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Abstract

In this paper we consider the process of the second harmonic generation in a gradient wave-

guide, taking into account diffraction and relatively weak temporal dispersion. Using the

slowly varying envelope approximation and neglecting the dispersion of the nonlinear part of

the response of the medium we obtain the system of parabolic equations for the envelopes

of both harmonics. We also derive integrals of motion of this system. To solve it numerically

we construct a nonlinear finite-difference scheme based on the Crank-Nicolson method pre-

serving the integrals. Primarily, we focus our investigations on the processes of a two-com-

ponent light bullets generation. We demonstrate that the generation of a coupled pair is

possible in a planar waveguide even at normal group velocity dispersion.

1. Introduction

Propagation of waves in a homogeneous boundless medium is an idealization which is rarely

found in nature. In most cases, the properties of the medium vary in space and this leads to a

significant change in the nature of wave propagation.

Sometimes it is reasonable to add inhomogeneity to reach a desirable scenario of wave

propagation. For instance, it is widely known that multi-dimensional light bullets are highly

unstable in a homogeneous medium with Kerr nonlinearity. However, if we use an inhomoge-

neous Kerr medium, where the linear part of the refraction index depends on transverse coor-

dinates, the wave collapse can be prevented [1–4]. The interplay between dispersion,

diffraction, index inhomogeneity and Kerr nonlinearity was considered in detail in these

papers. It was shown that, it is possible to form light bullets in a gradient nonlinear medium in

the regime of self-defocusing and normal dispersion [3].

Light bullets at quadratic nonlinearity are more attractive than at cubic one [4]: they have a

lower excitation threshold, they are more stable. Multi-component optical solitons at quadratic

nonlinearity were firstly predicted in 1974 [5] when it was demonstrated that one-dimensional

spatial or temporal pulse spreading could be compensated by linear self-compression. To date,

the theory of multi-dimensional multi-component quadratic solitons has been essentially

developed.
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Spatio-temporal solitons, called also light bullets, were carefully studied either theoretically

or experimentally by numerous researchers [4, 6, 7]. Recently, in [8, 9] we presented a detailed

theory of breathing light bullets in a homogeneous medium with quadratic nonlinearity at

anomalous dispersion. Using the averaged Lagrangian method, we derived approximate ana-

lytical solutions in the form of two-component planar spatio-temporal solitons. Besides that,

an appropriate physical model was suggested for the THz range and anomalous dispersion at

both frequencies.

It is known that stable multi-component optical solitons at quadratic nonlinearity are usu-

ally observed under anomalous dispersion. Including normal dispersion in consideration, one

may enlarge the range of frequencies of wave localization. However, the problem of simulta-

neous compensation of either nonlinear or linear effects is a challenging one. By linear effects

we mean diffraction and normal dispersion stretching a wave packet. As it has been already

mentioned above, waveguides demonstrate a remarkable ability to support multi-dimensional

soliton structures in the media with Kerr nonlinearity [1–4]. Their geometry may be chosen in

such a way that it may play either focusing or defocusing role and compete with stretching ten-

dencies. The idea to apply a similar approach to the medium with quadratic nonlinearity

seems to be a promising one.

The present study of light bullets in a planar waveguide at quadratic nonlinearity is under-

taken as a logical continuation of our previous investigations for homogeneous media [8, 9]. A

crucial role of the competition between quadratic nonlinearity, dispersion, diffraction and

inhomogeneity was discussed shortly in [10, 11].

In this paper we carefully discuss physical features of the second harmonic generation pro-

cess in a gradient waveguide, taking into account diffraction and relatively weak temporal dis-

persion. Primarily, we focus on the process of the second harmonic generation (SHG) and the

birth of a coupled pair (two-component light bullet). Using the slowly varying envelope

approximation and neglecting dispersion of the nonlinear part of the medium response, we

develop a governing system of equations for SHG in a waveguide with transverse inhomogene-

ity. We prove this system possesses two motion integrals. Thus, a numerical algorithm used

for simulation must preserve difference analogs of these integrals [12,13]. Besides that, we are

dealing with a multidimensional problem and, therefore, it is especially important to use algo-

rithms that save time. Usually the splitting technique is applied to this purpose (see [12, 14, 15]

and references therein). But such algorithms are not appropriate if it is necessary to preserve

motion integrals of the class of problems to which the considered problem belongs [16]. Two

other general approaches to the construction of numerical methods for the Schrӧdinger equa-

tions exist, namely, Fast Fourier Transform (FFT) (see also [17]) and multi-grid (MG) tech-

niques [15, 17]. Splitting technique, FFT and MG are compared in [15]. Efficiency of MG and

FFT are found close to each other. FFT methods were successfully applied to the problems of

nonlinear optics [6, 18, 19]. But even FFT solvers are not sufficiently efficient in the case of 2D

+1 or 3D+1 problems. Instead of them, multi-step iterative procedures could be applied for the

implementation of multi-dimensional conservative difference scheme. In [20,21] a two-step

iterative algorithm is proposed for a model describing the process of femtosecond optical pulse

propagation in semiconductors. As the Crank-Nicolson method is used in this approach, it is

conservative and is promising in efficiency which is comparable with that of the splitting tech-

nique. Thus, for the problem under consideration in our study we construct a conservative

nonlinear finite-difference scheme and develop a multi-step iterative algorithm for its

implementation.

The paper is organized as follows. In Sec. 2, using the quasi-optical approach, we introduce

the governing equations’ system and consider in detail the way which we utilize for the

description of transversal inhomogeneity. In Sec. 3 we describe the numerical algorithm used
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to perform direct numerical simulation and discuss its properties. Results of direct numerical

simulation are discussed in Sec. 4. Sec. 5 contains the conclusions.

