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Abstract

Few studies have described winter microclimate selection by bats in the southern United

States. This is of particular importance as the cold-adapted fungus, Pseudogymnoascus

destructans, which causes the fatal bat disease white-nose syndrome (WNS), continues to

spread into southern United States. To better understand the suitability of winter bat habitats

for the growth of P. destructans in this region, we collected roost temperature and vapor

pressure deficit from 97 hibernacula in six ecoregions in Texas during winter 2016–17 and

2017–18. We also measured skin temperature of Rafinesque’s big-eared bats (Corynorhi-

nus townsendii), Townsend’s big-eared bats (C. townsendii), big-brown bats (Eptesicus fus-

cus), southeastern myotis (Myotis austroriparius), cave myotis (M. velifer), tri-colored bats

(Perimyotis subflavus), and Mexican free-tailed bats (Tadarida brasiliensis) during hiberna-

tion to study their use of torpor in these habitats. We found that temperatures within hiber-

nacula were strongly correlated with external air temperatures and were often within the

optimal range of temperatures for P. destructans growth. Hibernacula and skin tempera-

tures differed among species, with Rafinesque’s big-eared bats, southeastern myotis, and

Mexican free-tailed bats occupying warmer microclimates and having higher torpid skin tem-

peratures. For species that were broadly distributed throughout Texas, hibernacula and skin

temperatures differed within species by ecoregion; Tri-colored bats and cave myotis in

colder, northern regions occupied colder microclimates within hibernacula and exhibited

colder skin temperatures, than individuals of the same species in warmer, southern regions.

These data illustrate the variability in microclimates used as hibernacula by bats in Texas

and suggest similar variation in susceptibility to WNS in the state. Thus, monitoring microcli-

mates at winter roosts may help predict where WNS may develop, and where management

efforts would be most effective.

Introduction

The choice of overwintering habitat has numerous impacts on mammalian hibernators. Suit-

able hibernacula must provide an appropriate thermal environment. Defining appropriate

thermal habitats has been the focus of research for decades, as the temperatures inside
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hibernacula profoundly influence the metabolic rates, and, therefore, the energy budgets of

mammalian hibernators [1–3]. During torpor, metabolic rates decline with ambient tempera-

tures until conditions fall below a hibernator’s thermoregulatory set point, at which point met-

abolic rate increases [1]. Although this relationship indicates that there are temperatures

where energetic savings are greatest, hibernators often select greater temperatures for both

energetic and non-energetic reasons [4–6]. Thus, habitat selection is central to the winter ecol-

ogy and physiology for mammalian hibernators, and an understanding of this process can

help predict how species will be affected by continued environmental change [7].

Many studies of North American subterranean bat species are focused on regions with cold

winter climates (e.g., [8–9]), with less research conducted in warmer, more southern regions

of the continent [10–12]. However, research outside of North America shows that seasonal tor-

por is not limited to cold climates or areas with severe winters. Hibernation in warmer cli-

mates appears to be typified by short bouts of torpor and relatively high torpid body

temperatures [13]. Although energetic challenges of winter in these warm regions may seem

less compelling than the challenges posed by colder climates, the use of seasonal torpor in sub-

tropical regions provides testament to its importance in the life cycles of many mammals [13–

17].

Unfortunately, microclimates suitable for hibernation may also place bat species in North

America at risk to white-nose syndrome (WNS) [18–20]. WNS is an emerging infectious dis-

ease of North American bats caused by the cold-tolerant fungus, Pseudogymnoascus destruc-
tans, which thrives in caves, underground mines, and other features that many bats use as

hibernacula [18, 21–22]. P. destructans infects dermal tissue of hibernating bats, leading to

dehydration and death [23–25]. The fungus has spread rapidly from where it was first docu-

mented in North America in New York State in 2006, annually spreading to new regions [18,

26–27]. P. destructans grows optimally between 12.5˚ and 15.8˚ C, although it can persist at

temperatures from 3.0–19˚ C [20]. Thus, P. destructans can survive in a range of habitats that

are important for bats during hibernation and is likely to continue to spread to new regions

and cause mass mortalities [28].

