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Abstract

Mixed community or environmental DNA marker gene sequencing has become a commonly

used technique for biodiversity analyses in freshwater systems. Many cytochrome c oxidase

subunit I (COI) primer sets are now available for such work. The purpose of this study is to

test whether COI primer choice affects the recovery of arthropod richness, beta diversity,

and recovery of target assemblages in the benthos kick-net samples typically used in fresh-

water biomonitoring. We examine six commonly used COI primer sets on samples collected

from six freshwater sites. Biodiversity analyses show that richness is sensitive to primer

choice and the combined use of multiple COI amplicons recovers higher richness. Thus, to

recover maximum richness, multiple primer sets should be used with COI metabarcoding. In

ordination analyses based on community dissimilarity, samples consistently cluster by site

regardless of amplicon choice or PCR replicate. Thus, for broadscale community analyses,

overall beta diversity patterns are robust to COI marker choice. Recovery of traditional fresh-

water bioindicator assemblages such as Ephemeroptera, Trichoptera, Plectoptera, and

Chironomidae as well as Arthropoda site indicators were differentially detected by each

amplicon tested. This work will help future biodiversity and biomonitoring studies develop

not just standardized, but optimized workflows that either maximize taxon-detection or the

selection of amplicons for water quality or Arthropoda site indicators.

Introduction

DNA-based biodiversity analysis has gained major attention due to the use of high throughput

sequencing technology in approaches such as mixed community or environmental DNA meta-

barcoding [1,2]. Data generation typically involves DNA extraction from an environmental

sample such as water or soil, or from collected biomass such as benthic kicknet or malaise trap

followed by PCR amplification of one or more taxonomic markers such as the COI DNA bar-

code region and subsequent high throughput sequencing and bioinformatic analysis of marker

gene sequences. Resulting sequences are then assigned to sequence clusters (Operational
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Taxonomic units, OTUs; Exact Sequence Variants, ESVs) and/or taxonomic names [3].

Sequence clusters and taxonomic lists obtained are used in various statistical analyses for

assessing different aspects of biodiversity such as species richness or distribution, community

composition, and functional diversity [4]. In practice, these questions are often geared towards

identifying assemblages or specific target taxa. Biodiversity information gained can contribute

to ecological investigations and applications such as biomonitoring as part of environmental

assessment programs [5,6].

A major step in obtaining sequence data from mixed community or environmental samples

involves PCR amplification of target marker gene(s). An important consideration in this

multi-template PCR step is the choice of primer sets. It has been shown that primers can differ-

entially bind to template DNA and this can result in both qualitative and quantitative biases

[7–9]. Although a single COI primer set has been used to show congruence in metabarcoding

and morphological biomonitoring methods [10], other studies have tested the performance of

different COI amplicons on a phylogenetically diverse set of natural [11] and mock target taxa

[12] to find growing evidence that multiple COI amplicons can provide better biodiversity

coverage from environmental samples [13].

Indicators can be used to distinguish among conditions or sites. Traditionally, water quality

indicators such as Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddis-

flies) are known to be sensitive to water pollution whereas Chironomidae (non-biting midges)

have been shown to be tolerant to high levels of pollution [14,15] and we collectively refer to

this assemblage as the EPTC. In the rapidly growing field of DNA-based biomonitoring, the

detection of EPTC have also been used to guide primer development [16] and compare the

performance of metabarcoding versus conventional methods for freshwater biomonitoring

[10]. Useful indicators can also be identified from metabarcoding data to identify which

sequences or taxa are significantly associated with sites using techniques originally developed

for species indicator analysis [17]. Because of the difficulties associated with morphological

identification of larval samples from benthos, samples are generally identified to family or

genus level. Sorting and identifying individual samples from benthos poses a serious challenge

in executing large-scale biomonitoring programs. With the advancement of genomics meth-

ods such as DNA metabarcoding, sequence data generated from whole communities can be

used to provide biodiversity information on richness, beta diversity, community composition,

and target taxa such as water quality and site indicators.

