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Abstract

As a result of a high-throughput in situ hybridization screening for adult mouse testes, we

found that the mRNA for Tmco5 is expressed in round and elongating spermatids. Tmco5

belongs to the Tmco (Transmembrane and coiled-coil domains) gene family and has a

coiled-coil domain in the N-terminal and a transmembrane domain in the C-terminal region.

A monoclonal antibody raised against recombinant TMCO5 revealed that the protein is

expressed exclusively in the elongating spermatids of step 9 to 12 and is localized to the

manchette, a transiently emerging construction, which predominantly consists of cytoskele-

ton microtubules and actin filaments. This structure serves in the transport of Golgi-derived

non-acrosomal vesicles. Moreover, induced expression of TMCO5 in CHO cells resulted in

the co-localization of TMCO5 with β-tubulin besides the reorganization of the Golgi appara-

tus. Judging from the results and considering the domain structure of TMCO5, we assume

that Tmco5 may have a role in vesicle transport along the manchette.

Introduction

Gametes play critical roles in inheriting genetic information from generation to generation.

Above all, sperms are specially organized vehicles to convey and pass the information to eggs.

Studies focused on the mode of this succession of the genome have been a major field of devel-

opmental biology and medicine [1].

Spermatogenesis occurs in seminiferous tubules of adult testes, in which spermatogonia,

the male germline stem cells, give rise to spermatocytes, spermatids, and finally to immature

spermatozoa. After moving into epididymis, the spermatozoa undergo functional maturation

via exposure to an acidic microenvironment and a variety of secretory proteins in the organ

[2].

During spermiogenesis, the final stage of the spermatogenesis, spermatids that have com-

pleted meiosis differentiate into spermatozoa with several well-defined reactions. Firstly, con-

densation of chromatin is caused by changing chromatin binding proteins from histones to

transition proteins and finally to protamine [3]. Secondly, drastic morphological changes
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occur by developing cytoskeleton systems to create novel structures [4]. Thirdly, in order to

acquire the ability of movement, energy-producing mitochondria are densely packed to the

midpiece [5], and a flagellum is constructed to the tail. Fourthly, the functions required for fer-

tilization are equipped; acrosome for passing the zona pellucida [6], proteins for cell mem-

brane fusion [7, 8], and protein kinases for activating eggs [9, 10]. Increasing the information

about the function of the genes required for each step is essential for understanding the molec-

ular mechanism of spermiogenesis along with finding fertility treatment.

Previously, we isolated several genes that are specifically expressed in the intestinal and epi-

dermal tissues of mice [11–15] by using a high-throughput in situ hybridization system,

wherein almost all the procedures were carried out by 96-well format. Digoxigenin-labeled

probes were synthesized from PCR-amplified templates, sections were mounted on 96-well

plates, and hybridization followed by immunohistochemistry for the probes was performed in

each well of the plates [16].

In the present paper, as a result of the screening for adult mouse testes, we found that the

mRNA for Tmco5 (Transmembrane and coiled-coil domains 5) is expressed in the round and

elongated spermatids. Gene Database (Gene ID: 67356, https://www.ncbi.nlm.nih.gov/gene/)

confirmed that the expression of the mRNA is restricted in the adult testes and that the

deduced amino acid sequence has a coiled-coil domain in the N-terminal region and a trans-

membrane domain in the C-terminal region with the calculated molecular weight of the pro-

tein 35,850. Regarding the expression of the gene, Kwon et al. reported the expression of

thirteen testis-specific genes including Tmco5 by reverse transcriptase, PCR, and immunoblot-

ting [17]. The function of this gene has not yet been reported. However, a homolog of this

gene in Drosophila, Transport and Golgi organization protein 6 (Tango6, Tmco7), has been pro-

posed to be required for the organization of Golgi apparatus. GFP-tagged Golgi apparatus is

scattered when RNAi for Tango6 is introduced in Schneider 2 cell-lines [18]. With regards to

the function of the Golgi apparatus in spermatogenesis, the following two phenomena are well

known. The former is the formation of the acrosome. During the process, Golgi-derived proa-

crosomal vesicles fuse to form and enlarge the acrosome [19]. The latter is the development of

tail-structure; Golgi-derived non-acrosomal vesicles are transported to the base of the flagel-

lum by way of the manchette, a cytoskeletal complex formed around the nucleus by a sleeve of

microtubules [20]. Therefore, it is an attractive hypothesis that the function of Tmco5 may be

involved in such phenomena by regulating the organization of the Golgi apparatus.