Because the effects of WNS vary among species and environmental temperatures [19, 29–

30], a detailed understanding of winter habitats used by different species in different regions is

needed as the causative fungus continues to spread. The need for these data is illustrated by the

recent spread of P. destructans into southern United States, including Texas [31–33] where it is

still uncertain if bats will develop WNS, and if so, how severe mortality might be. Although

Texas bats first tested positive for P. destructans during spring 2017, no WNS mortalities or

bats with histopathological symptoms of the disease have been confirmed in the state [31–33].

Understanding the unique winter ecologies of WNS-susceptible species in the southern United

States is therefore imperative in understanding the spread of P. destructans and determining

species and regions most at risk from WNS.

Based on existing studies, it would be reasonable to predict notably different species-specific

outcomes as WNS expands to hibernacula located in warmer climates such as Texas. Webb

and colleagues [8] summarized inter- and intraspecies variations in the temperatures at which

various bat species were found hibernating. Although most of the data reported were collected

from northern geographic ranges of North America, the authors suggested that species inhab-

iting cold climates can hibernate in colder conditions than species inhabiting warm climates.

This prediction is notable because warmer hibernacula temperatures would likely result in

higher torpid body temperatures, higher torpid metabolic rates, and greater rates of periodic

arousals from torpor [34–36]. If bats in subtropical regions are adapted to frequent arousals

from winter torpor, such as those seen in WNS-affected bats, impacts from the disease may be

less than observed in the temperate region of North America. However, the higher hibernacula
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temperatures that one might expect in the subtropics may result in more favorable conditions

for P. destructans to thrive compared to those farther north [11, 20], potentially resulting in

more severe infections. Thus, WNS pathology in areas such as Texas is difficult to predict in

the absence of data on winter habitat selection and behavior in the region. Despite this need,

few researchers have studied hibernation in southern populations of bat species with broad

distributional ranges [11, 37–39].

To improve our overall understanding of the suitability of bat habitats for P. destructans—
and potentially WNS—in Texas, and to better inform management practices, we described the

microclimates used by seven bat species as hibernacula across the state. We predicted that tem-

peratures inside hibernacula would strongly correlate with external temperatures, and would

be suitable for P. destructans growth. Based on species distribution and previous research on

winter activity [40–42], we predicted that Rafinesque’s big-eared bats (Corynorhinus rafines-
quii), southeastern myotis (Myotis austroriparius), and Mexican free-tailed bats (Tadarida bra-
siliensis) would select microclimate within hibernacula having higher ambient temperatures

and lower vapor pressure deficit (VPD) than all other species, and would subsequently have

warmer torpid skin temperatures. We hypothesized that two species commonly found

throughout Texas, the cave myotis (Myotis velifer) and tri-colored bat (Perimyotis subflavus),
would exhibit variation in their microclimate selection across the state. Because bats hibernat-

ing in cold climates would be exposed to lower ambient roost temperatures, we predicted that

they would therefore have lower skin temperatures than bats in warm climates. Finally, we pre-

dicted that tri-colored bats hibernating in culverts would have higher skin temperatures than

those roosting within caves due to the more exposed and variable conditions present within

culverts.

Materials and methods

All methods followed ASM guidelines [43] and were approved by the Texas A&M Institutional

Animal Care and Use Committee (IACUC 2015–0296).

Study area

We conducted surveys for overwintering bats throughout Texas. Texas exhibits substantial

variation in landscape, environment, latitude and climate, and is characterized by 12 level

III ecoregions [44–46]. Thirty-three bat species have been documented across these ecore-

gions, the richest diversity of bat species found in any state in the United States [47]. We

conducted surveys between November and March of 2016–2017 and 2017–2018 at 97 hiber-

nacula, including 44 caves, 45 culverts, 3 buildings, 3 bat towers, 1 tree, and 1 bat box. We

obtained access to caves through information provided by the Texas Speleological Society

(TSS), Texas Cave Management Association (TCMA), Texas Grottos, Texas Parks and

Wildlife biologists, and private landowners, and obtained access to other sites (i.e., build-

ings, bat towers, tree, and bat box) from landowners and biologists. We obtained informa-

tion on historic culvert bat colonies from previous literature [48–49], from the Texas

Department of Transportation (TxDOT), and from biologists. We randomly selected 77 10

x 10 km grid cells across the state using the Generalized Random Tessellation Stratified

(GRTS) design [50] of the North American Bat Monitoring Program (NABat). Within those

grid cells we surveyed an additional 158 culverts, of which eight contained bats. All sites

included in our study were located across the following six level III ecoregions: Chihuahuan

Deserts, East Central Texas Plains, Edwards Plateau, South Central Plains, Southwestern

Tablelands, and Texas Blackland Prairies (Fig 1).

