

Table 4 describes the parameters used in word2vec. We performed several experiments to

determine the appropriate parameter values and assigned the values shown in Table 3. We

only vectorized words that were used above a minimum frequency threshold. The criterion

used specified the use of vectorize words that appeared more than 5 times. If vectorization is

performed on words with very low word frequency, performance decreases due to learning of

unnecessary words in the document. The iteration referred to the number of iterations of

learning. Increases in the number of iterations improved the performance of word2vec because

it re-learned the association between words. The learning rate corresponded to an essential

parameter for learning, which implies that the initial value of the rate was adjusted while

adjusting the weight for learning. In the case of correct learning, the learning rate gradually

decreased and, the adjustment of the weight decreased. Layer size denotes the number of

Table 1. Hardware specification of our deep learning computer.

Item Detail

OS Microsoft Windows 10 Pro, 64-bit

CPU Intel(R) Core(TM) i7-8700

RAM 32.0 GB

Framework Deeplearning4J

GPU NVIDIA GeForce GTX 1070

CUDA 9.1

https://doi.org/10.1371/journal.pone.0220976.t001
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dimensions of a word vector. If the layer size is set as extremely small, then it may not be possi-

ble to vectorize all the text.

Fig 4 shows a three-dimensional graph of (a) CBOW and (b) Skip-gram indicating the rela-

tion among sequence, word vector rate, and learning rate. Sequence denotes the number of

word groups (window) processed by word2vec and is given in units of millions (M). Word

vector rate denotes the rate of vectorization of all words. In the case of news articles, the

Fig 3. Processing steps of Word2vec.

https://doi.org/10.1371/journal.pone.0220976.g003

Table 2. Training datasets for word2vec.

Data Total

Collection Data March 1, 2018 –May 1, 2018 (62 days)

News articles 122,258

News sequences 2,445,160

News words 160,208,160

Tweets 291,309

Twitter sequences 5,826,160

Twitter words 188,155,940

https://doi.org/10.1371/journal.pone.0220976.t002
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learning rate of CBOW and Skip-gram decreases sharply when compared to that while learn-

ing from tweets. This implies that news articles contain more words in a document when com-

pared to tweets. This is because Twitter limits the length of tweet to 140 characters (or more

specifically 280 characters in the USA and 140 characters in Korea, Japan, and China). We did

not find any significant differences while comparing CBOW and Skip-gram.

Table 5 shows the data sets and parameters used in the experiment to evaluate the perfor-

mance of CNN combined with word2vec. We used the cross-validation scheme, in which the

training data were different from the test data. The training volume denotes the size of the data

used in the learning, and we learned news articles or tweets in various sizes ranging from 1000

to 10000. The training data consists of half of positive and half of negative for news articles and

Table 3. List for disease related keywords.

ENGLISH KOREAN ENGLISH KOREAN

Chicken pox 수두 Fever 발열
Mumps 유행성이하선염 Cough 기침

Thrombocytopenia syndrome 중증열성혈소판감소증후군 Headache 두통
Japanese encephalitis 일본뇌염 Chills 오한

Vibrio vulnificus sepsis 비브리오패혈증 Myalgia 근육통
Legionella’s 레지오넬라증 Abdominal pain 복통

Scrub typhus 쯔쯔가무시증 Diarrhea 설사
Nephrotic syndrome 신증후군출혈열 High fever 고열

Leptospirosis 렙토스피라증 Hemorrhage 출혈
Influenza 인플루엔자 Infection 감염

Scarlet fever 성홍열 Arthralgia 관절통
Hepatitis C C형간염 Inflammation 염증

CRE 카바페넴내성장내세균속균종감염증 Vomiting 구토
Hepatitis A A형간염 Disease 질병

Syphilis 매독 Illness 질환
Streptococcus pneumoniae 폐렴구균 Syndrome 증후군

Malaria 말라리아 Communicability 전염
MERS 중동호흡기증후군 Epidemicity 유행성

Zika virus 지카바이러스 Symptom 증상
Avian influenza 조류인플루엔자 Vaccine 백신

Ebola virus 에볼라바이러스 Incubation period 잠복기
Virus 바이러스 Cold 감기

Detection 검출 Influenza 독감
Prevention 예방 Influenza 인플루엔자

Disinfection 방역 Germ 세균
Definite diagnosis 확진 Bacteria 박테리아

Occur 발병

https://doi.org/10.1371/journal.pone.0220976.t003

Table 4. Parameter of word2vec.