In the present report, we first of all demonstrated the expression of Tmco5 mRNA in the

testis. Afterwards, the protein expression was determined using a monoclonal antibody raised

against recombinant TMCO5 protein. Next, in order to clarify whether Tmco5 is involved in

the organization of the Golgi apparatus, GFP-tagged Golgi apparatus was observed in the

CHO cells after the induction of TMCO5. Finally, in order to know whether TMCO5 is local-

ized to the acrosome or other structures in the elongated spermatids, subcellular localization

was determined. These data suggest, along with the domain structure of TMCO5, that Tmco5
may have a role in vesicle transport along the manchette.

In addition, while we were writing the present manuscrpt, a paper on rat TMCO5 was pub-

lished [21]. The experimental results of the paper were partially overlapped wtih the results we

obtained, but there were some differences from ours. We will discuss this point in the later section.

Materials and methods

Ethics statements

All animal experiments were reviewed and approved by the Osaka City University animal

subjects committee. The euthanasia of animals was done in a way that did not cause pain.
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Generally, pentobarbital (50 mg/ml) was intraperitoneally injected (9.1 mg/kg) and then the

animals including rats and mice are euthanized by cervical dislocation.

The high-throughput in situ hybridization screening

The detailed method for the screening has been reported previously [16]. Briefly, almost all the

procedures were carried out by 96-well format. Digoxigenin-labeled probes were synthesized

from PCR-amplified templates, sections were mounted on 96-well plates, and hybridization

followed by immunohistochemistry for the probes was performed in each well of the plates.

Recombinant protein expression and monoclonal antibody production

Partial coding region of Tmco5 (nucleotide position from 162 to 536, NM_026104) was PCR-

amplified using adult testis cDNA library with a pair of primers, 5-GGGCTAGCAAGAACATT
ATCAGCTTG-3 for the sense primer with a NheI site (underlined) and 5-CCAAGCTTTTAC
AACTGTTGTAGTTTAAC-3 for the antisense primer with a stop codon (italic) as well as with

a HindIII site (underlined). PrimeSTAR Max DNA Polymerase (Takara, R045A) was used,

and the reaction conditions were as follows; denaturing at 98˚C for 10 sec; annealing at 55˚C

for 5 sec; and extension at 72˚C for 20 sec in 30 reaction cycles. The amplified fragment was

digested with NheI and HindIII and cloned into the same sites of pRSET A vector (Thermo-

Fisher, V35120). The obtained plasmid was transformed into BL21 (DE3) pLysS competent

cells. The recombinant protein was purified using TALON Metal Affinity chromatography

(GE Healthcare Life Science) according to the method of the supplier’s protocol. Female rats

(Wistar) were immunized with 300 μg of the purified protein with Freund’s adjuvant three

times at 2-weeks intervals. Three days after the final immunization with 300 μg of the purified

protein alone, spleen cells were harvested and fused with P3U1 myeloma cells, and HAT selec-

tion (Sigma-Aldrich, H0262) was performed in RPMI-1640 medium (Sigma-Aldrich, R0883-

500ML) with 10% Fetal Bovine Serum (FBS, HyClone, SH30071.03). Screening for the mono-

clonal antibody was performed by the conventional Enzyme-Linked Immunosorbent Assay

(ELISA) using the recombinant protein described previously [22] as well as by colormetric

immunohistochemistry to the sections of adult mouse testes. Positive hybridomas were further

cloned by the limited dilution method, and one of the clones, termed RTm01, was used for

experiments onward.

Immunoblotting

The expression of TMCO5 protein was analyzed by SDS-PAGE and immunoblotting. Adult

tissue samples including testis, ovary, skeletal muscle, brain, skin, stomach, intestine, colon,

and spleen as well as developing testes of 3 to 8-weeks old mice were extracted with 5 times

volume (v/w) of SDS sample buffer (5% 2-mercaptoethanol, 10% glycerol, 2% SDS, 0.005%

Bromophenol Blue, and 63 mM Tris-HCl pH. 6.8) and were boiled for 5 min. After centrifuga-

tion at 17,400 x g for 10 min, supernatants were collected and 15 μl of the samples were loaded

into wells of 10% SDS-PAGE gel [23]. The gel was transferred to nitrocellulose membrane

[24]. Briefly washed with TBST (150 mM NaCl, and 0.1% Tween 20, and 50 mM Tris–HCl

pH7.5), the membrane was treated with Blocking solution (0.5% casein in TBST) for 30 min,

and then incubated for 1 h with the culture supernatant of RTm01 followed by the 3 times

washing with TBST. Afterwards, 1:5,000-diluted alkaline phosphatase-conjugated anti-rat IgG

antibody (BioRad, STAR131A) was incubated for 1 h. After 3 times washing with TBST for 10

min, the chromogenic reaction was performed with BCIP-NBT Solution Kit (Nacalai Tesque,

03937–60). While adopting a high-sensitivity chemiluminescent detection, we used 1:10,000-

diluted horseradish peroxidase-conjugated anti-rat IgG antibody (BioRad, 5204–2504) as a
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second antibody, and chemiluminescence detection was conducted with ELC kit (Thermo-

Fisher, 32106) and LAS4000min (Fujifilm).