The objective of this study was to test the performance of several newly published COI

metabarcode primers to detect freshwater benthic invertebrates. We wanted to determine the

impact of primer choice on several components of diversity: richness, beta diversity, and

recovery of bioindicators. We tested a total of six partial COI metabarcode amplicons, includ-

ing the BR5 and F230R amplicons that we have used routinely for macroinvertebrate monitor-

ing [13,18,10,19].

Methods

Field methods

Six benthic invertebrate communities were sampled from shallow streams across the City of

Waterloo (Ontario, Canada) using a modified travelling kick-and-sweep technique outlined

in the Ontario Benthos Biomonitoring Network protocol [20] (S1 Table, S1 Fig). Briefly, wet-

ted width was measured and used to calculate the number of return trips required to sample

a 10 m transect of the stream specifically targeting a riffle habitat. Prior to sampling D-nets

were decontaminated by soaking them in a 10% bleach solution for 15 min, rinsing with tap-

water, and drying them overnight. A clean 500 μm mesh D-net was held downstream to the
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person sampling, with the opening of the net facing the person sampling. Substrate was

disturbed by kicking the substrate at a constant effort for 3 minutes across the 10 m transect

dislodging invertebrates and allowing the flowing water to guide the dislodged macroinverte-

brates into the net. The entire contents inside the net including substrate, with the exception

of rocks and twigs (which were rinsed with 100% ethanol before removal), were transferred

from the net to a clean 1 L polyethylene bottle, preserved with 80% ethanol and stored at

-20˚C until further processing in the lab. No specific permits is required to sample freshwater

benthos using kicknet in our sampling locations and we did not sample any endangered

species.

Molecular biology methods

DNA extraction. Samples were homogenized separately in a clean blender (decontami-

nated thoroughly with Eliminase solution (Decon Labs: King of Prussia, PA, USA) (Black and

Decker Model: BL2010BGC), distributing 50 mL of the homogenate into six sterile conical

tubes, one for each sample. Samples were centrifuged at 2400 x g for 2 min to collect homoge-

nate at the bottom of the tube, and excess preservative ethanol was removed. Samples were

covered and incubated at 65˚C until residual ethanol was evaporated (roughly 5–8 hours).

DNA was extracted using Qiagen’s DNeasy PowerSoil kit (Toronto, Canada. Product Ref:

12888) according to the manufacturer’s protocol, eluting with 30 μL molecular biology grade

water. All samples were extracted concurrently with the inclusion of one negative control for

the batch where no sample was added.

Polymerase chain reaction. The six amplicons from COI barcode region used in this

study are shown in Fig 1. The primers were aligned against the Drosophila yakuba COI bar-

code region to match the sequence used to design the original Folmer primers obtained from

GenBank accession X03240 using Mesquite v3.10 [21]. Since well-defined COI secondary

structure is not available for D. yakuba or any other insect that we are aware of, we used struc-

tural information from Bos taurus from UniProt accession P00396. All samples were amplified

for six primer sets according to their published amplification regime (Table 1) with the excep-

tion that a two-step PCR was used for all reactions (first PCR using untailed primers, second

Fig 1. Map of primers and amplicons tested in this study. The reference sequence shown in black is Drosophila yakuba, cytochrome c oxidase region

1470–3009 bp (1540 nt). Secondary structure is shown for reference, comprised of six alpha helices in the standard DNA barcode region shown here.

https://doi.org/10.1371/journal.pone.0220953.g001
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PCR using Illumina adapter-tailed primers), even if a one-step PCR was used in the original

protocol. PCRs were run in duplicate with a negative control. Amplification success was con-

firmed through gel electrophoresis (not pictured). Amplicons were purified using a MinElute

PCR Purification kit, quantified on a TBS-380 Mini-Fluorometer (Turner Biosystems Sunny-

vale California, United States) using a Quant-iT PicoGreen dsDNA assay (Invitrogen Waltham

Massachusetts, United States Product Ref: P11496). The concentration of each purified ampli-

con was normalized individually and two amplicons were pooled for each sample and tagged.