Parameter Value

Minimum frequency words 5

Iteration 20

Learning rate 0.07

Layer size 1000

https://doi.org/10.1371/journal.pone.0220976.t004
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tweets. The test volume denotes the dataset used to evaluate the performance and evaluates

performance based on 20000. Test data is not involved in the training, and it is composed of

half of positive and half of negative like the training data. Classification denotes whether news

articles or tweets were classified as positive or negative. Positive denotes the news articles or

tweets we deemed necessary, and negative denotes news articles or tweets we deemed

unnecessary.

We classified advertising news articles and tweets into negative data and classified news

articles and tweets that include disease-related information into positive data. Batch size

denotes the number of articles and tweets processed by CNN at a time. Epoch denotes the

number of times that CNN learns, and we performed from 1 to 200 iterations of CNN learn-

ing. Feature maps denote the depth for each CNN layer.

Fig 5 presents our CNN architecture with CBOW, Skip-gram, and random learning algo-

rithms. Incoming news and Twitter text were tokenized by words, and each token word was

assigned a vector value by pre-trained CBOW, Skip-gram, and the random initialization algo-

rithm. Specifically, CNN passed the vectorized value of each tokenized word to the input layer.

The input layer extracted features in neighboring words within a specific window size. The

Fig 4. Sequence(M), word vector rate, and learning rate of (a) CBOW and (b) Skip-gram.

https://doi.org/10.1371/journal.pone.0220976.g004

Table 5. Parameter values of CNN.

Parameter Detail / Value

Training volume 1K – 10K

Test volume 20K

Classification Positive, Negative

Batch size 500

Epochs 1–200

Feature maps 100

https://doi.org/10.1371/journal.pone.0220976.t005
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process was termed as convolutional operation, and the features extracted through the convolu-

tional operation were used to create a feature map. Subsequently, CNN performed a max-pooling

over time operation [24] that extracted the largest value from the extracted features. The process

enabled CNN to extract a feature from the article and tweet. The process was repeated by CNN

via changing the window size to extract several features. The extracted features were delivered to

the fully connected layer, and the dropout and softmax functions were executed. Based on the val-

ues, the output layer classified the input text into positive text and negative text. In this process,

CBOW, Skip-gram, and the random vector extract different vector values for the same data, so

the feature values extracted by the convolutional operation are different. Since the feature values

extracted from the same news articles and tweets vary according to used word embedding algo-

rithms, news articles and tweets that are classified as positive text by a word embedding model

can be classified as negative text by other word embedding models. We performed CNN classifi-

cations with three word embedding model on the same news articles and tweets to find the appro-

priate word embedding model with high accuracy for news articles and tweets.

Experiments

In this section, we explore the performances of CNN models with three word embedding,

CBOW, Skip-gram, and the random vector for news articles and tweets. We used accuracy,

recall, precision, and F1 score[55] as performance metrics. The expressions are as follows:

Accuracy ¼
TP þ TN

TPþ TN þ FPþ FN
; ð1Þ

Recall ¼
TP

TP þ FN
; ð2Þ

Precision ¼
TP

TP þ FP
; ð3Þ

F1 score ¼ 2 �
Precision � Recall
Precisionþ Recall

; ð4Þ

where True Positive (TP) denotes the number of real positives among the predicted positives,

Fig 5. Our CNN architecture with CBOW, Skip-gram, and random learning algorithms.

https://doi.org/10.1371/journal.pone.0220976.g005
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and True Negative (TN) denotes the number of real negatives of the predicted negatives. Simi-

larly, False Negative (FN) denotes the number of real positives among predicted negatives, and

False Positive (FP) denotes the number of real negatives among predicted positives. Therefore,

accuracy denotes the proportion of documents classified correctly by CNN among all docu-

ments, and recall denotes the proportion of documents that are classified as positive by CNN

among all real positive documents. Precision denotes the percentage of documents that are

real positive among documents classified as positive by CNN, and the F1 score denotes the

average of the weighted recall and precision scores [56].

News articles

Fig 6 shows the accuracy and F1 score of CNN with CBOW as a function of epoch for various

training volumes in news articles. The accuracy and F1 score increased when training volume

and epoch increased. The training volume exhibited the greatest performance improvement

from 1000 to 2000, and the accuracy and F1 score corresponded to 0.85 when the test data set

was set at 20000 and the training volume corresponded to 3000. Similarly, the performance of

the epoch increased significantly when the epoch increased to 10. Subsequently, it exhibited a

fine performance improvement and stable performance.

Fig 7 shows the accuracy and F1 score of CNN with Skip-gram as a function of epoch for

various training volume in news articles. A comparison of the CNN with CBOW indicated

that the CNN with Skip-gram exhibited a slightly lower performance when compared to CNN

with CBOW. Training volumes exceeding 5000 were required to exceed an accuracy and F1

score of 0.85 in CNN with Skip-gram. When the training volume and epoch increased, the

accuracy and F1 score values were unstable.