2. Equation system of SHG in a waveguide

2.1. Quasi-optical approach

The way to derive the equation describing the interplay between dispersion, diffraction, inho-

mogeneity, and nonlinearity was described in detail in [3] for Kerr nonlinearity. There the

authors started from Maxwell’s equations supplemented by the dependence of the refractive

index on carrier frequency and transversal coordinates. Then a standard procedure was ful-

filled, the paraxial and the slowly varying envelope approximations were applied. It is impor-

tant to underline that the equation for a slowly varying envelope obtained in that paper is

similar to the standard multidimensional nonlinear Schrodinger equation (NLSE) except the

only one additional term due to nonlinear medium inhomogeneity.

In the present work for the consideration of the SHG in a quadratically nonlinear wave-

guide we applied about the same procedure.

To describe waveguide geometry we represent the linear frequency susceptibility χω(r?) in

the form

woðr?Þ ¼ w
ð0Þ

o
½1þ foðr?Þ�:

Here r? is the transverse radius-vector perpendicular to the central axis of the waveguide, wð0Þ
o

is the linear susceptibility of the medium at the center of the waveguide cross section; the

dimensionless function fω(r?) characterizes the transverse inhomogeneity of the susceptibility

and satisfies the condition fω(0) = 0.

Similar to [3], the paraxial approximation is also applied. We assume that both harmonics

propagate along the z-axis, and at that, we suppose the linear group velocities vðoÞg and vð2oÞg

(envelope carrier frequencies ω and 2ω correspondingly) at the center of the waveguide (r? =

0) are related by the following inequality

jvð2oÞg � vðoÞg j< < vð2oÞg ; vðoÞg :

Provided inhomogeneity, nonlinearity, dispersion, and diffraction are weak, we use the

slowly varying envelope approximation [22]. The resulting system of equations for the enve-

lopes of the fundamental F1 and second F2 harmonics looks as follows:

i
@F1

@z
þ d

@F1

@t

� �

¼ og1ðr?ÞF1 �
bo
2

@2F1

@t2
þ aoF

�

1
F2e

ið2k1� k2Þz þ
c

2onð0Þo
D?F1;

i
@F2

@z
� d

@F2

@t

� �

¼ 2og2ðr?ÞF2 �
b2o

2

@2F2

@t2
þ a2oF

2

1
e� ið2k1 � k2Þz þ

c
4onð0Þ2o

D?F2:

ð1:1Þ

In (1.1) t ¼ t � 1

2

1

vðoÞg
þ 1

vð2oÞg

� �

, t is time,

g1ðr?Þ ¼
nð0Þ2
o
� 1

2cnð0Þo
foðr?Þ; g2ðr?Þ ¼

nð0Þ22o � 1

2cnð0Þ2o

f2oðr?Þ: ð1:2Þ

fω(r?) and f2ω(r?) are the dimensionless functions satisfying the condition fω(0) = f2ω(0) = 0,

d ¼ 1

2

1

vðoÞg
� 1

vð2oÞg

� �

is the mismatch of group velocities, k1 = k(ω) and k2 = k(2ω) are the wave

numbers, corresponding to the fundamental frequency ω and second harmonics 2ω,
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respectively. βω and β2ω are the parameters of the dispersion of group velocities (DGV), nð0Þ
o

and nð0Þ2o are the refractive indexes at the center of the waveguide cross section of the fundamen-

tal and second harmonics, respectively, c is the speed of light in vacuum, Δ? is the transversal

Laplacian, ao ¼
2po

cnð0Þo
wð2Þð2o; � oÞ, a2o ¼

4po

cnð0Þ
2o

wð2Þðo;oÞ. χ(2)(2ω,−ω) and χ(2)(ω,ω) are the sec-

ond order nonlinear optical susceptibilities at the waveguide center.

The first and second terms in the right-hand sides of Eq (1.1) describe the effect of the

waveguide (transverse inhomogeneity) on the phase and group velocities of the harmonics,

respectively. Spatial inhomogeneity of the linear refractive indices for both harmonics in (1.1)

is taken into account in the same way as it was done in [3, 4] when studying the waveguide

propagation mode of the soliton of the NLSE.

Putting in (1.1) g1,2 = 0, we come to the well-known system of equations for the pulsed

mode of SHG in a homogeneous medium [23,24].

Dependences of the refractive indexes nω,2ω on the transverse coordinates r? of the wave-

guide are expressed through the functions fω,2ω(r?) as follows:

n2

o;2o
ðr?Þ ¼ 1þ ðnð0Þ2o;2o � 1Þð1þ fo;2oðr?ÞÞ: ð1:3Þ

If we deal with a focusing waveguide, then the functions fω(r?) and f2ω(r?) decrease from

the center to the periphery. In the opposite case, the waveguide is defocusing. Below we con-

sider planar waveguides, i.e. Δ? = @2/@x2 and fω,2ω = fω,2ω(x), the profiles of the waveguide

functions are conveniently chosen, for example, in the form of parabolic profile with satura-

tion:

fo;2oðxÞ ¼ εw
x2

a2
o;2o
þ x2

: ð1:4Þ

Here x is the distance from the centre of the waveguide to a current point in transversal direc-

tion, εw = 1 for the defocusing waveguide and εw = −1 for the focusing waveguide.

In addition, we can consider profiles in the forms

fo;2oðxÞ ¼ εwtanh
2 x

ao;2o

 !