This resulted in three pairs of tagged pooled amplicons per sample and this was done because

the run contained samples from other experiments and we wanted to ensure equal sequencing

coverage. Tags were added in a third PCR of 12 cycles to add Illumina’s Nextera Indexes (San

Diego, California, United States Product Ref: FC-121-1011) which allow for samples to be mul-

tiplexed in the same run. All indexed samples were pooled, purified through magnetic bead

purification, quantified using the PicoGreen dsDNA assay, and average fragment length for

the library was determined on an Agilent Bioanalyzer 2100 (Santa Clara, California, United

States. Product ref: G2939BA) using the Agilent DNA 7500 assay chip (Product Ref: 5067–

4627). The library was diluted then sequenced using Illumina’s MiSeq v3 sequencing chemistry

kit (2x300 cycle. Product Ref: MS-102-3003) on an Illumina MiSeq, comprising approximately

half of a sequencing run. The sequencing run included a 10% PhiX spike-in as a control and to

add more sequence heterogeneity to the plate.

Bioinformatic processing

Raw sequences were processed with the SCVUC COI metabarcode pipeline v2.1 available

from GitHub at https://github.com/Hajibabaei-Lab/SCVUC_COI_metabarcode_pipeline. The

acronym SCVUC stands for the major programs or algorithms used for bioinformatic process-

ing: “S”–SEQPREP, “C”–CUTADAPT, “V”–VSEARCH, “U”–UNOISE, “C”–COI Classifier.

Table 1. COI amplicons used in this study.

COI

Amplicon

Primer Target group 5’-3’ Primer sequence Mode

amplicon

length (bp)

Primer

reference

PCR conditions

BR5 B Freshwater benthic

macroinvertebrates

CCIGAYATRGCITTYCCICG 310 [22] 95˚C for 5min, 35 cycles of 94˚C for

40s, 46˚C for 1min, and 72˚C for 30s,

and a final extension at 72˚C for 5minArR5� Tropical Arthropods GTRATIGCICCIGCIARIACIGG [13]

F230R LCO1490 Metazoan invertebrates GGTCAACAAATCATAAAGATATTGG 229 [23] 95˚C for 5min, 35 cycles of 94˚C for

40s, 46˚C for 1min, and 72˚C for 30s,

and a final extension at 72˚C for 5min
230_R Arthropods CTTATRTTRTTTATICGIGGRAAIGC [18]

ml-jg mlCOIintF Metazoa GGWACWGGWTGAACWGTWTAYCCYCC 313 [24] 95˚C for 1 min, 35 cycles of 94˚C for 15

s, 46˚C for 15 s, 72˚C for 10s, and final

extension at 72˚C for 3 min
jgHCO2198 Marine invertebrates TAIACYTCIGGRTGICCRAARAAYCA [25]

BF1R2 BF1 Freshwater

macroinvertebrates

ACWGGWTGRACWGTNTAYCC 316 [16] 94 ˚C for 3 min; 40 cycles of 94 ˚C for

30 s, 50 ˚C for 30 s, and 65 ˚C for 2 min;

and final extension at 65 ˚C for 5 minBR2 Freshwater

macroinvertebrates

TCDGGRTGNCCRAARAAYCA

BF2R2 BF2 Freshwater

macroinvertebrates

GCHCCHGAYATRGCHTTYCC 421 [16] 94 ˚C for 3 min; 40 cycles of 94 ˚C for

30 s, 50 ˚C for 30 s, and 65 ˚C for 2 min;

and final extension at 65 ˚C for 5 minBR2 Freshwater

macroinvertebrates

TCDGGRTGNCCRAARAAYCA

fwh1 fwhF1 Freshwater

macroinvertebrates

YTCHACWAAYCAYAARGAYATYGG 178 [26] 95˚C for 5 min, 34 cycles of 95˚C for 30

s, 52˚C for 30 s, 72˚C for 2 min, and

final extension at 72˚C for 10 minfwhR1 Freshwater

macroinvertebrates

ARTCARTTWCCRAAHCCHCC

https://doi.org/10.1371/journal.pone.0220953.t001
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Briefly, this semi-automated pipeline is described below. Jobs were spread across multiple

cores using GNU Parallel [27]. Raw compressed fastq Illumina read files were paired using