Fig 8 shows the accuracy and F1 score of CNN with the random vector as a function of

epoch for various training volumes in news articles. Specifically, CNN with the random vector

exhibited an unstable performance when compared to the CNNs with word2vec and exhibited

a decline in performance when the epoch increased above 30.

Tweets

Fig 9 shows the accuracy and F1 score of CNN with CBOW as a function of epoch for various

training volumes in tweets. Similarities between the CNN with CBOW in news articles are that

Fig 6. (A) Accuracy and (B) F1 score of CNN with CBOW as a function of epoch for various training volumes in news articles.

https://doi.org/10.1371/journal.pone.0220976.g006
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the accuracy and F1 score increase with increases in the training volume and epoch and that

the performance increase is higher when the training volume and epoch value are low. How-

ever, the performance of CNN with CBOW in tweets was lower than that of CNN with CBOW

in news articles. The accuracy and F1 score of the CNN with CBOW in news articles exceeded

0.85 at the training volume of 3000 and the accuracy and F1 score of the CNN with CBOW in

tweets exceeded 0.85 at the training volume of 6000.

Fig 10 shows the accuracy and F1 score of CNN with Skip-gram as a function of epoch for

various training volumes in tweets. When compared with the CNN with Skip-gram in news

articles, the most significant difference was that the accuracy and F1 score values fluctuate

unstably when the training volume and epoch increases. Additionally, in contrast to the CNN

with Skip-gram in news article, the CNN with Skip-gram in tweets did not exhibit a significant

difference from the CNN with CBOW in the same tweet. For news articles, when the training

volume size corresponded to 3000 in the CNN with CBOW and 5000 in the CNN with Skip-

Fig 7. (A) Accuracy and (B) F1 score of CNN with Skip-gram as a function of epoch for various training volumes in news articles.

https://doi.org/10.1371/journal.pone.0220976.g007

Fig 8. (A) Accuracy and (B) F1 score of CNN with the random vector as a function of epoch for various training volumes in news articles.

https://doi.org/10.1371/journal.pone.0220976.g008
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gram, the accuracy and F1 score values exceeded 0.85. Conversely, for the tweets, both CNN

with CBOW and CNN with Skip-gram exhibited an accuracy and F1 score corresponding to

0.85 at a training volume of 6000, and the performance of the CNN with CBOW was similar to

that of the CNN with Skip-gram.

Fig 11 shows the accuracy and F1 score of CNN with the random vector as a function of the

training volume in tweets. When compared to CNN with the random vector in news article,

CNN with the random vector in tweets was less stable and required more epochs to reach its

maximum performance. For example, when the training volume corresponded to 2000, the

CNN with the random vector in news article exhibited an accuracy of 0.7 or more when the

epoch corresponded to 42 although the CNN with the random vector in tweets exhibited an

accuracy of 0.7 or more when the epoch corresponded to 56. However, CNN with the random

vector in news article and CNN with the random vector in tweets did not exhibit any signifi-

cant difference in terms of the maximum values of accuracy and F1 score.

Fig 9. (A) Accuracy and (B) F1 score of CNN with CBOW as a function of epoch for various training volumes in tweets.

https://doi.org/10.1371/journal.pone.0220976.g009

Fig 10. (A) Accuracy and (B) F1 score of CNN with Skip-gram as a function of epoch for various training volumes in tweets.

https://doi.org/10.1371/journal.pone.0220976.g010
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Discussion

This section analyzes the performance of CNN with CBOW, CNN with Skip-gram, and CNN

with the random vector models based on the experiments in Section IV. Fig 12 compares

CNN with CBOW, CNN with Skip-gram, and CNN with the random vector as a function of

training volume when the epoch is fixed as 100 in news articles. In the same epoch, CNN with

CBOW exhibited the highest performance at all training volumes. The CNN with CBOW

exhibited values corresponding to 0.9341 and 0.9351, the CNN with Skip-gram exhibited val-

ues corresponding to 0.9147 and 0.9161, and the CNN with the random vector exhibited val-

ues corresponding to 0.8475 and 0.8409 as the maximum values of accuracy and F1 score. The

CNN with CBOW and CNN with Skip-gram exhibited the highest performance at the training

volume of 10 although the CNN with the random vector exhibited the highest performance at

training volume 4 and subsequently decreased.