ð1:5Þ

or

fo;2oðxÞ ¼ εw 1 � exp �
x2

a2
o;2o

 !" #

: ð1:6Þ

Note that in the case of focusing waveguides (εw = −1) the transverse susceptibility profiles

(see (1.3)) for the dependences (1.4), (1.5) and (1.6) have the Lorentzian, exponential and

Gaussian modes, respectively:

n2

o;2o
ðxÞ ¼ 1þ ðnð0Þ2o;2o � 1Þ

a2
o;2o

a2
o;2o
þ x2

; ð1:7Þ

n2

o;2o
ðxÞ ¼ 1þ ðnð0Þ2o;2o � 1Þsech2 x

ao;2o

 !

; ð1:8Þ
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n2

o;2o
ðxÞ ¼ 1þ ðnð0Þ2o;2o � 1Þexp �

x2

a2
o;2o

 !

: ð1:9Þ

In all these cases, the refractive indexes nω,2ω(x) decrease from the maximum value at the

center of the waveguide (at x = 0) to unity at its periphery (at x!1).

2.2. Dimensionless equations and integrals of motion

We still consider a planar (Δ? = @2/@x2) waveguide and use dimensionless parameters related

to the physical parameters in the following way: F1,2 = A1,2Ain, z ¼ �zlnl, x ¼ �xRin, t ¼ �ttin,

D�k ¼ Dklnl, Δk = 2k1−k2, lnl = (αωAin)−1, ao;2o ¼ Rin�ao;2o. Here Ain is the input peak amplitude

of the fundamental harmonic, Rin and τin are initial pulse spatial and temporal widths, respec-

tively. We introduce also the following propagation and waveguide characteristics: Dq1 ¼
2polnl
cnð0Þo �a2

o

wð0Þ
o

, Dq2 ¼
4polnl

cnð0Þ
2o

�a2
2o

w
ð0Þ

2o , Dt1 ¼
bo lnl
2t2in

, Dt2 ¼
b2o lnl
2t2in

, Dx1 ¼
clnl

2onð0Þo R2
in
, Dx2 ¼

clnl
4onð0Þ

2o
R2
in
, γ = α2ω/αw, aw and

a2ω are the characteristic lengths of waveguide transversal inhomogeneity. Then, we suppose the

group velocity matching conditions are satisfied (vðoÞg ¼ vð2oÞg ¼ vg). Finally, we get the following

system of the dimensionless equations which we use as a base for our numerical simulation:

i
@A1

@�z
¼ Dq1p1ð�xÞA1 � Dt1

@2A1

@�t2
þ A�

1
A2e

iD�k�z þ Dx1

@2A1

@�x2
;

i
@A2

@�z
¼ Dq2p2ð�xÞA2 � Dt2

@2A2

@�t2
þ gA2

1
e� iD�k�z þ Dx2

@2A2

@�x2
;

0 < z < Lz; ð�x; �tÞ 2 G;G ¼ � Lx=2 < �x < Lx=2f g � f� Lt=2 < �t < Lt=2g: ð2:1Þ

Boundary and initial conditions are as follows.

A1;2ð�z; � Lx=2; �tÞ ¼ A1;2ð�z; Lx=2; �tÞ ¼ A1;2ð�z; �x; � Lt=2Þ ¼ A1;2ð�z; �x; Lt=2Þ ¼ 0;

A1ð0; �x; �tÞ ¼ A10ð�x; �tÞ;A2ð0; �x; �tÞ ¼ A20ð�x; �tÞ: ð2:2Þ

In (2.1)–(2.2) Lz is the dimensionless length of the nonlinear medium, Lτ is the dimensionless

time interval during which laser pulse interaction with the medium is analyzed. Lx is the dimen-

sionless length of the transversal domain. We choose finite lengths of the transversal coordinate

and time with zero conditions at the boundaries of these coordinates from the following consid-

erations. Since we deal with a finite pulse, it is naturally to take a sufficiently long time interval

whose boundaries are not influenced by the pulse. Besides, the transversal size of the studied

bullet is also finite due to narrow laser radiation. Thus, we can choose a wide transversal domain

with boundaries which are not affected by radiation. Obviously, this choice assumes the need to

monitor the fulfillment of zero boundary conditions, and, if necessary, a widening of the

computational domain. It may cause specific computational difficulties, which nevertheless, can

be eliminated by imposing artificial boundary conditions (see [25] and references therein).

In (2.1) p1,2 are dimensionless functions describing waveguide inhomogeneity and corre-

sponding to (1.4)–(1.6). Below we discuss simulation with

p1;2 ¼
�x2

�a2
o;2o

; ð2:3Þ
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p1;2 ¼
�x2

1þ �x2=�a2
o;2o

; ð2:4Þ

p1;2 ¼ �a � 2

o;2o
tanh2 �x

�a
o;2o

 !

; ð2:5Þ

p1;2 ¼ �a � 2

o;2o
1 � exp �

�x2

�a2
o;2o

 !" #

: ð2:6Þ

Here �x is the distance from the center of the waveguide to the current point. In general, aω and

a2ω are not equal to each other (ao;2o ¼ �ao;2oRin). Form (2.3) describes a waveguide with para-

bolic profile, (2.4)–(2.5) correspond to profiles with Lorentzian (2.4), tangential (2.5), and

exponential (2.6) saturation. Below we will omit bars in the notations of dimensionless

variables.