SeqPrep specifying a minimum Phred score of 20 at the ends of the reads and an overlap of at

least 25 bp [28]. The following steps were conducted separately for each of the six amplicons

tested in this study. Primers were trimmed using CUTADAPT v1.14 and reads were retained

if they were at least 150 bp long after trimming, had a minimum Phred score of 20 at the ends

of the reads, and contained no more than 3 N’s. CUTADAPT was also used to convert fastq

files to FASTA files [29]. The individual sample files were combined into a single file for global

ESV generation. VSEARCH v2.4.2 was used to dereplicate the data (get the unique reads)

using the–derep_fulllength option [30]. The USEARCH v10.0.240 unoise3 algorithm was used

to denoise the reads [31]. This involved the removal of any contaminating PhiX reads (carry

over from Illumina sequencing), prediction and removal of sequences with errors, removal of

putative chimeric sequences, and removal of rare sequences. We defined rare sequences to

be those clusters comprised of less than 3 reads (singletons and doubletons) [32,33]. We used

this set of exact sequence variants (ESVs) as a reference, and all primer trimmed reads were

mapped to this reference set with an identity of 1.0 (100% sequence similarity) to generate a

sample x ESV table. The COI Classifier v3.2, that uses a naïve Bayesian classifier v2.12 with a

custom COI reference set, was used to taxonomically assign the ESVs [34]. This naïve Bayesian

classifier, popular in the microbial ecology community, was trained on a COI reference dataset

mined from GenBank to address a gap in existing COI bioinformatic tools [35,36]. This

method allowed us to quickly process large batches of COI metabarcodes generated from high

throughput sequencing to provide a measure of statistical confidence for each taxonomic

assignment, at each rank, instead of just reporting a measure of sequence similarity. This

method has been shown to be faster and have a lower false positive rate than the top BLAST hit

method [35,36]. Briefly, the COI classifier we use here breaks down each query sequence into a

series of 8 bp words or k-mers, uses k-mer frequencies and a naïve Bayesian approach to make

a taxonomic assignment, then calculates the statistical confidence for the assignment at each

rank from species to superkingdom. Taxonomic assignments were mapped to ESVs detected

in each sample with a custom Perl script. The final taxonomy table for each primer was

concatenated.

Data analysis

The final taxonomy table was formatted in R v3.4.3 in RStudio v1.1.419 [37,38]. Custom scripts

are available from GitHub at https://github.com/Hajibabaei-Lab/HajibabaeiEtAl2019. Data

was summarized multiple taxonomic ranks. High confidence taxonomic assignments were

retained by filtering for bootstrap support cutoffs > = 0.30 at the genus rank and> = 0.20 at

the family rank. Using these cutoffs ensures that 95–99% of the taxonomic assignments are

correct, assuming our query taxa are in the reference database [36]. We retained taxa at the

species rank with a bootstrap support cutoff > = 0.70. Assuming our query species are present

in the reference database, this should ensure that at least 95% of species level assignments are

correct. To check whether we had sufficient sequencing depth, we used the package VEGAN

v2.5–2 to plot rarefaction curves using the ‘rarecurve’ function [39]. Curves that reach a pla-

teau show saturated sequencing. To account for variable library sizes, reads/library were rare-

fied down to the 15th percentile library size using the ‘rrarefy’ function [40].