Colormetric immunohistochemistry

Mouse testes were fixed in Dent’s fix (80% methanol and 20% dimethyl sulfoxide) for 6 h at

4˚C, dehydrated in 100% ethanol, embedded in a mixture of polyester wax and cetyl alcohol

(Electron Microscopy Sciences, 19312 and WAKO, 101309 respectively) at a ratio of 2:1 and

sectioned to be 8 μm thick. The sections were adhered to MAS-coated glass slides (Matsunami,

S091150). They were dewaxed with 100% ethanol, hydrated with TBST and blocked with the

Blocking solution. The culture supernatant of RTm01 antibody was reacted for 1 h. After

washing with TBST, horseradish peroxidase-conjugated anti-rat IgG (x 5,000, BioRad, 5204–

2504) was incubated for 1 h. Consequently, Tmco5 protein was detected using Peroxidase

Stain DAB Kit (Nacalai, 25985–50). Hematoxylin (Vector, H-3401) was used for nuclear

counter-staining. After being mounted, samples were observed under a microscope.

Cell culture

Chinese hamster ovary (CHO) cells were cultured in Dulbecco’s Modified Eagle’s medium

(DMEM, Sigma-Aldrich, D5796-500ML) with 10% FBS (HyClone, SH30071.03).

Generation of CHO cells, wherein Golgi apparatus is tagged with EGFP

The cDNA corresponding to the amino acid sequence from the N-terminal methionine to the

position of 60 of β-1, 4-galactosyltransferase 1 gene (NP_071641), where a Golgi-localization

signal exists (Cole et al., 1996), was amplified with a mouse heart cDNA library as a template

(sense primer 640U: 5-GATCGCTGTGGTCGGGTAG-3, antisense primer 1071L: 5-GCACT
GGCAACGAAGACAAG-3). Also, the full-length coding region of EGFP was amplified (sense

primer 1U: 5-ATGGTGAGCAAGGGCGAGGAG-3, antisense primer 720L with termination

codon: 5-TTACTTGTACAGCTCGTCCATGC-3). Both DNA fragments were fused by the

overlap extension PCR [25] and cloned into the pTA2 vector (TOYOBO). After adding Hin-

dIII and BamHI sites by PCR, the fused fragment was further cloned into the same site of

eukaryotic expression vector pCAG-MCS2 [26], which was provided by Dr. Mikio Hoshino.

The plasmid was transfected into CHO cells using TransIT1-LT1 Transfection Reagent

(Takara, V2300), and transformants were selected in 10% FBS-DMEM with 500 μg/ml G418.

EGFP-tagged Golgi-positive colonies were selected via the observation of the fluorescent distri-

bution, which was the same as that of the CHO cells transiently transfected with CellLight

Golgi-GFP BacMam 1.0 (ThermoFisher, C10592). A positive clone, termed as CHO-GolEGF,

was used from here onward.

Induced expression of Tmco5 in CHO-GolEGF

In order to introduce the inducible expression of TMCO5 in CHO-GolEGF, we utilized a Tet-

on system (T-Rex System, ThermoFisher, C10592), comprising of two vectors; pcDNA TM

4/TO for the expression of the target protein and pcDNA TM 6/TR for the production of the

repressor for pcDNA TM 4/TO vector. The full-length coding region of Tmco5 (nucleotide

position from 57 to 1043, NM_026104) was PCR-amplified with a pair of primers; 5-GGGGAT
CCCCGGATCCGCCAAAGCACATCGG-3 for sense primer with BamHI site (underlined) and

5-GGGATATCGGGATATCCTTCATCCCTCCTG-3 for antisense primer with EcoRV site

(underlined). The amplified fragment was digested with BamHI and EcoRV and cloned into

the same sites of pcDNA TM 4/TO. The resulting plasmid and pcDNA TM 6/TR were co-
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transfected into the CHO-GolEGF cells in accordance with the supplier’s protocol. For the

selection of the integration of each plasmid, Zeocin (300 μg/ml) and Blasticidin (10 μl/ml)

were used. One of the clones, termed as CHO-GolEGF-tmco, was selected by the immunohis-

tochemistry using the anti-TMCO5 antibody (RTm01) after the induction of TMCO5 protein

by the addition of tetracycline at the concentration of 1 μg/ml.