Winter habitats of Texas bats
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Data collection

We conducted hibernacula surveys between 08:00–17:00 hrs. To reduce disturbance, we col-

lected all data without any animal handling. Upon entrance into the hibernacula, we identified

species present based on visual characteristics and counted the number of bats belonging to

each species. We collected data on all bat species observed at each site.

To assess the relationship between external and hibernacula air temperatures, and to under-

stand how representative our single visits to hibernacula were of the entire winter season, we

deployed EL-USB-2 temperature and humidity data loggers (EasyLog, Lascar Electronics, PA,

USA) programmed to record internal temperature (site temperature) every hour from Octo-

ber–March at two caves and two culverts occupied by bats. We retrieved average external daily

Fig 1. Map of 97 hibernacula surveyed in Texas. Map of the 12 level III ecoregions of Texas [46] and 30-year normal mean temperature at 4 km grid cell

resolution (1981–2010) [51]. Ecoregions are numbered based on the original publication. (+) indicate the 97 hibernacula surveyed from November–March

2016–17 and 2017–18 across six of 12 level III Texas ecoregions (Chihuahuan Deserts, East Central Texas Plains, Edwards Plateau, South Central Plains,

Southwestern Tablelands, Texas Blackland Prairies).

https://doi.org/10.1371/journal.pone.0220839.g001
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temperature from PRISM Climate Database [52] for those sites. These values were taken at 4

kilometer grid cell resolution.

To assess the microclimates within each site used by hibernating bats, we collected roost

temperature and relative humidity (RH) within 5 cm of each hibernating bat or cluster using a

temperature and humidity pen (Extech 445580). In order to take into account the relationship

between temperature and RH, we calculated vapor pressure deficit (VPD) which describes the

difference between the amount of moisture in the air and how much moisture the air can hold

when saturated [53–54]. We converted RH to VPD by first calculating the saturation water

vapor pressure (SWVP) for every roost temperature recorded and then multiplying SWVP by

RH to produce the actual water vapor pressure (AWVP) [55]. VPD was calculated by subtract-

ing AWVP from SWVP. We also measured skin temperatures of bats from a maximum dis-

tance of 0.3 m using a digital infrared thermometer (Extech; Waltham, MA) to gather baseline

data on torpor behaviors in each species. We collected these skin temperature readings from

the back of each bat. Although infrared thermometers are not the preferred method to measure

bat skin temperature, they are a non-invasive and quick method of assessing temperature, and

have been used in other research with success [56]. In order to ensure that we recorded reliable

skin temperatures from torpid bats, we did not collect data from any bats that showed visible

signs of arousal (e.g., vibrating, movement). To determine if bats were hibernating at the tem-

perature within the hibernacula, we also determined substrate temperature adjacent to roost-

ing bats.

Data analysis

To test the hypothesis that site temperature is related to external temperature, we used a Pear-

son product-moment correlation. To test the hypothesis that Rafinesque’s big-eared bats,

southeastern myotis, and Mexican free-tailed bats would roost in areas of hibernacula with

warmer roost temperatures and higher AWVP, and would therefore have higher torpid skin

temperatures than all other species, we used Kruskal-Wallis H-tests (comparisons of roost

temperatures and skin temperatures among species were made using separate tests). We used

non-parametric statistics to analyze these data because Shapiro-Wilks tests indicated that both

roost temperatures and skin temperatures for each species were not normally distributed [57].

Prior to analysis, we averaged skin temperatures, roost temperatures, substrate temperatures

and VPD per site for each species to avoid pseudoreplication. We also used Pearson’s product-

moment correlations to test for a linear relationship between skin temperature and substrate

temperature, and test for a linear relationship between skin temperature and roost

temperature.