The system (2.1)–(2.2) possesses the motion integrals

I1 ¼ ∬dxdt
1

� 1

ðgjA1j
2
þ jA2j

2
Þ; ð2:7Þ

I3 ¼ ∬dx
1

� 1

dtf� 2gjA2

1
A2jcosð2φ1

� φ
2
Þ þ DkjA2j

2
þ 2gDx1

�
�
�
@A1

@x

�
�
�
2

þ Dx2

�
�
�
@A2

@x

�
�
�
2

�

� 2gDt1

�
�
�
@A1

@t

�
�
�
2

� Dt2

�
�
�
@A2

@t

�
�
�
2

� 2gDq1p1ðxÞ
�
�
�A1

�
�
�
2

� Dq2p2ðxÞ
�
�
�A2

�
�
�
2

g

ð2:8Þ

In (2.8) φ1,2 are the wave phases. To derive (2.7) we multiply the equations of (2.1) by

gA�
1
;A�

2
correspondingly, then integrate both parts of these transformed equations with respect

to x,τ, sum them up and take real parts of all components. Finally we get the equality (2.7)

expressing a law of energy conservation. At the next step we proceed, multiplying the equa-

tions of (2.1) by 2g
@A�

1

@z ;
@A�

2

@z correspondingly. Then we repeat the successive steps used when

receiving (2.7), but at the last step we take imaginary parts of all components. So, we obtain

(2.8) concerning the evolution of the phases of harmonics.

3. Numerical approach

3.1. Approximation of the equations

We introduce uniform grids in the domain Γ and in the z domain:

oG ¼ ox � ot ¼ fðxj; tkÞ ¼ ðjhx � Lx=2; kht � Lt=2Þ; j ¼ 1; 2; . . . ;Nx � 1; k ¼ 1; 2; . . . ;Nt � 1; hx ¼ Lx=Nx; ht ¼ Lt=Ntg;

oz == fzl ¼ lhz; l ¼ 1; 2; . . . ;Nz � 1; hz ¼ Lz=Nzg:
ð3:1Þ

A numerical approximation to the exact solution of the problem (2.1)–(2.2) Al;j;k
1;2 ¼

A1;2ðzl; xj; tkÞ we consider on the grid ωz×ωΓ and denote it byC
l;j;k
1;2
¼ C1;2ðzl; xj; tkÞ. To

approximate first- and second-order derivatives with respect to x and τ we use the standard

expressions: C
l;j;k
1;2 �tt ¼

C
l;j;kþ1

1;2
� 2C

l;j;k
1;2
þC

l;j;k� 1

1;2

h2
t

and C
l;j;k
1;2 �xx ¼

C
l;jþ1;k
1;2

� 2C
l;j;k
1;2
þC

l;j� 1;k
1;2

h2
x

are used for
@2A1;2

@t2
and

@2A1;2

@x2 . We also introduce the notation for the half-sums: C
l;j;k
1;2

0:5
¼ ðC

lþ1;j;k
1;2
þC

l;j;k
1;2
Þ=2. Then we

write down the following nonlinear symmetric finite difference scheme in the case of phase
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matching (Δk = 0):

C
lþ1;j;k
1
� C

l;j;k
1

hz
� iDt1C1�tt

0:5
l;j;k

þ i ðCl;j;k
1
Þ
�

0:5

C
l;j;k
2

0:5

¼

� iDq1p1ðxjÞC1

0:5
l;j;k

� iDx1C1�xx

0:5
l;j;k

;

C
lþ1;j;k
2
� C

l;j;k
2

hz
� iDt2C2�tt

0:5 l;j;k

þ i gðCl;j;k
1
Þ

2
0:5

¼

� iDq2p2ðxjÞC2

0:5 l;j;k

� iDx2C2�xx

0:5 l;j;k

: ð3:2Þ

Initial and boundary conditions are approximated exactly.

C1;2ðzl; � Lx=2; tkÞ ¼ C1;2ðzl; Lx=2; tkÞ ¼ C1;2ðzl; xj; � Lt=2Þ ¼ C1;2ðzl; xj; Lt=2Þ

¼ 0;C1ð0; xj; tkÞ ¼ C10ðxj; tkÞ;C2ð0; xj; tkÞ ¼ C20ðxj; tkÞ: ð3:3Þ

This scheme is known to be of the second order of approximation with respect to all coordi-

nates [12–14]. It is easily generalized to the case of phase mismatch (Δk6¼0).

3.2. Two-step iterative process

Nonlinear scheme (3.2)–(3.3) can be resolved with the help of an iteration process [12]. But

the computational complexity of the direct matrix inversion after linearization makes such an

approach practically useless [12, 15]. FFT technique [15, 19] is not straightforward in the case

under consideration due to the x-dependent coefficients p1,2 in (3.2). Therefore, we develop

the approach proposed in [20, 21] and write down the following two-step iteration process for

the implementation of (3.2)- (3.3).