Fluorescent immunohistochemistry to the CHO-GolEGF-tmco cells

CHO-GolEGF-tmco cells were grown on the surface of collagen-coated round-type coverslip

(Matsunami, CO13001) in DMEM with 10% FBS including G418 (100 μg/ml), Zeocin

(300 μg/ml) and Blasticidin (10 μg/ml). After 60% confluent, tetracycline was added (10 μg/

ml) and another 24 h culture was performed to induce the expression of TMCO5. In the con-

trol experiment, the addition of tetracycline was omitted not to induce the expression of

TMCO5. After 24 h culture, cells attached to a coverslip were washed with PBS (10x D-PBS (-),

Fujifilm, 048–29805) and then fixed with 4% paraformaldehyde-PBS (Fujifilm, 161–20141) for

10 min at room temperature. After being washed with TBST, they were blocked with the

Blocking solution, then reacted with culture supernatant of RTm01 antibody mixed with

1:2,000-diluted mouse anti-β-tubulin antibody (abcam, ab131205) for 1 h. After washing twice

with TBST, Alexa 647-labeled anti-rat IgG (CST Japan) and Alexa 594-labeled anti-mouse IgG

(CST Japan), each diluted 2,000 times with blocking solution, were reacted for 1 h. After 3

times washing with TBST for 5 min, DAPI (40, 6-diamidino-2-phenylindole) (ThermoFisher,

D1306) was used for fluorescent nuclear staining in accordance with the instruction manual.

The samples were observed with a confocal microscope (TCS SP8, Leica).

Fluorescent immunohistochemistry for sections of adult testes

The sections of mouse adult testes mounted on glass slides were reacted with culture superna-

tant of RTm01 antibody mixed with 1:2,000-diluted mouse anti-β-tubulin antibody (abcam,

ab131205) for 1 h. After washing twice with TBST, Alexa 647-labeled anti-rat IgG (CST Japan)

and Alexa 594-labeled anti-mouse IgG (CST Japan), each diluted 2,000 times with blocking

solution, were reacted for 1 h. Simultaneously, for detecting acrosomes, Alexa 488-labeled Lec-

tin PNA (diluted x 200 times, Molecular Probes) was reacted. After 3 times washing with

TBST for 5 min, DAPI (40, 6-diamidino-2-phenylindole) (ThermoFisher, D1306) was used for

fluorescent nuclear staining. The samples were observed with the confocal microscope (TCS

SP8, Leica).

Results

Expression of Tmco5 mRNA and protein

As a result of the high-throughput in situ hybridization screening for adult mouse testes, the

mRNA for Tmco5 gene was found to be expressed in the round and elongated spermatids in

the seminiferous tubules of the adult mouse, but it could not be detected before the testis of the

3-week old mouse as shown in Fig 1.

The expression of the protein was examined by the immunoblotting as well as the immuno-

histochemistry using the monoclonal antibody (RTm01) raised against the recombinant

Tmco5 protein. As shown in Fig 2A, TMCO5 is specifically expressed in the testis of the adult

male mouse, and the expression was detected in the testes after 4 weeks of age as shown in Fig

2B. Fig 2C shows that Tmco5 protein could not be detected in the extract of epididymis tissue,

even by using the highly-sensitive chemiluminescent method, indicating that the protein is not

a component of the sperm.

Spermatogenesis related gene
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Next, in order to know when the protein is expressed during the spermiogenesis steps, enzy-

matic immunohistochemistry was performed, followed by Hematoxylin staining for determin-

ing the stage of the seminiferous tubules histologically considering the arrangement of the cells

and the morphology of the nucleus [27] as shown in Fig 3A. Fig 3B shows that the head region

of the spermatid is stained in the seminiferous tubules of stage IX to XII, indicating that Tmco5

protein is expressed in the elongating spermatids of step 9 to 12. It is well known that first sper-

matogenesis, named as a first-round wave, occurs soon after the birth of male mice. In this

wave, spermiogenesis at step 9–12 begins around postnatal day 25 [28]. This result is consistent

with that in Fig 2B, where TMCO5 is detectable in the testis after mice are 4-week old.