We compared richness recovered from each amplicon, from each site, using the VEGAN

‘specnum’ function and total richness was plotted with ggplot2 [41]. Richness data was

checked for normality using visual distribution plots (ggdensity and ggqqplot, not shown) as

well as using the Shapiro-Wilk test of normality (W = 0.97, p = 0.36) and this data was treated
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as normally distributed in comparisons [42]. We compared average site richness from each

amplicon using paired t-tests with the Holm adjustment for multiple comparisons.

There is uncertainty in how to interpret read abundance from arthropod metabarcoding

studies due to unexpected template to product ratios after PCR due to stochasticity and GC

content [8] as well as the effect of primer bias and body size variation across life stages and spe-

cies that can vary by orders of magnitude and affect recovery [43]. As a result, we chose to

transform read abundance into presence-absence data for all subsequent analyses. We checked

for Pearson correlations in the presence-absence of ESVs recovered from two PCR replicates

using the ‘psych’ and ‘corrplot’ functions in R [44,45]. We corrected for multiple comparisons

using the Holm adjustment method [46].

Indicator species can be used as a proxy to indicate differences among conditions or sites

[17]. For example, in freshwater systems, the diversity of EPTC taxa have been used as water

quality indicators [10]. In this study, we determined a set of arthropod site indicators using the

INDICSPECIES package in R and the ‘multipatt’ function with default settings [17]. This func-

tion accepts a presence-absence matrix (ESVs or taxa x samples) and grouping data (for each

site) and determines the ESVs or taxa that are preferentially associated with each group. The

analysis was run separately for each amplicon and significant site indicators were selected if

the resulting p-value was< = 0.05. We tested an array of COI amplicons for their ability to

recover arthropod site indicators and the usual EPTC water quality indicators.

To test whether sample clusters are affected by COI amplicon choice or PCR replicate, we

used non-metric multidimensional scaling. Plots were created using the vegan ‘metaMDS’

function using the default settings with two dimensions (scree plot not shown) and dissimilari-

ties were calculated using Sorensen dissimilarities by selecting the method ‘bray’ and binary =

TRUE then plotted with ggplot. Goodness of fit was calculated using the VEGAN ‘goodness’

function. To check whether we had homogenous dispersion of dissimilarities, an assumption

of permutational multivariate analysis of variance (PERMANOVA), we created a dissimilarity

matrix with the VEGAN ‘vegdist’ function, then calculated beta dispersion using the ‘betadis-

per’ function in R. We tested for significant heterogeneity using analysis of variance

(ANOVA) in R. We checked for significant interactions among sites, amplicons, and replicates

as well as the significance of group clusters with PERMANOVA using the VEGAN ‘adonis’

function with 999 permutations.

Results

A total of 9,980,584 x 2 paired-end reads were generated for this study and they have been

deposited to the NCBI SRA #PRJNA545426 (S2 Table). After pairing and primer trimming we

retained a total of 7,619,108 reads. A summary of ESV counts for all taxa are shown in S3

Table. About 23% of raw reads were retained in the denoised set of ESVs whereas the differ-

ence was removed during denoising as putative sequence errors, chimeras, PhiX contamina-

tion, or rare singletons and doubletons. In this study, we tested an array of primers that are

popular in the literature and/or newly developed even though some were designed to target

arthropods specifically, or metazoan invertebrates more broadly (Table 1). For this reason, we

limited our comparisons to arthropods which are expected to be amplified by all the primer

sets. As shown in S2 Fig, the greatest number of reads were recovered from Arthropoda, but

many reads were also recovered from Annelida, Proteobacteria, and other non-target phyla.

About 24% of all ESVs were taxonomically assigned to Arthropoda taxa and the final Arthro-

poda ESV counts are shown in Table 2. When six COI primer pairs are compared, F230R

ESVs contained the highest proportion of Arthropoda ESVs (43.9%) and contained the highest

proportion of raw reads mapped to ESVs (4.7%). About 13% of raw reads were mapped to this
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final set of Arthropoda ESVs. Out of all the Arthropoda taxonomic assignments, 11% of

unique species, 15% of genera, and 26% of families were considered high confidence assign-

ments (S4 Table). The proportion of raw reads represented in these high confidence Arthro-

poda assignments was 7% for species, 8% for genera, and 10% for families.