We tested our hypothesis that skin temperatures and roost temperatures of tri-colored

bats hibernating in cold climates in northern Texas (Southwestern Tablelands) would be

colder than those in the warm climates of southern Texas (Chihuahuan Deserts, Edwards

Plateau, South Central Plains) using Kruskal-Wallis H-test. We performed post-hoc com-

parisons of groups using Dunn’s tests, adjusting P-values using the Benjamini-Hochberg

method to decrease the false discovery rate. Because we only found cave myotis in two

ecoregions, we used a Wilcoxon rank-sum test to test our hypothesis that the skin tempera-

tures of cave myotis in cold climates would be colder than the skin temperatures of cave

myotis in warm climates. Finally, to compare roost temperatures and skin temperatures of

tri-colored bats hibernating in culverts to those in caves between ecoregions, we used a

Wilcoxon rank-sum test. All means are reported with standard deviations (± SD). We con-

sidered a P-value � 0.05 significant for all tests. All analyses were performed in Program R

v. 3.4.1 [58].
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Results

We collected data from the following seven bat species: Rafinesque’s big-eared bat, Townsend’s

big-eared bat (C. townsendii), big-brown bat (Eptesicus fuscus), southeastern myotis, cave myo-

tis, tri-colored bat, and Mexican free-tailed bat. Presence of these bat species varied by ecore-

gion [41] (Table 1).

Site temperature was highly correlated with external temperature for both occupied caves

and culverts (Fig 2; P� 0.05). Between October and March, the average roost temperatures for

the two caves ranged from 2.29–20.90˚ C (Cave 1) and 12.38–21.31˚ C (Cave 2) (Fig 2). During

the same period, the average roost temperatures for the two culverts ranged from 0.19–23.10˚

C (Culvert 1) and 6.21–23.00˚ C (Culvert 2) (Fig 2).

Roost temperatures differed among species (K = 30.27, d.f. = 6, P =< 0.001; Fig 3A). Rafin-

esque’s big-eared bats were found at hibernating in areas with significantly higher roost tem-

peratures (�X = 22.20 ± 4.21) than all other species except Mexican free-tailed bats and

southeastern myotis (�X = 19.67 ± 3.93; �X = 17.36 ± 2.49, respectively). The roost temperatures

at which Mexican free-tailed bats were found did not differ significantly from the roost tem-

peratures at which tri-colored bats, big brown bats, and cave myotis were found (�X =

15.79 ± 3.69; �X = 11.73 ± 5.57; �X = 14.39 ± 4.87, respectively). Townsend’s big-eared bats were

found at significantly lower roost temperatures (�X = 11.18 ± 4.36) than Rafinesque’s big-eared

bats, southeastern myotis, tri-colored bats, and Mexican free-tailed bats but were not signifi-

cantly different to the roost temperatures at which big brown bats and cave myotis were

found.

Skin temperature differed among species (K = 41.37, d.f. = 6, P =< 0.001; Fig 3B). Rafin-

esque’s big-eared bats and southeastern myotis had significantly higher skin temperatures (�X
= 20.65 ± 5.85; �X = 18.08 ± 2.36, respectively) than all other species except Mexican free-tailed

bats (�X = 18.28 ± 6.12). The skin temperatures of Mexican free-tailed bats also did not differ

significantly from tri-colored bats, big brown bats, and cave myotis (�X = 15.07 ± 2.87; �X =

10.27 ± 3.02; �X = 12.41 ± 4.05, respectively). Townsend’s big-eared bats had significantly lower

skin temperatures (�X = 9.13 ± 3.05) than Rafinesque’s big-eared bats, southeastern myotis, tri-

colored bats, and Mexican free-tailed bats, but were not significantly different to skin

Table 1. Total count of bats by species for six level III ecoregions in Texas.