Fig 11. (A) Accuracy and (B) F1 score of CNN with the random vector as a function of epoch for various training volumes in tweets.

https://doi.org/10.1371/journal.pone.0220976.g011

Fig 12. (A) Accuracy and (B) F1 score of CNN with CBOW, CNN with Skip-gram, and CNN with the random vector as a function of

training volume when the epoch is fixed to 100 in news articles.

https://doi.org/10.1371/journal.pone.0220976.g012
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Fig 13 shows the accuracy and F1 score of CNN with CBOW, CNN with Skip-gram, and

CNN with the random vector as a function of training volume when the epoch is fixed to 100

in tweets. The performance of CNN with the random vector was similar to its performance

when applied to news articles. However, the performances of CNNs with CBOW and Skip-

gram were slightly lower when compared to that when applied to news articles. Significant dif-

ferences in performance between CNN with CBOW and CNN with Skip-gram were not

observed when applied to tweets.

Table 6 shows the highest accuracy and F1 score for each algorithm, and the epoch value

and training volume value used when the corresponding value was output. The CNN with

CBOW model in news articles exhibited the highest overall performance although the CNN

with Skip-gram model performed better when compared to the CNN with CBOW algorithm

in the tweets. With respect to all models (with the exception of the random algorithm),

increases in the training volume and epoch improved the performance. Additionally, the per-

formance significantly reduced when CNN with the random vector without word2vec was

used. This indicated that word embedding for learning the relationship between words is an

important factor in classification using CNN.

This paper has following advantages. It found that the CNN classification model with

word2vec such as CBOW and Skip-gram algorithms outperformed the CNN classification

model with the random vector. It means that the proposed CNN classification model used

Fig 13. (A) Accuracy and (B) F1 score of CNN with CBOW, CNN with Skip-gram, and CNN with the random vector as a function of

training volume when the epoch is fixed to 100 in tweets.

https://doi.org/10.1371/journal.pone.0220976.g013

Table 6. Experiments analysis.

Model Accuracy F1 score Training Volume Epoch

News + CBOW 0.9341 0.9351 10 137

News + Skip-gram 0.9147 0.9161 10 197

News + Random 0.8475 0.8409 4 62

Twitter + CBOW 0.9010 0.9037 10 160

Twitter + Skip-gram 0.9081 0.9097 10 178

Twitter + Random 0.8403 0.8360 4 60

https://doi.org/10.1371/journal.pone.0220976.t006
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with word2vec is better than the CNN classification model without word2vec. In the case of

news articles, the CNN classification model with CBOW had higher performance, but the

CNN classification model with Skip-gram showed higher performance for tweets. It means

that the appropriate word embedding algorithm for performance enhancement may vary

depending on the data type. Our paper has following disadvantages. We need to evaluate per-

formances of other word embedding algorithms such as GloVe [47], Fasttext [57]. We also

need to consider other types of data such as customer review and movie review.

Conclusion

In the study, we evaluated the use of word2vec in classification models via CNN based on

news articles and tweets. We examined the effect of using word2vec on the results and com-

pared the performance of two of word2vec’s learning algorithms, namely CBOW and Skip-

gram. We observed that the use of word2vec that learned semantic relations among words sig-

nificantly improved the performance of classification models. The results confirmed that the

CBOW algorithm performed better when used on news articles and that the Skip-gram algo-

rithm exhibited a better performance when used on tweets. This implied that the use of differ-

ent algorithms based on the type of data to be analyzed can yield a better performance. All

models exhibited better performance on news articles when compared to that on tweets. News

articles typically exhibit a more uniform format when compared to tweets, and thus, CNN

models could extract features and perform faster accurate classification when formatted data

was entered into the CNN-based classification model. Thus, we examined the impact of well-

learned word embedding on news articles and tweets classification via CNN and presented

appropriate word embedding models based on the type of data

Future works

We have three ongoing future research works. Firstly, we have to consider various word

embedding techniques. We considered CBOW and Skip-gram of word2vec as our word

embedding algorithm because word2vec has widely considered to one of the best word embed-

ding algorithms [58–60]. Although we found appropriate word embedding models for news

articles and tweets, our experimental results could be applied only to Word2vec’s CBOW and

Skip-gram. We must compare word2vec with other word embedding techniques such as

GloVe [47] and Fasttext [57]. Secondly, we have to consider various web big dataset. We con-

sidered news articles and tweets as datasets because they were considered to ones of the most

representative web big data. We must consider various web big data such as customer review

and movie review. The length limit of tweets is relatively short as 280 characters per each tweet

and common length of tweet is only 33 characters. We also must apply our proposed technique

on longer review data than tweets. Thirdly, we can exploit our proposed CNN classification

model to predict the outbreak of infectious disease. Disease-related news articles and tweets

must correlate with the outbreak of infectious diseases and are used to predict it [61–63]. How-

ever, other purpose texts such as advertisement may deteriorate the accuracy of predictions.

We will use our proposed CNN classification model to improve the accuracy of the previous

disease prediction model.
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