At the first step we seek for the iteration (s+1) of the difference functions C
sþ1

1;2

lþ 1; j; k
:

C1

sþ1 lþ1;j;k

� C
l;j;k
1

hz

� iDt1C1�tt

0:5
Sþ1 l;j;k

þ i ðCl;j;k
1
Þ
�

0:5
S

C
l;j;k
2

0:5
S

¼

� iDq1p1ðxjÞC1

0:5
S l;j;k

� iDx1C1�xx

0:5
S l;j;k

; ð3:4Þ

C
sþ1

2
lþ1;j;k � C

l;j;k
2

hz

� iDt1C2�tt

0:5
sþ1 l;j;k

þ ig ðCl;j;k
1
Þ

2
0:5
s

¼ � iDq2p2ðxjÞC2

0:5
s l;j;k

� iDx2C2�xx

0:5
s l;j;k

:C
sþ1

1;2ðzl; � Lx=2; tkÞ ¼ C
sþ1

1;2ðzl; Lx=2; tkÞ

¼ C
sþ1

1;2ðzl; xj; � Lt=2Þ ¼ C
sþ1

1;2ðzl; xj; Lt=2Þ ¼ 0;C
s¼0

1;2

l þ 1; j; k
¼ C

l;j;k

1;2
:ð3:5Þ

At the second step we complete the procedure at the current iteration cycle finding

C
sþ2

1;2

lþ 1; j; k
:
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C1

sþ2
lþ1;j;k

� C
l;j;k
1

hz

� iDt1C1�tt

0:5
Sþ1 l;j;k

þ i ðCl;j;k
1
Þ
�

0:5
Sþ1

C
l;j;k
2

0:5
Sþ1

¼ � iDq1p1ðxjÞC1

0:5
Sþ1 l;j;k

� iDx1C1�xx

0:5
Sþ2 l;j;k

; ð3:6Þ

C
sþ2

2
lþ1;j;k � C

l;j;k
2

hz

� iDt2C2�tt

0:5
sþ1 l;j;k

þ ig ðCl;j;k
1
Þ

2
0:5
sþ1

¼ � iDq2p2ðxjÞC2

0:5
sþ1 l;j;k

� iDx2C2�xx

0:5
sþ2 l;j;k

:C
sþ2

1;2ðzl; � Lx=2; tkÞ ¼ C
sþ2

1;2ðzl; Lx=2; tkÞ

¼ C
sþ2

1;2ðzl; xj; � Lt=2Þ ¼ C
sþ2

1;2ðzl; xj; Lt=2Þ ¼ 0: ð3:7Þ

We see that at each step of the iteration process we deal with one-dimensional problem. Thus,

matrix inversion in (3.4)–(3.7) can be made with the help of the tridiagonal matrix algorithm,

and in general, the proposed method is time-saving. The iteration procedure stops when the

criterion max
0�j�Nx ;0�k�Nt

jC
sþ2

1;2
lþ1;j;k � C

s

1;2
lþ1;j;kj � ε; where ε is a constant determining computation

accuracy.

Theorem 3.1. Provided that hz�C(hxhτ)2 the unique solution of the difference scheme (3.2)-
(3.3) exists and the two-step iteration process (3.4)-(3.7) converges to it as a geometric progression
with the denominator q�hz/(hxhτ)

2.

Proof. The proof is made with the help of the contraction mapping theorem. We have to

demonstrate that (3.4)–(3.7) is a contraction, i.e that all iterations are uniformly limited and

that in a certain difference norm k�k(h)

�
�
�C

sþ2

1;2
lþ1;j;k � C

sþ1

1;2
lþ1;j;k

�
�
�
ðhÞ
� q
�
�
�C

sþ1

1;2
lþ1;j;k � C

s

1;2
lþ1;j;k

�
�
�
ðhÞ
: ð3:8Þ

Passing to the difference norm C

�
�
�C

s

1;2
lþ1

�
�
�

CðhÞ
¼ max

0�j�Nx ;0�k�Nt

�
�
�C

s

1;2
lþ1;j;k

�
�
�;

we use at each step of the iteration process the Cauchy–Bunyakovsky–Schwarz inequality, esti-

mate the inverse norm of the difference operators F�xx and F�tt [12]. This procedure allows us

firstly, to show that the iterations are uniformly limited if hz�C(hxhτ)2. Then, considering con-

secutively the iteration differences

�
�
�C

sþ1

1;2
lþ1 � C

s

1;2
lþ1;

�
�
�

CðhÞ
,

�
�
�C

sþ2

1;2
lþ1 � C

sþ1

1;2
lþ1;

�
�
�

CðhÞ
, and using

similar estimations, we get the inequality (3.8).

3.3. Conservativeness

Theorem 3.2. The scheme (3.1)-(3.2) is conservative: it preserves the following difference ana-
logues of the integrals (2.7)-(2.8) in the norm

kFk2

L2ðhÞ ¼ ðF; FÞðhÞ; ðF;GÞðhÞ ¼
XNx

j¼0

XNt

k¼0

Fj;kðGj;kÞ
�hxht :

I1ðhÞ ¼ gkC
lþ1

1
k

2

L2ðhÞ þ kC
lþ1

2
k

2

L2ðhÞ;

ð3:9Þ
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I3 ¼ � 2g

�
�
�ðC

lþ1

1
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jC
lþ1

2
cosð2argðClþ1

1
Þ � argðClþ1

2
ÞÞj

q �
�
�

L2ðhÞ
þ DkkClþ1

2
k

2

L2ðhÞ þ 2gDx1kC
lþ1

1 x k
2

L2ðhÞ

þ þDx2kC
lþ1

2 xk
2

L2ðhÞ � 2gDt1kC
lþ1

1 tk
2

L2ðhÞ � Dt2kC
lþ1

2 tk
2

L2ðhÞ � 2gDq1p
j
1kC

lþ1

1
k

2

L2ðhÞ

� Dq2p
j
2kC

lþ1

2
k

2

L2ðhÞ ð3:10Þ

In (3.10) C
lþ1

1;2t
¼

C
lþ1;j;kþ1

1;2
� C

lþ1;j;k� 1

1;2

2ht
,C

lþ1

1;2t
¼

C
lþ1;jþ1;k
1;2

� C
lþ1;j� 1;k
1;2

2hx
.