Ecoregion

CD ECTP EP SCP ST TBP

CORA - - - 16 - -

COTO 0 - - - 52 -

EPFU 0 0 0 2 3 0

MYAU - 7 - 13 - -

MYVE 0 0 46 - 112 0

PESU 10 381 191 152 30 20

TABR 0 2 20 0 0 0

Total count of bats by species (Corynorhinus rafinesquii = CORA, C. townsendii = COTO, Eptesicus fuscus = EPFU,

Myotis austroriparius = MYAU, M. velifer = MYVE, Perimyotis subflavus = PESU, and Tadarida brasiliensis = TABR)

for six level III ecoregions (Chihuahuan Deserts = CD, East Central Texas Plains = ECTP, Edwards Plateau = EP,

South Central Plains = SCP, Southwestern Tablelands = ST, and Texas Blackland Prairies = TBP). Data were

collected from 97 hibernacula in Texas between November–March 2016–2017 and 2017–2018. (0) denotes

ecoregions where the species is historically present but was not documented. (-) denotes ecoregions where the species

has not been previously documented.

https://doi.org/10.1371/journal.pone.0220839.t001
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temperatures of big brown bats and cave myotis. There was a significant positive relationship

between skin temperature and substrate temperature (r113 = 0.95, P< 0.001). Skin temperature

and roost temperature also had a significant linear relationship (r102 = 0.75, P< 0.001). Roost

temperatures of tri-colored bats varied significantly among ecoregions (K = 11.14, d.f. = 3,

P� 0.01). The roost temperatures at which tri-colored bats were found was significantly

warmer in the Edwards Plateau than in the Southwestern Tablelands (�X = 17.88 ± 2.22; �X =

11.49 ± 3.92, respectively; P� 0.01). The roost temperatures at which tri-colored bats were

found did not differ significantly between the Chihuahuan Deserts, Edwards Plateau, South

Central Plains (�X = 16.28 ± 2.98; �X = 17.88 ± 2.22; �X = 15.71 ± 2.22, respectively). Roost

Fig 2. Graphs of temperature profiles for cave and culvert hibernacula. Average daily internal (black lines) and external (gray lines) temperatures (˚ C) recorded at

two caves and two culverts occupied by overwintering bats in Texas using an EL-USB-2 environmental data logger deployed from 1 October 2016–31 March 2017.

Dashed lines indicate the dates when single-visit surveys were conducted to collect skin and microclimate temperature data from hibernating bats. Gray horizontal bars

indicate the optimal growth range of P. destructans (12.5–15.8˚C) [20]. r represents the correlation coefficient between internal and external temperature with

corresponding degrees of freedom.

https://doi.org/10.1371/journal.pone.0220839.g002
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Fig 3. Box and whisker plots of average roost temperature, average skin temperature, and vapor pressure deficit for seven bat

species. Box and whisker plots displaying the median, and upper (75%) and lower (25%) quartile range of (A) average roost temperatures,

Winter habitats of Texas bats
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temperatures of tri-colored bats hibernating in caves was not significantly different to those in

culverts (P = 0.43; caves: n = 24, �X = 15.97 ± 3.77; culverts: n = 41, �X = 15.68 ± 3.69). VPD

recorded adjacent to bats did not differ among species (K = 8.86, d.f. = 6, P� 0.18; Fig 3C).

Similarly, skin temperatures of tri-colored bats varied significantly among ecoregions (K =
12.14, d.f. = 3, P� 0.01). Tri-colored bats had significantly warmer skin temperatures in the

Chihuahuan Deserts, Edwards Plateau, South Central Plains (�X = 16.45 ± 2.19, n = 2; �X =

15.34 ± 2.77, n = 18; �X = 17.05 ± 1.52, n = 2, respectively) than in the Southwestern Tablelands

(�X = 8.73 ± 2.46, n = 6; P� 0.05). Skin temperatures of tri-colored bats hibernating in caves

did not differ from those in culverts (P = 0.19; caves: n = 27, �X = 14.32 ± 3.73, min = 5.35,

max = 21.60; culverts: n = 41, �X = 15.48 ± 2.04, min = 11.00, max = 18.72). Nearby VPD did

not vary significantly (K = 4.3, d.f. = 3, P> 0.05).

The roost temperatures at which cave myotis were found was significantly colder in the

Southwestern Tablelands than in the Edwards Plateau (Southwestern Tablelands: n = 12, �X =

12.01 ± 3.94; Edwards Plateau: n = 6, �X = 18.31 ± 3.78; P< 0.001). Cave myotis had signifi-

cantly colder skin temperatures in the Southwestern Tablelands than in the Edwards Plateau

(Southwestern Tablelands: n = 10, �X = 9.50 ± 2.12; Edwards Plateau: n = 6, �X = 16.61 ± 1.80;

P< 0.001). There was no significant difference in VPD between cave myotis found in the

Southwestern Tablelands and in the Edwards Plateau (P> 0.05).