Induced expression of TMCO5 protein in the CHO cells, of which the Golgi

apparatus is tagged with EGFP

So far, the function of Tmco5 has not yet been elucidated. However, it has been reported that

RNAi-mediated knockdown of Tango6 (Tmco7), one of the members of the Tmco-protein

Fig 1. In situ hybridization with Tmco5 probe. The sections of testis from 1-week to 8-week old mice were hybridized with Tmco5 probe,

indicating that the mRNA for Tmco5 is expressed in the round and elongating spermatids in the seminiferous tubes of adult testis (8-week old

mouse). In addition, we could not detect the expression of Tmco5 mRNA in the testis until mice were 3-weeks old. Scale bars are 100 μm.

https://doi.org/10.1371/journal.pone.0220917.g001
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family in Drosophila, results in the fragmentation of Golgi apparatus in the S2 cell line [18]. It

suggests the role of Tango6 is in Golgi organization. Accordingly, whether Tmco5 has a func-

tion for the organization Golgi apparatus, we conditionally induced the expression of the

TMCO5 protein by using the Tet-on expression system in the CHO cell line, whose Golgi

apparatus had been EGFP-tagged [29]. First, immunoblotting was performed with the RTm01

antibody using extracts of CHO cells and cells in which TMCO5 was induced. Fig 4A shows

that the antibody does not recognize any proteins in the extract of CHO cells, and TMCO5

Fig 2. Immunobloting with the anti-TMCO5 monoclonal antibody (RTm01). (A) In the adult tissues, TMCO5 is expressed only in the testis. The arrow indicates the

corresponding 36 K-band of TMCO5. Molecular weight markers are shown. (B) TMCO5 is detectable in the testis after mice were 4-weeks old. The arrow indicates the

bands of TMCO5 (C) Even a highly-sensitive method using chemiluminescent detection could not detect TMCO5 in the epididymis, indicating that TMCO5 is not a

component of sperm. Molecular weight markers are shown.

https://doi.org/10.1371/journal.pone.0220917.g002
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was successfully induced when tetracycline was added. As shown in Fig 4B, the Golgi appara-

tus was observed to be scattered around the nucleus before the induction of TMCO5. On the

other hand, as shown in Fig 4C, after inducting expression, Golgi apparatus concentrated to

one point at the center of the region where TMCO5 was distributed. This result coincides with

that of the RNAi-mediated functional assay of Tango6. In addition, Fig 4D shows that the fluo-

rescence image of TMCO5 may be fibrous like that of the cytoskeleton. We then compared the

distribution of TMCO5 with that of β-tubulin in the TMCO5-induced CHO cell line. Fig 5A

shows the distribution of TMCO5, and that of β-tubulin and nuclei respectively. The merged

picture shown in Fig 5B indicates that TMCO5 and β-tubulin, as expected, are co-localized

(the yellow-colored region). However, the region of TMCO5 is slightly thinner than that of β-

tubulin as shown in the enlarged picture (Fig 5D).

TMCO5 localizes to the manchette of the spermatids during

spermiogenesis

In order to clarify the positional relationship among the region where TMCO5 is localized, the

acrosome and the nucleus, we carried out immunofluorescent microscopy. Fig 6 shows that

TMCO5 localizes to the opposite side of the acrosome across the nucleus. This region is

known to be the manchette, a transiently emerging structure mainly comprising of the cyto-

skeleton of microtubules as well as actin filaments, serving in the transport of Golgi-derived

non-acrosomal vesicles [20]. In addition to the experiments using the CHO cell line, we

Fig 3. Immunostaining of adult testis using RTm01 antibody followed by nuclear counterstaining with Hematoxylin. (A) Not all the

seminiferous tubes are stained, only the tubes of stage IX to XII (indicated by arrows) are stained. The indications on the seminiferous tubules show

the stages of the seminiferous tubules. Scale bar is 100 μm. (B) Brown-colored positive cells in the enlarged area surrounded by the square are

spermatids, indicating that TMCO5 is expressed in step 9 to 12 spermatids. Scale bar is 100 μm.

https://doi.org/10.1371/journal.pone.0220917.g003
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examined immunofluorescent study for identifying the localization of β-tubulin and that of

TMCO5. Fig 7 shows the distribution of TMCO5 and β-tubulin. The merged picture indicates

that both proteins are co-localized to the manchette. However, as in the experiment where

TMCO5 was expressed in CHO cells, the localization of TMCO5 was not completely consis-

tent with that of β-tubulin. It seems that TMCO5 is not localized in the most posterior part of

the structure. A schematic diagram of the distribution of TMCO5 and β-tubulin is illustrated

in Fig 8.