Proof. We follow the procedure described in [13]. Multiplying both parts of the first equa-

tion of (3.1) by ðgC
l;j;k
1

0:5

Þ
�hxht and both parts of the second equation by ðC

l;j;k
2

0:5

Þ
�hxht and sum-

ming them up with respect to x and τ, we take the real parts of the resulting expressions.

Then we apply the difference analogue of the integration by parts formula [12] and finally,

get (3.8).

We use a similar procedure for the integral (2.3). But to derive (3.9) we multiply both equa-

tions of (3.1) by
ðgC

lþ1;j;k
1

Þ�� ðgC
l;j;k
1
Þ�

hz
,
ðC

lþ1;j;k
2

Þ�� ðC
l;j;k
2
Þ�

hz
, sum them up with respect to x, τ and take the

imagine parts of the obtained equations.

4. Numerical simulation in a planar waveguide and discussion

4.1. Initial pulse and absorbing boundary conditions

In this Section we discuss the outcome of a direct numerical simulation of the system (2.1) on

the base of the finite-difference scheme (3.2). In computations we launch the initial pulse at

both frequencies

A
1
ðz ¼ 0Þ ¼ expð� x2 � t2Þ; A2ðz ¼ 0Þ ¼

1

2
expð� x2 � t2Þ ð4:1Þ

or at the fundamental frequency only

A
1
ðz ¼ 0Þ ¼ expð� x2 � t2Þ; A2ðz ¼ 0Þ ¼ 0: ð4:2Þ

Implementing calculations we usually choose Lx and Lτ so that the amplitudes of both harmon-

ics decay to zero at the boundaries of this domain. In particular cases, when Lx and Lτ are too

large, the efficiency of the method can be improved by using absorbing boundary conditions

along the coordinates x and τ. To this end we embed an artificial absorption in the system

(2.1)

i
@A1

@z
¼ Dq1p1ðxÞA1 � isðx; tÞA1 � Dt1

@2A1

@t2
þ A�

1
A2e

iDkz þ Dx1

@2A1

@x2
; ð4:3Þ

i
@A2

@z
¼ Dq2p2ðxÞA2 � isðx; tÞA2 � Dt2

@2A2

@t2
þ gA2

1
e� iDkz þ Dx2

@2A2

@x2
; ð4:4Þ

defining the function σ(x,τ) = σmin(σx(x)+στ(τ)), where

sxðxÞ ¼

0; � Lx=2þ xab < x < Lx=2 � xab

expð� ð� Lx=2þ xab � xÞεxÞ; x < � Lx=2þ xab

expð� ðLx=2 � xab þ xÞεxÞ; x > Lx=2 � xab

;

8
>><

>>:
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stðtÞ ¼

0; � Lt=2þ tab < t < Lt=2 � tab

expð� ð� Lt=2þ tab � tÞεtÞ; t < � Lt=2þ tab

expð� ðLt=2 � tab þ tÞεtÞ; t > Lt=2 � tab

:

8
>><

>>:

Fig 1 illustrates our choice of the function σ and the values of the constants included in it as

well. We demonstrate the selection of parameters for σx(x). Our considerations concerning

στ(τ) are similar. In our computations we take the values xab�(0.1�0.2)Lx, τab�(0.1�0.2)Lτ

and the constants σmin�0.01�0.1, εxτ�3�5. Analyzing Fig 1(A), which represents linear dif-

fraction of the pulse, one can see that changing the value of σmin at fixed values of xab, Lx, and

εxτ, we observe the best coincidence with the reference curve obtained with the larger compu-

tational transversal domain (black dotted line) at σmin = 0.1 (green line). Fig 1(B) demonstrates

the choice of optimal εxτ = 5 in a similar way. Here we fix xab, Lx, and σmin and vary εxτ. Param-

eter xab allows us to improve absorption but reduces the useful part of the computational

domain. Values of τab are taken from the considerations of computational efficiency and mini-

mization of the tails’ influence on the bullet formation process. Thus, we can reduce the

computational domain along the transverse coordinates. It is obvious that in such calculations

the integrals (2.7)–(2.8) may not be conserved. Typically we take the domains Lx = 20, Lτ = 30

which are longer than those presented in Fig 1. It seems these dimensions are rather redun-

dant. In fact, in the process of bullet trapping the pulse-beam spreads in time and x and parts

of it which are close to the boundaries of absorption domains may be of intensities comparable

with the peak ones. Chosen dimensions allow us to minimize this effect. At the same time they

are shorter by an order of magnitude than those that should be taken in the absence of absorp-

tion layers.

Our computations are carried out on the basis of the difference scheme described in the

Sec. 3. We choose also the following computational parameters: the step size along the propa-

gation coordinate is hz = 0.001, while the step sizes along space and time coordinates are hx =

0.05, hτ = 0.05. Typical size of the computational domain along z axis in our simulation is Lz =

500.

Fig 1. Linear diffraction of the Gaussian beam of the initial unit radius at the distance z = 10. xab = 0.2, Lx = 2.

Solid black lines in figures (a,b) represent diffraction with zero boundary conditions at the points x = −5 and x = 5, at

that, σmin = 0. Dotted black lines correspond to computations with transversal calculation area which is much larger

than that shown in the figures (a,b), σmin = 0 (reference curves). Beam profile dependence on σmin for εxτ = 5 (a). σmin =

0.01 (red line), σmin = 0.1 (green line), σmin = 1 (blue line). Beam profile dependence on εxτ for σmin = 0.01 (b). εxτ = 2

(red line), εxτ = 5 (green line), εxτ = 7 (blue line).

https://doi.org/10.1371/journal.pone.0220840.g001
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4.2. Simulation of light bullet trapping in different regimes

Since anomalous dispersion supports light bullets in 2D+1 media even without waveguide [6,

8], our principal interest is to investigate waveguide at normal group velocity dispersion. The

simulation and observation are conducted up to z = 500lnl. Such distance is an optimal one to

investigate effects appearing due to the interference of diffraction, dispersion, nonlinearity and

waveguide geometry.