Discussion

We found that bats hibernate under diverse conditions across Texas, and observed broad dif-

ferences in selected microclimates and torpid skin temperatures among species. Our data

showed that hibernacula temperatures in Texas were suitable, and often within the optimal

growth range of P. destructans, placing several bat species at risk of developing WNS. Although

we did not investigate microclimate variability across the winter season at all sites, which con-

strains our ability to fully understand the available microclimates and species’ susceptibility to

WNS, our data add significantly to our knowledge about microclimates used by bats during

winter and their suitability to the growth of P. destructans.
As expected, we found a strong relationship between internal and external temperatures for

both caves and culverts. However, hibernacula temperatures were not simple reflections of sur-

face temperatures and the four hibernacula that we monitored with dataloggers for the entire

winter illustrate that a diversity of thermal habitats can be found in Texas. This variation can

result from several factors, including aspects of local topography and the structure of the site

and its entrances [59–60]. Temperatures within each hibernacula varied throughout the win-

ter, but minimally so during the middle of the hibernation period (December–February).

Thus, although it was not feasible for us to deploy microclimate dataloggers in all hibernacula,

roost temperature data taken at these locations were similar to internal site temperatures indi-

cating that our single-visit surveys captured conditions representative of the winter season.

Although these temperatures are warmer than those reported for caves and mines in temperate

regions, they are similar to those reported from subtropical zones [8, 11, 55, 61].

In a review of hibernacula temperatures in North America, Perry [60] found that tempera-

tures less than 10˚ C are most suitable for hibernation, and that hibernacula in areas with

(B) average skin temperatures, and (C) average vapor pressure deficit (VPD) collected between November–March 2016–2017 and 2017–

2018 in Texas for the following seven bat species: Rafinesque’s big-eared bat (Corynorhinus rafinesquii = CORA), Townsend’s big-eared

bat (C. townsendii = COTO), big-brown bat (Eptesicus fuscus = EPFU), southeastern myotis (Myotis austroriparius = MYAU), cave

myotis (M. velifer = MYVE), tri-colored bat (Perimyotis subflavus = PESU), and Mexican free-tailed bat (Tadarida brasiliensis = TABR).

Significant differences between groups (P� 0.05) are distinguished by letters. Filled circles indicate outliers.

https://doi.org/10.1371/journal.pone.0220839.g003
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mean annual surface temperatures (MAST) greater than 10˚ C are too warm. Our data show

that knowledge about hibernation ecology from the temperature region of North America

may yield misleading conclusions about hibernation in the subtropical region, as we frequently

found bats hibernating in temperatures greater than 15˚ C. Overall, we found that microcli-

mates within hibernacula used by all species overlapped the temperature range of growth for

P. destructans [20]. In fact, 22 of the 97 (22.7%) sites surveyed had microclimates within the

optimal growth range (12.5–15.8˚ C) [20]. Four of the species found within these sites, the big

brown bat, cave myotis, southeastern myotis, and tri-colored bat, are known to be susceptible

to WNS [62]. While these data suggest high risk of WNS mortality, and P. destructans has been

present in Texas since 2017 [31], diagnostic symptoms of WNS have yet to be documented

within the state. Although WNS may yet develop in Texas, we urge researchers to investigate

the possibility that hibernating bats in Texas mitigate risk to WNS through differences in win-

ter physiology and behavior in comparison to populations farther north.