Discussion

Tmco family genes

In mouse and human, among seven Tmco family genes, named Tmco1 to Tmco7, three family

genes including Tmco2, Tmco5 and Tmco7 are classified into a group of having a single trans-

membrane in the C-terminal region (single-passed genes). Tmco7 is ubiquitously expressed,

Fig 4. Induced expression of Tmco5 in the CHO cells whose Golgi apparatus is tagged with EGFP. (A) Immunoblotting with the anti-TMCO5 monoclonal antibody

(RTm01) using the extract of CHO and TMCO5-induced CHO cell line. The arrow indicates the corresponding 36 K-band of TMCO5. Molecular weight markers are

shown. (B) Without induction, green-colored Golgi apparatus is scattered around the nuclei (blue) as shown in the cells surrounded by the white circles. Scale bar is

50 μm. (C) With the induction of TMCO5 (red), Golgi apparatus (green) concentrates to the point at the center of the region, where TMCO5 is distributed, as shown in

the red-colored circles. Scale bar is 50 μm. (D) The enlarged picture of the surrounded area by the red circles in C are shown. The fluorescent image of TMCO5 may be

fibrous like that of the cytoskeleton. Scale bar is 10 μm.

https://doi.org/10.1371/journal.pone.0220917.g004

Spermatogenesis related gene

PLOS ONE | https://doi.org/10.1371/journal.pone.0220917 August 8, 2019 9 / 18

https://doi.org/10.1371/journal.pone.0220917.g004
https://doi.org/10.1371/journal.pone.0220917


however Tmco2 and Tmco5 are specifically expressed in the testis (Gene database, https://

www.ncbi.nlm.nih.gov/gene/69469, https://www.ncbi.nlm.nih.gov/gene/67356). Although

very little is known about the function of the three single-passed genes, Drosophila tango6
(Tmco7) has been suggested to be required for the organization of the Golgi apparatus [18].

Interestingly, TMCO proteins are considered to be classified as "tail-anchored proteins", which

are reported to be inserted post-translationally in the membranes of the endoplasmic reticu-

lum, mitochondria, and peroxisome via the transmembrane domain [30, 31]. Therefore, Tmco
family genes may be involved in membrane trafficking or vesicular transportation.

Fig 5. Co-localization of TMCO5 and β-tubulin in the CHO cells. The intracellular localization of TMCO5 and β-tubulin was examined in the

TMCO5-induced CHO cells. Localization of TMCO5 (green) and β-tubulin (red) and nuclei (blue) was determined as shown in Fig 5A and 5B. The

merged picture in C shows that both are co-localized around the nuclei (blue), suggesting that TMCO5 is a component of the microtubules or that of

the vehicles moving on the network. (D) The enlarged pictures of the surrounded area by the square show that coexisting areas are not entirely

identical, but the area of tubulin is slightly wider than that of TMCO5. Scale bars are 50 μm for A to C and 10 μm for D.

https://doi.org/10.1371/journal.pone.0220917.g005
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Time-lag between the tmco5 transcription and TMCO5 translation

In the adult testis, the mRNA for Tmco5 was detected in the round and elongating spermatids.

We developed a monoclonal antibody (RTm01) against recombinant TMCO5 protein, and

demonstrate that TMCO5 protein was detected only in step 9 to 12 elongating spermatids.

This was confirmed by the immunoblotting analysis, in which TMCO5 could be detected in

the testis of 4-week old mice. In the first wave, spermiogenesis at step 9–12 begins around post-

natal day 25 [28]. The time-lag between the transcription and translation in the spermatids is

well recognized. Since the structure of chromatin is condensed gradually because of exchang-

ing the chromatin-binding proteins from histone to protamine by way of transition proteins,

transcriptional activity is declined gradually in the elongating spermatids [3]. Therefore, the

transcripts, such as Tmco5, which are translated after elongating spermatids for spermiogene-

sis, are transcribed in the round spermatids and are stored as translationally repressed state

until use. With regards to this regulatory mechanism, RNA-binding proteins and correspond-

ing cis-elements, mainly located in the 3’ untranslated region, are known to be involved [32].

For example, the mRNA for Protamin 2 is transcribed at step 7. However, it is translationally

repressed afterward and is de-repressed at step 13. Both the repression and de-repression are

Fig 6. Immunofluorescent staining of adult testis. (A) TMCO5 (red) is localized to the opposite side of the acrosome

(green) across the nucleus (blue), indicating that TMCO5 may be localized to the manchette. The bars indicate the

position of the acrosome, nucleus, and TMCO5 positive region respectively. Scale bar is 50 μm.

https://doi.org/10.1371/journal.pone.0220917.g006
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regulated by two isoforms of CBF-A, p37 or p42, both of which are directly bind to the A2RE/

RTS element in the 3’ UTR of the mRNA respectively [33]. It is interesting that one cis-element

is shared by two isoforms of the same gene product for generating the exact timing of the

translation. In addition to the above mechanism, several lines of evidence have suggested that

small RNAs including microRNAs have a role in the translational control in the testis [34, 35].