In the first series of numerical experiments, we use a pulse of the Gaussian form at both fre-

quencies (4.1) as a two-component input radiation. This case implies the phase-matching con-

ditions k2 = 2k1 or Δk = 0. We have demonstrated that the regime of robust soliton

propagation is established with the termination of energy exchange approximately at 200lnl.
This propagation is accompanied by regular in-phase oscillations of peak intensities at both

harmonics. The generalized phase F = 2φ1−φ2−Δkz oscillates near optimal value equal to −π.

It also confirms the formation of a stable parametrically coupled pair of solitons and means

that we observe the reactive regime of the classic parametric solitons when there is no energy

exchange between the fundamental and second harmonics [5]. We have examined the tempo-

ral and spatial profiles at z = 500lnl as well. Due to waveguide influence the spatial profile is

narrower than the temporal one. The calculated profiles have been compared with those of the

Gaussian form having the same amplitudes, widths, and durations. This comparison demon-

strates quite a good match between them. Thus, the soliton solution in this case has the form

close to the Gaussian one. In total, in this computational series we have showed the trapping of

a two-component “breathing” light bullet and its stability. One should underline that it forms

at normal dispersion due to waveguide geometry only.

Consecutive processes of SHG and two-component light bullet formation are in the focus

of the second series of our numerical simulation. In this experiment we launch a pulse in the

Gaussian form (4.1) at the fundamental frequency only. Fig 2(A) demonstrates the dependence

of the peak intensities of both harmonics on the propagation coordinate z. Firstly, energy

transfer and second harmonic generation are observed. Approximately at a distance of 100lnl
we see that both waves are trapped in a coupled pair and the regime of robust two-component

soliton propagation is established. As in the previous case wave propagation is accompanied

by regular in-phase oscillations of peak intensities at both harmonics (Fig 2(A)). Peak ampli-

tude maxima are lower than in the previous case due to the lower initial total energy. Fig 2(B)

shows the generalized phase oscillations near optimal value equal to π. In contrast to the previ-

ous case, the optimal generalized phase changes a sign. Note that the generalized phase is cal-

culated as arccos function in the following way. If at a current point it is close to 2π, then at the

next point the value 2πm is added to the calculated value in order to avoid a jump. Thus, at

long distances the phase will be approximately 2πm (m>1 if it increases, or m<−1, if it

decreases). Then, when a soliton is trapped, the phase will be close to π+2πm. The dimension-

less temporal (Fig 2(C)) and spatial (Fig 2(D)) widths of the harmonics oscillates in-phase to

each other and in-anti-phase to the intensity. Due to the influence of waveguide geometry spa-

tial profile (Fig 2(F)) is narrower than a temporal one (Fig 2(E)). Fig 2(G) and Fig 2(H) show

the evolution of temporal and spatial intensity profiles, correspondingly, at the fundamental

frequency along the longitudinal coordinate z.

Fig 3 illustrates the consecutive second harmonic generation and two-component light bul-

let trapping provided a small phase-mismatching. We see that the process of light bullet propa-

gation is rather stable at Δk = 0.1 (Fig 3(A)). If we increase the value of the phase velocity

detuning up to 0.5, it distorts the picture of the formation of a bullet due to a sufficient decay

of the resulting pulse intensity. Even at Δk = 0.15 we observe a soliton close to the stability

limit (Fig 3(B)). High values of phase mismatching prevent SHG. Fig 3(C) represents

Light bullets in a gradient waveguide
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Fig 2. Light bullet formation in the process of SHG at normal dispersion in a focusing waveguide. Input pulse of the

Gaussian form (4.2) is launched at the fundamental frequency only. Peak intensities of the fundamental (red line) and

second (blue line) harmonics vs the propagation distance (a). Generalized phase vs the propagation distance (b). Temporal

width of the fundamental (red line) and second (blue line) harmonics vs the propagation distance (c). Spatial width of the

fundamental (red line) and second (blue line) harmonics vs the propagation distance (d). Transversal profiles of both

harmonics calculated at the distance z = 500 (black solid lines) (e), (f), the approximations of the Gaussian form (4.1)

having the same amplitudes, durations (e) and spatial widths (f) (red and blue dashed lines for the fundamental and

second harmonics, correspondingly). Temporal and spatial profile evolution for the fundamental harmonic (g), (h).

Waveguide with parabolic profile (2.4). Parameters: Dq1 = −0.5, Dq2 = −1.0, Dx1 = 0.1, Dx2 = 0.05, Dτ1 = 0.1, Dτ2 = 0.2,

Δk = 0, γ = 0.5.

https://doi.org/10.1371/journal.pone.0220840.g002
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maximum amplitudes of both harmonics in time and transversal coordinate, which are aver-

aged over the distance from z = 100 to z = 200. It can be seen that, starting from Δk = 0.2, the

averaged maximum amplitudes drastically fall and soliton formation does not occur.