Rarefaction curves show that at each rank, all samples reached a plateau, indicating that we

had sufficient sequencing coverage for these samples (S3 Fig). The median Arthropoda rich-

ness was not significantly different across the pairwise amplicon comparisons (pairwise t-test,

p> 0.05) (S4 Fig). The total number of unique Arthropoda taxa were compared across COI

amplicons (S5 Fig) and the amplicon that detects the most unique taxa varied depending on

the taxonomic resolution of the results. At the ESV rank, the ml-jg amplicon recovered the

highest richness. We also note that the presence-absence of ESVs are positively correlated

across 2 PCR replicates (S6 Fig).

To test the effect of using multiple COI amplicons on richness, we pooled increasing num-

bers of combined amplicons. We show that using a multi-amplicon approach can detect

greater richness than using any single amplicon alone (Fig 2). In this study, ESV richness

increases linearly as amplicons are added. Note that while richness is sensitive to the presence

of artefactual sequence variants and that changing filtering and denoising parameters will

likely affect absolute richness, the trend of increasing richness detected with additional sam-

pled amplicons has been previously demonstrated and is likely due to the known effect of

primer bias [13]. In some cases, multiple combinations of amplicons recover equivalent rich-

ness. Though the accumulation curves at the species, genus, and family ranks begin to plateau

after sampling 2 amplicons, only the data points plotted at the ESV rank represents all the

Arthropoda we detected. Note that only ~ 11%, 15%, and 26% of ESVs could be confidently

identified to the species, genus, and family ranks, respectively, so these particular plots only

represent a small slice of the diversity that we could confidently identify (S4 Table). Due to lim-

itations in the underlying reference sequence databases [47], it is likely that species richness

will also increase as additional reference taxa are added so that more ESVs can be assigned

with high-confidence [48].

We also looked at how the recovery of Arthropoda site indicator taxa and water quality

indicator taxa from the EPTC varied with amplicon choice (Fig 3). Generally, the amplicon

that recovers the greatest number of site indicators varies according to the taxonomic resolu-

tion of the analysis. At the ESV rank, BF1R2 recovers the greatest number of arthropoda site

indicator taxa and ml-jg specifically recovers the greatest number of EPTC. Since the subset of

indicator taxa presented for the species to family ranks only represents the portion of the ESVs

assigned with high confidence, rank specific results may change over time as reference data-

bases better represent local taxa [48]. We plotted the taxonomic distribution of the Arthropoda

site indicator species and how this varied for each amplicon (Fig 4). Site indicator taxa include

Table 2. Arthropoda ESV and read counts vary by COI amplicon.

BR5 F230R ml-jg BF1R2 BF2R2 fwh1 Total

Arthropoda ESVs 873 1,143 1,342 803 477 302 4,940

Proportion of all ESVs assigned to Arthropoda (%)1 25 43.9 40.6 13.1 13.7 15.5 23.5

Reads in Arthropoda ESVs 187,353 467,910 285,933 147,697 24,375 167,129 1,280,397

Proportion of raw reads in Arthropoda ESVs (%)2 1.9 4.7 2.9 1.5 0.2 1.7 12.8

1Number of Arthropoda ESVs from this table divided by the number of all ESVs from S3 Table multiplied by 100.
2Number of reads in Arthropoda ESVs from this table divided by the number of all reads in ESVs from S3 Table multiplied by 100.

https://doi.org/10.1371/journal.pone.0220953.t002
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Fig 2. ESV richness continues to increase as COI amplicons are added but species—Order richness reaches a plateau. For the

primer comparison experiment that used the soil DNA extraction kit, we pooled the results from the six sites and show the top COI

amplicon combinations that detected the greatest richness. We report the recovered richness when up to six amplicons are combined at

the 1) ESV, 2) species, 3) genus, 4) family, and 5) order ranks. ESV = exact sequence variant; A = BR5; B = F230R; C = ml-jg; D = BF1R2;

E = BF2R2; F = fwh1.

https://doi.org/10.1371/journal.pone.0220953.g002
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Elmidae (riffle beetles), Limoniidae (crane flies), Simuliidae (black flies), Ephemeroptera, and

Trichoptera.