Although we could not find any cis-elements in the 3’UTR of Tmco5 mRNA using ARE site

Fig 7. Co-localization of TMCO5 and β-tubulin in the spermatids. TMCO5 (red) and β-tubulin (green) are co-localized in the spermatids of adult testes

(merged). The enlarged picture indicates that both are almost co-localized. However, in the most posterior region of the manchette, TMCO5-signal is not

detectable. Scale of bars are indicated in each figure.

https://doi.org/10.1371/journal.pone.0220917.g007

Spermatogenesis related gene

PLOS ONE | https://doi.org/10.1371/journal.pone.0220917 August 8, 2019 12 / 18

https://doi.org/10.1371/journal.pone.0220917.g007
https://doi.org/10.1371/journal.pone.0220917


database (http://nibiru.tbi.univie.ac.at/AREsite2/welcome), four candidate miRNAs targeting

the Tmco5 mRNA were identified (mmu-miR-3097-5p, mmu-miR-6539, mmu-miR-1191b-

3p, mmu-miR-6368) using miRBase database (http://www.mirbase.org).

Expression and localization of TMCO5

In our experiments, TMCO5 expression was restricted only in step 9 to 12 spermatids. How-

ever, Kaneko et al. reported that TMCO5 expression was observed not only in the elongating

spermatid but also in the round and almost developed spermatids [21]. In this regard, we can-

not precisely explain the reason; however, we have two possibilities. One possibility is that

since the period and stage of the spermatogenesis cycle is different between mice and rats;

233.6 h versus 310.8 h for one cycle and consisting 12 versus 13 stages respectively [27], the

timing of gene expression may be different. The other possibility is that the antibody used in

each experiment is different. Kaneko et al. used a polyclonal antibody against synthetic oligo-

peptides [21]; we used a monoclonal antibody (RTm01) against a recombinant partial

TMCO5A protein containing 124 amino acids. It is well known that the antibodies against oli-

gopeptides have low specificity and are often unsuitable for immunostaining. Conversely,

because monoclonal antibodies recognize restricted antigenic determinants, it is possible that

the monoclonal antibody (RTm01) recognizes the three-dimensional structure of TMCO5

protein so that the antibody could not recognize the protein in the round and differentiated

spermatids. However, immunoblotting analysis in Fig 2B as well as that of Kwon et al. [17]

shows that TMCO5 expression starts from 4 weeks-old and 28-postnatal days, respectively,

which indicates that TMCO5 expression starts from elongating spermatids in mice [17, 28,

36]. Taken together, the difference in the expression may be due to the difference in

mouse and rat spermatogenesis. However, to reach a conclusion, more detailed analysis is

required.

Fig 8. The schematic diagram of manchette. Relative position of acrosome, nucleus, TMCO5-positive, and negative

manchette is illustrated according to the anterior to posterior direction.

https://doi.org/10.1371/journal.pone.0220917.g008
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In addition, unlike our induced expression experiments using CHO cell line, where

TMCO5 is localized to almost the same region as β-tubulin, Kaneko et al. reported that forced

expression of TMCO5 in the COS cells resulted in the localization of TMOC5 to the endoplas-

mic reticulum instead of the microtubules [21]. This difference may be due to the expression

system and host cell types. We used the Tet-on induced expression system with CHO cells as a

permanent cell line. On the other hand, Kaneko et al. performed a transient transfection into

COS-7 cells as a host cell line with a vector containing the SV40 promoter and enhancer. COS

cells are known to produce large T antigen that facilitates the replication of the plasmid vectors

with SV40 promoter and enhancer, which may cause a strong overexpression of target proteins

[37]. In the COS-cell expression system, overexpressed TMCO5 protein may not be properly

transported to vesicles and may remain in the endoplasmic reticulum.

Possible functions of TMC5 protein

The experiments of immunoblotting and immunohistochemistry using the monoclonal anti-

body to the recombinant TMCO5 protein revealed that the protein is expressed only in the

adult testis of step 9 to 12 elongating spermatids. During this period, the shaping of the head

and delivery of proteins to the developing tail actively takes place [1]. Moreover, in the experi-

ment of induced expression of Tmco5 in CHO cells, TMCO5 was found to be co-localized

with β-tubulin. Hence, we determined the subcellular localization of TMCO5 protein in rela-

tion to that of β-tubulin in the elongating spermatids and found that TMCO5 is localized to

the manchette, a transient microtubule and actin-based structure contributing to the head

shaping and tail development [20, 38].

Proteins, known to be localized to the manchette, are either the components of the man-

chette itself or the components of the cargo or vesicle molecules moving on the manchette rail-

road. For example, cytoplasmic actin as well as alpha and β-tubulin constitute manchette.