As it was discussed in the Sec. 2.1 the transverse susceptibility profiles may have different

form. The next series of experiments deals with the Lorentzian (Fig 4), tangential (Fig 5) and

Gaussian (Fig 6) modes, respectively. The consecutive SHG and two-component light bullet

formation is demonstrated in all three cases. The most evident confirmation of this fact can be

received when we analyze the behavior of generalized phase–at the distance of 50lnl it begins to

oscillate near optimal value equal to π. Since the waveguide in these cases effectively influences

only on pulse-beams of a finite width, the soliton tails can gradually move away from the pulse

center, a part of the pulse energy gradually goes to the periphery. This results in forming a

quasi-stable bullet little by little losing its energy. In Fig 4(C) and Fig 5(C) it can be seen that

the time profile also strongly deviates from the Gaussian one. At the same time, the generalized

phase experiences significant oscillations, which indicate an obvious deviation of this regime

from the soliton one. For the Gaussian profile (Fig 6), the deviations from the basic test case

(Fig 2) are less noticeable. It may be explained by a good match between initial beam size and

waveguide size.

Fig 7 illustrates a remarkable property of the investigated system to capture both pulses in a

waveguide and to trap a two-component light bullet while initially the waveguide presents at

one frequency only. In this experiment we launch input pulses of the Gaussian form at both

frequencies (4.1), provided waveguide with parabolic profile (2.3) is just at the fundamental

frequency. We see that the bullet energy gradually decreases down to bullet disappearing.

Fig 3. Light bullet formation in the process of SHG at the phase mismatch Δk = 0.1 (a) and the Gaussian pulse

evolution at Δk = 0.15 (b). In (a,b) red lines depict the fundamental harmonic intensities, the blue lines correspond to

those of the second harmonic. Dependence of averaged amplitudes of the first (red line) and second (blue line)

harmonics on phase mismatch. Maximum amplitudes (in time and transversal coordinate) of the first (red line) and

second (blue line) harmonics, averaged over the distance from z = 100 to z = 200 (c). Input pulse of the Gaussian form

(4.2) is launched at the fundamental frequency only. Other parameters are the same as in Fig 2.

https://doi.org/10.1371/journal.pone.0220840.g003
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Fig 4. Peak intensities of the fundamental (red line) and second (blue line) harmonics vs the propagation distance (a).

Generalized phase vs the propagation distance (b). Transversal profiles of both harmonics calculated at the distance

z = 500 (black solid lines) (c), (d), the approximations of the form (4.1) with the maximum intensity and temporal (c)

and spatial (d) widths of the calculated first and second harmonics (red blue dashed lines). The Gaussian input pulse at

the fundamental frequency (4.2) is launched into the waveguide with the Lorentzian profile (2.4). Parameters: Dq1 =

−0.5, Dq2 = −1.0, Dx1 = 0.1, Dx2 = 0.05, Dτ1 = 0.1, Dτ2 = 0.2, Δk = 0, γ = 0.5.

https://doi.org/10.1371/journal.pone.0220840.g004

Fig 5. The same as in Fig 4 but waveguide has a tangential profile (2.5).

https://doi.org/10.1371/journal.pone.0220840.g005
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Fig 6. The same as in Fig 4 but waveguide has the Gaussian profile (2.6).

https://doi.org/10.1371/journal.pone.0220840.g006

Fig 7. Peak intensities of the fundamental (red line) and second (blue line) harmonics vs the propagation distance (a).

Generalized phase vs the propagation distance (b). Temporal width of the fundamental (red line) and second (blue

line) harmonics vs the propagation distance (c). Spatial width of the fundamental (red line) and second (blue line)

harmonics vs the propagation distance (d). Input pulses of the Gaussian form at both frequencies (4.1), waveguide with

parabolic profile (2.3) is at the fundamental frequency only. Parameters: Dq1 = −0.5, Dq2 = 0, Dx1 = 0.025, Dx2 = 0.0125,

Dτ1 = 0.1, Dτ2 = 0.2, Δk = 0, γ = 0.5.

https://doi.org/10.1371/journal.pone.0220840.g007
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However, one should note that the distance of total bullet destruction is not so small–it is

equal approximately to 30 dispersion lengths. It is worthwhile to underline once again that

provided normal dispersion, trapping of a two-component light bullet is impossible in the

absence of a waveguide at least at the fundamental frequency.

5. Conclusions

To trap multi-component light bullets at normal dispersion of group velocities one should bal-

ance nonlinearity, dispersion, and diffraction. It is a challenging problem requiring the pres-

ence of an additional “power” compressing the pulses. Waveguides may play such a positive

role, therefore, it was reasonable to investigate in detail a possibility of spatial-temporal soli-

tons formation and propagation in a waveguide with quadratic nonlinearity.

Using the quasi-optical approach, we introduce a system of equations describing the propa-

gation of pulse-beams in gradient waveguides. Numerical method for direct system simulation

in the planar case is developed. A distinctive feature of the method is the preservation of the

integrals of motion which are intrinsic to the governing system. Numerical simulation has

been performed for various sets of parameters. Since light bullets at anomalous dispersion

form and propagate even without waveguide, our principal interest was to investigate wave-

guide at normal group velocity dispersion. The formation of optical bullets has been shown

when launching the input Gaussian pulse at both frequencies and at the fundamental fre-

quency only as well. Besides that, we have computed the cases of phase mismatch and various

types of waveguide profiles, in which soliton solutions also trapped. If a waveguide is only at

the fundamental frequency, the formation of soliton-like solutions manifests itself too but its

energy is gradually decreased. Nevertheless, as a whole it spreads to tens of dispersion lengths.

In general, the simulations performed show a possibility of the existence of optical bullets and

quasi-soliton solutions in the presence of normal dispersion in quadratically nonlinear wave-

guides under various conditions.
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