Hibernacula temperatures were not always within the optimal growth range for P. destruc-
tans, and in many cases temperatures less than 10˚ C were available and occupied. As we

hypothesized, tri-colored bats and cave myotis in northern Texas were in deeper torpor—as

indicated by lower skin temperatures—than bats of the same species in southern Texas. Tri-

colored bats and cave myotis were found roosting at temperatures ranging 5.50–25.56º C and

4.67–23.67º C, respectively, and were always found torpid, as indicated by the strong correla-

tion between skin temperature and roost temperature, and skin temperature and substrate

temperature. This large range in hibernacula microclimates used by tri-colored bats is similar

to values reported in previous studies (e.g., [8, 11, 48, 63–64]). The average temperature used

by this species, 15.8˚ C, is at the upper end of the optimal growth range for P. destructans, sug-

gesting this species is at risk in Texas. The range of microclimates used by cave myotis in our

study was similar to values contained in a review by Webb and colleagues [8]. Similar to tri-

colored bats, the average roost temperature for cave myotis, 14.35˚ C, suggesting these bats

select microclimate conducive to growth of P. destructans.
Compared to tri-colored bats and cave myotis, Rafinesque’s big-eared bats, Mexican free-

tailed bats and southeastern myotis were consistently found in warmer areas of the hibernacula

and had warmer skin temperatures, although these values did not always differ significantly

from other species. This result is consistent with previous studies of Mexican free-tailed bats,

which have shown this species employs shallow torpor during winter months [41, 65–66].

Unlike the Mexican free-tailed bat, Rafinesque’s big-eared bat and the southeastern myotis

have limited distributions within Texas, and are only found in regions of warmer climates. In

particular, Rafinesque’s big-eared bat is only found in the South Central Plains [41]. Compared

to other bats hibernating in this region, Rafinesque’s big-eared bats had the highest skin tem-

peratures. This result is similar to that of Johnson and colleagues [42], who found this species’

winter skin temperature of 13.9˚ C ± 0.6 among hibernating big-eared bats in Kentucky. John-

son and colleagues [42] also found this species frequently switched among nearby hibernacula

in winter. Although we did not track movements of this or any other species, the relatively

high torpid skin temperatures we observed suggests this species may also be active during win-

ter in Texas.

Contrary to predictions, there was no difference in roost VPD between species. This indi-

cates that—when variation in temperature is taken into consideration—the bat species studied

in this manuscript do not differ in their required or preferred level of roost moisture. Across

species, VPD was low, suggesting that bats were found in roosts with high levels of internal

atmospheric moisture. As hibernating bats are as risk of evaporative water loss (EWL), it

makes sense to find these bat species in moist environments. Although not significant, the data

did suggest that Mexican free-tailed bats were found in hibernacula with slightly higher VPDs
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than other species. As a species that tends to engage in shallow torpor during winter [41, 65–

66], Mexican free-tailed bats are not as much at risk from EWL and thus can tolerate some-

what drier roosts.

Our work adds to previous studies documenting the use of culverts as hibernacula for tri-

colored bats in Texas [48–49, 67]. Culverts may act similarly to artificial caves in regions where

cave-forming karst is scarce, increasing roosting options. Contrary to our prediction, tri-col-

ored bats hibernating in culverts did not have significantly different skin temperatures than

those hibernating in caves. However, the range of skin temperatures of tri-colored bats roost-

ing within caves was larger than those in culverts. Although not reported here, our observa-

tions suggest that tri-colored bats may be selecting to roost within a given temperature range

within culverts as a result of their body condition, EWL, and rates of heat loss through convec-

tion and conduction [5, 9, 68]. Raesly and Gates [69] suggested that there is an interplay

between external hibernacula characteristics and internal characteristics that influence roost

use. This relationship, along with the lack of caves in the region, may drive occupancy of cer-

tain culverts.

The roost temperatures, skin temperatures and actual water vapor pressures we reported

herein depict microclimates selected by bats within hibernacula. Further, these data speak to

the vulnerability to developing P. destructans infections but cannot predict WNS mortalities,

as additional factors such as length of torpor bouts, winter food availability and foraging pat-

terns must also be considered. Nevertheless, there are some important takeaways from our

study. Based on our data, and provided that P. destructans continues to spread in Texas, we

hypothesize that Mexican free-tailed bats, southeastern myotis, and Rafinesque’s big-eared

bats will not develop WNS in Texas. Although our data suggest that cave myotis and tri-col-

ored bats in Texas will be affected by WNS, the lack of any WNS-affected bats in Texas to-date

demands further research. Future studies should focus on gathering information on the torpor

patterns (e.g., torpor bout lengths) of bats in southern US. This work will help to improve the

current understanding about differences in hibernation ecology and the potential impacts of

WNS on these southern occupants.
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