Vesicle-motor molecules, such as Myosin VIIa and kinesin/dynein, as well as regulatory mole-

cules, such as Rab and MyRIP and Hook 1, are localized to the manchette [39]. Although the

function of Tmco5 has not been identified, we speculate that the function is involved in the

regulation of kinesin/dynein-dependent transport of the vesicle, where TMCO5 is embedded

via a transmembrane domain in the C-terminal region. Although no significant signal peptide

was found by using the SignalPserver (http://www.cbs.dtu.dk/services/SignalP/) as well as the

SOSUIsignal server (http://harrier.nagahama-i-bio.ac.jp/sosui/sosuisignal/sosuisignal_submit.

html), we assumed that the coiled-coil domain in the N-terminal region of TMCO5 (consisting

of 303 amino acids) is located outside the vesicle membrane (cytosolic face). Homology search

using MOTIF Search (https://www.genome.jp/tools/motif/) revealed that there are several

interesting motifs including Vac_Fusion (amino acid number (aa): 170–198), Syntaxin_2 (aa:

52–161) and Synaptobrevin (aa: 84–128), all of which are located to the N-terminal upstream

region of the transmembrane domain (aa: 224–246). Vac_Fusion domain is known to play a

role in the cell fusion of vaccinia virus at endosomes upon infection [40, 41]. Syntaxin-2 and

Synaptobrevin are the members of SNARE, a large family and a key molecule to drive fusion of

membranes including vesicles [42]. The structural feature of the SNARE is that they have a

coiled-coil domain and a transmembrane domain in the C-terminal region, exactly classified

as tail-anchored proteins previously mentioned [43]. SignalP search revealed that like Tmco5,

mouse syntaxin 2 (Gene ID: 13852) and mouse synaptobrevins, Vamp2 (Gene ID: 22318) and

Vamp3 (Gene ID: 20955) do not have notable signal peptides. Judging comprehensively,

TMCO5 as well as TMCO2 and TMCO7 could be considered to be a member of SNARE [44].

Therefore, probably TMCO5 is located on the cytosolic face of the vesicle that moves along the

manchette.
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There are several compartments in the structure of the sperm; head region including acro-

somes, equatorial region, post-equatorial region, and flagellum including the connecting piece,

mid-piece, principal-piece, and end-piece [45–47]. In steps 9 to 12, elongating spermatids that

limitedly express Tmco5 protein, the tail-structure is actively constructed. Recently, more than

1000 proteins associated with sperm tail structures have been identified by proteomic studies

[48]. Such components packed either in the Golgi-derived non-acrosomal vesicles or in pro-

tein rafts are transported first by intra-manchette transport (IMT) to the basal body region

and then to the tail compartments by intra-flagellar transport (IFT) [49, 50]. The components

are correctly delivered to the destination. However, the mechanism of the detailed transport

system has been poorly understood. If Tmco5 functions as a SNARE, it may have a role in the

recognition of the targeting-membranes upon the transition of vesicles from IMT to IFT. This

hypothesis that Tmco5 functions as a SNARE is consistent with the experimental results using

the Tmco5-induced CHO cells. For example, it is reported that SNARE-mediated intracellular

membrane fusion occurs using liposomes, where a SNARE is introduced [51, 52], which allows

the idea that Tmco5-embedded vesicles fuse to make a large-sized Golgi apparatus after the

induction of TMCO5. Otherwise, since the Golgi apparatus has been proposed to function as a

microtubule organization center [49, 53], Tmco5-embedded Golgi apparatus changed its char-

acteristics and resulted in the reconstitution of the orientation of microtubules. Thereby, the

rearrangement of the Golgi apparatus may eventually occur. In addition, the absence of

TMCO5 in the most posterior part of the manchette may reflect that the recognition or trans-

fer of the vesicles from IMT to IFT has undergone on the border of the areas.

There are some questions to be solved in the future. First, in order to elucidate whether

TMCO5 is embedded in vesicles, biochemical analysis such as purification of vesicles using

anti-TMCO5 antibody-coupled immunoaffinity chromatography will be required. Secondly,

to determine that TMCO5 functions as a SNARE, target molecules that consist of the SNARE

complex should be identified by immunoprecipitation or by the two-hybrid method. Thirdly,

to parse the detailed relationship between the TMCO5 protein, microtubules and Golgi appa-

ratus, knockdown experiments using the CHO-GolEGF-tmco cell line will be effective. Lastly,

in order to examine whether the Tmco5 gene plays a crucial role in spermatogenesis, Tmco5
knockout mice could be generated and analyzed.
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