To investigate the effect of amplicon choice on beta diversity we looked at how sites cluster

with respect to COI amplicon choice and PCR replicates. We compared all the data at the ESV

rank (Fig 5). Samples cluster by site (stress = 0.154, linear R2 = 0.912). We found significant

heterogeneity of beta diversity among sites (p-value < 0.05), but since we had a balanced

design, proceeded to use PERMANOVA to test the significance of groupings [49]. There were

no significant interactions among sites, amplicons, or PCR replicates. Amplicon choice and

PCR replicate did not explain any significant variation in beta diversity among samples, but

sites explained 76% of the variation among samples (R2 = 0.76, p-value = 0.001).

Discussion

As showcased in recent literature, DNA metabarcoding has gained significant popularity

in various ecological studies where biodiversity in a habitat or a sample is investigated

[50,51,13,18,52–54,4,55]. In this study we show that the optimal choice of amplicon(s) ought

to be based on the objective of the study: optimizing richness, optimizing the differentiation of

samples based on sites/conditions, or optimizing the detection of target taxa. Here we show

the impact of using varied primer sets all of which have been used in recent metabarcoding

studies of freshwater benthic macroinvertebrates.

As predicted, different primer sets produced varied richness results. For example, while the

ml-jg amplicon produced the highest overall ESV richness, combinations of amplicons

together detected even greater richness. Moreover, even though ml-jg maximizes ESV rich-

ness, at the species rank the best choice is F230R, yet at the genus rank BR5 optimizes richness.

The decision to present the results of a study at various taxonomic ranks is often based on the

Fig 3. Each amplicon differentially recovers site and water quality indicators. In the top panel, the number of site indicator taxa from across the

Arthropoda are shown. In the bottom panel, the number of typical water quality indicator taxa from the EPTC are shown. This analysis was based on

normalized data. ESV = exact sequence variant; EPTC = Ephemeroptera, Plecoptera, Trichoptera, Chironomidae.

https://doi.org/10.1371/journal.pone.0220953.g003
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desire to include all the data (ESV rank), or to present results at a fine level of taxonomic reso-

lution (species rank), or to present results based on previous knowledge. For example, 94% of

North American freshwater specimens identified by morphology are represented by a DNA

sequence so it may be desirable to present results at the genus rank [47]. These observations

have important implications for choosing primers, especially when considering the level of

standardization required in biomonitoring programs. While the use of a single primer set is

Fig 4. Site indicator taxa chosen based on metabarcode sequencing are comprised of Coleoptera, Diptera,

Ephemeroptera, and Trichoptera. Presence is indicated by a dark square, absence by a white square. The total

number of Arthropoda site indicator taxa detected by each amplicon is shown in the bottom row.

https://doi.org/10.1371/journal.pone.0220953.g004
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desirable to keep costs to a minimum, the trade-off is that only a subset of the total richness

will be detected, especially in environments that comprise a phylogenetically diverse array of

species. Based on results from this study and elsewhere, primer binding biases during amplifi-

cation steps can have tangible impacts on results and using multiple primer sets will aid in

increasing taxonomic coverage [56,57,22,13]. For the sake of flexibility and forward compati-

bility, aside from the deposition of raw data in public databases, we also encourage authors to

provide denoised ESVs. As discussed in the literature, denoised ESVs represent the finest level

Fig 5. Samples cluster mainly by site despite differences in amplicons and replicates. Results are based normalized data. COI amplicons are labelled

directly in the plot. Amplicons shown twice represent the two PCR replicates. Sites are grouped by color according to the legend.

https://doi.org/10.1371/journal.pone.0220953.g005
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of resolution for sequence-based biodiversity data and have a clear biological meaning as

observed DNA sequences [3,58]. This is in contrast to operational taxonomic units (OTUs)

that represent clouds of similar sequences with a single chosen representative sequence. When

reports are summarized to other taxonomic ranks, we encourage disclaimer statements that

results are limited by the taxonomic coverage of current reference databases that may improve

in the future [48].

Our study provides important insights with regards to use of varied PCR primer sets and

replicates. Contrary to measures of alpha diversity (above), beta diversity measures do not

seem to be affected by primer sets or PCR replicates when ESVs are used for the spatial analy-

sis. In other words, spatial separation of sites based on these varied parameters are robust as

used in biomonitoring applications. These results are in line with previous studies that found

alpha diversity, but not beta diversity, is sensitive to primer choice [59,60]. Indeed, any metric

that is sensitive to the presence of rare species such as richness or indicator species analysis is

unlikely to be robust [61]. For example, it has been shown that even with matched sequencing

depth, the Illumina NovaSeq with patterned flow cells recovers greater richness than the

MiSeq, making direct comparisons across studies using different sequencing technologies dif-

ficult [62]. The implication here is that beta diversity is less sensitive to primer choice and tech-

nical replicates so would be easier to compare across studies.

An important and widespread use of metabarcoding data is in determining ecosystem sta-

tus or “biomonitoring” where the state of the ecosystem is derived from bioindicator assem-

blages such as EPTC [14]. The recovery of freshwater bioindicators from metabarcoding data

in this study varied with amplicon choice. For example, F230R amplicon detects the greatest

number of traditional EPTC site indicators. Metabarcoding data is also commonly used to dis-

tinguish among sites to test hypotheses about drivers of compositional differences. In this

study, we compiled a list of arthropod site indicators as well as included all arthropod ESVs in

ordination analyses to test compositional differences. We found that the recovery of arthropod

site indicators varied with amplicon choice. For example, the BF1R2 amplicon detected the

greatest number of arthropod site indicators. With the application of DNA-based methods,

our ability to detect a broad range of taxa has improved such that it may not be necessary to

limit sampling and reporting to traditional bioindicators since indicator assemblages can be

parsed from whole community metabarcoding datasets as needed [55].

Note that even though equimolar amounts of each amplicon were combined for sequenc-

ing, variable numbers of reads were obtained across amplicons. This may be caused by variable

amplification efficiency during library preparation or slight differences in the number of trans-

ferred amplicons when they are pooled prior to library preparation. Since the recovery of vari-

able library sizes is such a common occurrence, it is important to normalize library size across

samples prior to conducting data analysis. It has been shown that there is a trade-off between

the use of rarefaction (removal of sequences such that each sample can be compared at a com-

mon library size) to reduce the false positive rate, and a loss of sensitivity because of the

removal of sequences [63,64]. This has implications for beta diversity analyses, where false pos-

itives can occur when samples cluster by sequencing depth obscuring real differences, espe-

cially for samples with very small library sizes. Common normalization methods include

rarefaction down to the smallest library size and working with proportions (ESV reads per

sample / total reads per sample). A simulation study showed that rarefaction combined with

the analysis of presence-absence data worked best to cluster samples when groups are substan-

tially different [40]. For differential abundance testing, however, methods that take into con-

sideration the compositional nature of metabarcode datasets (log ratio transformation) may be

more appropriate [65,40,64].
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Conclusions

This study analyzed how arthropod richness, beta diversity, and recovery of site indicator taxa

vary with COI amplicon choice. We show how richness is sensitive to primer choice and the

combined use of multiple COI amplicons. Beta diversity is robust to primer choice and PCR

replicates. We also note that some amplicons recover more Arthropoda site indicators or

freshwater EPTC bioindicators than others, and this should be taken into consideration during

experimental design to address the need to distinguish among field sites or assess water

quality.
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